With Fiber Stretching, Drawing, Or Pulling (e.g., From Rod, Etc.) Patents (Class 65/435)
  • Publication number: 20130061637
    Abstract: An optical fiber preform that is used in a method in which a core rod that forms a core is inserted into a quartz tube that forms a cladding, and at the same time as they are fiber-drawn, the quartz tube and the core rod are formed into a single body, includes: a tapered portion that is formed by grinding an outer circumferential portion of a distal end portion of the quartz tube into a tapered shape; and a conical portion that is formed by welding a dummy tube that has substantially the same outer diameter as the outer diameter of a distal end portion of the tapered portion to the distal end portion of the tapered portion, and by applying heat to the dummy tube and stretching out the dummy tube, where the core rod is inserted inside the quartz tube.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 14, 2013
    Applicant: FUJIKURA LTD.
    Inventor: Fujikura Ltd.
  • Publication number: 20130044989
    Abstract: Provided is a method of producing a preform 10P for a coupled multi-core fiber including: an arranging process P1 for arranging a plurality of core glass bodies 11R and a clad glass body 12R in such a way that the plurality of core glass bodies 11R are surrounded by the clad glass body 12R; and a collapsing process P2 for collapsing a gap between the core glass bodies 11R and the clad glass body 12R, wherein the respective core glass bodies 11R have outer regions 16 having a predetermined thickness from the periphery surfaces and made of silica glass undoped with germanium, and the clad glass body 12R is made of silica glass having a refractive index lower than a refractive index of the outer regions of the core glass bodies 11R.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 21, 2013
    Applicant: FUJIKURA LTD.
    Inventors: Shoji Tanigawa, Katsuhiro Takenaga
  • Patent number: 8347656
    Abstract: An apparatus includes: an introducer to introduce a glass optical fiber that has passed a pulling mechanism pulling, to draw the glass optical fiber, one end of an optical fiber preform that has been fused by heating; a shredder including a casing connected to the introducer and a shredding mechanism to shred the glass optical fiber introduced by the introducer in the casing into glass optical-fiber pieces; a pipe connected to the casing of the shredder and to carry the glass optical-fiber pieces; and a suction unit connected to the pipe and to suction the glass optical-fiber pieces via the pipe.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 8, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuta Aoki, Katsuhiko Watanabe, Kiyoshi Arima, Hirokazu Sato, Yoshiharu Taga, Takashi Suzuki
  • Publication number: 20120321261
    Abstract: There is provided a method for producing an optical fiber having low attenuation, the optical fiber including a core that contains an alkali metal element. An optical fiber preform that includes a core part and a cladding part is drawn with a drawing apparatus to form an optical fiber, the core part having an average concentration of an alkali metal element of 5 atomic ppm or more. During the drawing, the time the temperature of glass is maintained at 1500° C. or higher is 110 minutes or less. The drawing speed is preferably 1200 m/min or more and more preferably 1500 m/min to 2300 m/min. The optical fiber preform preferably has a diameter of 70 mm to 170 mm and more preferably 90 mm to 150 mm.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tetsuya Haruna, Masaaki Hirano, Yoshiaki Tamura
  • Patent number: 8322164
    Abstract: In a process for producing a low polarization mode dispersion optical fiber, which comprises the steps of drawing a glass preform into an optical fiber and of spinning, during drawing, the optical fiber about an optical fiber axis, the spinning is imparted according to a bidirectional and substantially trapezoidal spin function, which includes zones (P) of substantially constant amplitude (plateau) and zones of transition (T) where inversion of the spin direction takes place, wherein the extension (p) of the zones of substantially constant amplitude is greater than the extension (t) of the zones of transition, and the number of inversions of the direction of spin in a length of fiber of 20 m is at most two.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 4, 2012
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Davide Sarchi, Sabrina Fogliani, Roberto Pata
  • Publication number: 20120222452
    Abstract: A method of elongating a glass base material to obtain a glass rod having a smaller diameter, using a glass base material elongating apparatus including a feeder at least for the glass base material, a heating furnace, and an elongating mechanism of the glass base material below the heating furnace, is such that a horizontal plane position measuring unit of the glass base material is provided inside or near the heating furnace, the feeder has a glass base material horizontal plane position adjusting unit, and the elongating mechanism has three or more sets of elongating rollers capable of switching between grasping and releasing for keeping the position of the glass rod in the horizontal plane to be constant, and the glass base material is elongated with the position thereof in the horizontal plane kept as targeted by controlling the glass base material horizontal plane position adjusting unit.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventor: Tetsuya OTOSAKA
  • Patent number: 8230704
    Abstract: In one embodiment, an optical fiber cooling system includes a first cooling tube oriented substantially in parallel with and spaced apart from a second cooling tube such that an optical fiber pathway is positioned between the first cooling tube and the second cooling tube. The first cooling tube includes a plurality of cooling fluid outlets positioned along an axial length of the first cooling tube which are oriented to direct a flow of cooling fluid across the optical fiber pathway towards the second cooling tube. The second cooling tube includes a plurality of cooling fluid outlets positioned along an axial length of the second cooling tube which are oriented to direct a flow of cooling fluid across the optical fiber pathway towards the first cooling tube.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventors: Gary Alan Cummings, Samir Khanna, Douglas Gregg Neilson, Thomas A Pedersen, Massoud Rahiminejad, Bruce Warren Reding
  • Patent number: 8233760
    Abstract: A method for making low PMD fiber comprising the steps of: (i) making an initial fiber preform; (ii) modifying said initial fiber preform to introduce higher birefringence than that of the initial fiber preform into modified preform; and (iii) drawing an optical fiber from the modified preform and bi-directionally spinning the drawn fiber during draw.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Timothy Leonard Hunt, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 8230702
    Abstract: Disclosed is a method of heat treating quartz glass deposition tubes at between 900° C. and 1200° C. for at least 115 hours. The resulting deposition tubes are useful in forming optical preforms that can yield optical fibers having reduced added loss.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: July 31, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Guangjun Xu, Larry Zeng, Ivo Flammer, Dennis Robert Simons, Cedric Gonnet, Rob Hubertus Matheus Deckers
  • Publication number: 20120186304
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular void-containing region that contains non-periodically disposed voids. The optical fiber provides single mode transmission and low bend loss.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20120121226
    Abstract: An optical fiber includes an outer periphery formed into a shape that configures the fiber to interlock with the other fibers with complementary shapes. Methods and systems for fabricating such interlocking fibers are also disclosed. In one example, a method includes drawing a first optical fiber from a preform and forming an outer periphery of the first optical fiber into a shape that configures the first optical fiber to be interlocked with a second optical fiber comprising an outer periphery formed into a shape that is complementary to the shape of the first optical fiber.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Scott G. Fleischman, Richard Kallay
  • Publication number: 20120087625
    Abstract: A fiber preform, including: a fiber core rod and an outer cladding layer. The ratio of the diameter of the fiber core rod to the diameter of the core layer thereof is 2.1-2.8. The fiber core rod and a small fluorine-doped quartz glass tube are melted to form a core rod assembly. The ratio of the diameter difference between the core rod assembly and the fiber core rod to the diameter of the core layer is 0.5-2.2. The relative refractive index difference of fluorine-doped quartz glass relative to purified quartz glass ?F is ?0.20% to ?0.35%. The core rod assembly is arranged with a large purified quartz glass tube, or directly deposited with a SiO2 glass cladding layer. A ratio of an effective diameter of the fiber preform to the diameter of the core rod assembly is 2.0-5.6. Methods for manufacturing the preform and a fiber are also provided.
    Type: Application
    Filed: December 15, 2011
    Publication date: April 12, 2012
    Inventors: Qingrong HAN, Chen YANG, Yongtao LIU, Jie LUO, Matai RADJJ
  • Patent number: 8141392
    Abstract: Drawing methods and drawing furnaces for drawing an optical fiber with small non-circularity by simple drawing system are provided. An optical fiber preform is received into a muffle tube and heated by a primary heater placed to surround the muffle tube. The optical fiber preform is heated such that a starting position of a meniscus portion is higher in its position than the top of the primary heater, wherein the meniscus portion is created at the bottom portion of the optical fiber preform.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 27, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Nobuaki Orita, Takashi Suzuki, Yoshiyuki Sakata
  • Patent number: 8132429
    Abstract: The method for fabricating an optical fiber comprises the steps of inserting a primary optical fiber preform (11) having a first primary axis (x1) and an outer surface (111) into an overcladding tube (12) having a second primary axis (x2) and an inner surface (120), so that said outer surface and inner surface define an interior space (15); holding the primary preform (11) in a centrally inserted position within the overcladding tube (12) with said first and second primary axes (x1, x2) in substantial alignment with each other; supplying overcladding grain (13) into the interior space (15) that is limited at the lower end of the overcladding tube (12) by means of a closure (125); generating a condition of reduced pressure within the interior space (15) that is limited at the upper end of the overcladding tube (12) by means of an adjoiner (3), which holds the primary optical fiber preform (11) and the overcladding tube (12) in position; and heating the unprocessed secondary preform (1), that consists of the pr
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: March 13, 2012
    Assignee: Silitec Fibers SA
    Inventor: Carlos Pedrido
  • Publication number: 20120017644
    Abstract: When drawing of a GRIN lens from a preform is started, wastage of the preform is reduced and the amount of time taken from the start of elongation of the preform to the start of winding is reduced. A preform, to a lower end of which a weight formed of silica is fused, is set in a heating furnace, and drawing of the preform is started by heating a fused portion where the preform and the weight are fused to each other. This can reduce wastage of the preform. Since an elongation speed of the preform is increased by the weight of the weight, the amount of time taken from the start of the elongation of the preform to the start of winding can be decreased.
    Type: Application
    Filed: March 30, 2009
    Publication date: January 26, 2012
    Applicant: TOYO GLASS CO., LTD.
    Inventor: Toshiaki Fukuda
  • Publication number: 20120014654
    Abstract: Provided is an optical fiber having a large relative refractive index difference and a reduced transmission loss, as well as a manufacturing method therefor. An optical fiber preform 100, which is made of silica glass as the main element and which includes a core region having a relative refractive index difference of 2.0% or more and less than 3.0% on the basis of the refractive index of pure silica glass and a first cladding region provided around the core region and having a relative refractive index difference of ?0.8% or more and less than ?0.3% on the basis of the refractive index of pure silica glass, is drawn into a glass fiber. The glass fiber thus drawn is passed through an annealing furnace 21 installed below a drawing furnace 11, whereby the cooling rate of the glass fiber is restrained as compared with the case where it is cooled by air.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tetsuya HARUNA, Masaaki Hirano, Nobuhiro Hikichi
  • Publication number: 20110302966
    Abstract: The present invention relates to a method for manufacturing a primary preform for optical fibres, using an internal vapour deposition process, wherein a gas flow of doped undoped glass-forming gases is supplied to the interior of a hollow substrate tube having a supply side and a discharge side via the supply side thereof, wherein deposition of glass layers on the interior of the substrate tube is effected as a result of the presence of a reaction zone.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 15, 2011
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Igor MILICEVIC, Mattheus Jacobus Nicolaas VAN STRALEN, Eugen ALDEA
  • Patent number: 8074474
    Abstract: A method for forming an optical fiber includes drawing the optical fiber from a glass supply and treating the fiber by maintaining the optical fiber in a treatment zone wherein the fiber is cooled at a specified cooling rate. The optical fiber treatment reduces the tendency of the optical fiber to increase in attenuation due to Rayleigh scattering, and/or over time following formation of the optical fiber due to heat aging. Methods for producing optical fibers along nonlinear paths incorporating fluid bearings are also provided thereby allowing for increased vertical space for the fiber treatment zone.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 13, 2011
    Assignee: Corning Incorporated
    Inventors: Andrey V Filippov, Hazel B Matthews, III, Bruce Warren Reding, Bradley K Shepard, David Andrew Tucker
  • Publication number: 20110289980
    Abstract: An optical fiber production system and method are provided for producing optical fiber. An optical fiber is drawn from a preform in a furnace and passes through a treatment device under a controlled reduced pressure or partial vacuum in the range of 0.01 to 0.8 atm. The treatment device cools the bare optical fiber as it cools to a temperature range of at least 1,600° C. to 1,300° C. A non-contact fiber centering device is located near an exit of the treatment device to provide linear centering of the optical fiber as it exits the treatment device.
    Type: Application
    Filed: April 21, 2011
    Publication date: December 1, 2011
    Inventors: Andrey V. Filippov, Robert C. Moore, Bruce Warren Reding, David Andrew Tucker
  • Publication number: 20110289979
    Abstract: An optical fiber production system and method are provided for producing optical fiber. An optical fiber is drawn from a preform in a furnace and passes through a treatment device under a reduced pressure in the range of 0.01 to 0.80 atm. The treatment device cools the bare optical fiber as it cools to a temperature in the range of at least 1,600° C. to 1,300° C. A non-contact fiber centering device is located near an exit of the treatment device to provide centering of the optical fiber as it exits the treatment device.
    Type: Application
    Filed: April 21, 2011
    Publication date: December 1, 2011
    Inventors: James Henry Faler, Andrey V. Filippov, Robert C. Moore, Bruce Warren Reding
  • Patent number: 8061162
    Abstract: In a known method for producing a tube of quartz glass by elongating a hollow cylinder of quartz glass having an outer diameter AD, said cylinder is continuously supplied to a heating zone with a vertically oriented heating tube having an inner diameter d, with the proviso that the diameter ratio d/AD is set to a value ranging from 1.02 to 1.7. The hollow cylinder is softened therein zonewise, and a tubular strand is drawn off from the softened region and shortened to obtain the tube. Starting therefrom, in order to optimize the dimensional stability of the quartz glass tube obtained, it is suggested according to the invention that the heating zone should have a length L which is set such that the ratio L/d is smaller than 0.9.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: November 22, 2011
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventor: Thomas Bogdahn
  • Patent number: 8056368
    Abstract: An apparatus and method for tapering an optical fiber segment having an initial radial profile to substantially conform to a pre-specifiable desired radial profile for controlling mutually coordinated elongation and softening of different axial portions of the segment according to control parameters derivable based on a normalized axial coordinate reference by which points of the initial profile map to corresponding points of the desired profile. The softening and/or elongation may progress substantially in either a step-wise, time-discrete manner or time-continuously. The invention is useful for forming tapered fused couplers as well as for tapering individual fibers.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: November 15, 2011
    Assignee: Harris Corporation
    Inventors: Kevin Randolph Harper, Timothy Joseph Norwood, Timothy Eugene Dimmick
  • Patent number: 8033141
    Abstract: A coating is applied on an optical fiber drawn from a melted tip of an optical-fiber preform. A glass spin is applied to a coated optical fiber by gripping the coated optical fiber with at least a pair of spinning applying rollers arranged in different levels with parallel rotation axes, rotating the spinning applying rollers so that the coated optical fiber is guided in a predetermined direction, and alternately shifting the spinning applying rollers in opposite directions along the rotation axes. The glass spin is applied to the coated optical fiber in a state in which each of the rotation axes is tilted at a predetermined angle from a plane perpendicular to the first direction.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 11, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Minsuk Song, Shinichi Arai
  • Publication number: 20110226020
    Abstract: Disclosed is a method of heat treating quartz glass deposition tubes at between 900° C. and 1200° C. for at least 115 hours. The resulting deposition tubes are useful in forming optical preforms that can yield optical fibers having reduced added loss.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 22, 2011
    Applicant: DRAKA COMTEQ B.V.
    Inventors: Guangjun Xu, Larry Zeng, Ivo Flammer, Dennis Robert Simons, Cedric Gonnet, Rob Hubertus Matheus Deckers
  • Patent number: 8020411
    Abstract: A method of manufacturing a single mode optical fiber formed of a silica-based glass and including a glass part having a central core and a cladding region. The method including heating an optical fiber preform in a heating furnace including a first heater to melt the optical fiber preform, and fiber drawing an optical fiber from the molten optical fiber preform. The method further comprises continuously cooling the drawn optical fiber starting with a meniscus portion in which diameter is decreased from 90% of the preform diameter to 5% of the preform diameter to a portion where the drawn optical fiber has a temperature of 1,200° C. at a cooling rate of 1,000 to 3,000° C. /sec.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 20, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hideya Moridaira, Kazuhiko Kurusu, Yoshihiro Inoue
  • Patent number: 8015846
    Abstract: This method for drawing a quartz glass optical component shortens the pulling process and minimizes loss of material. An end face of a quartz glass hollow cylinder forms a tapered end portion to an attachment piece of quartz glass having a bore. The inner bore of the hollow cylinder and the bore of the attachment piece are at least temporarily interconnected fluidically as a passage bore. A cleaning fluid is passed through the inner bore of the hollow cylinder and the passage bore. A core rod of quartz glass, which rests on a contact surface of the attachment piece, is inserted into the inner bore of the hollow cylinder, and the hollow cylinder is continuously supplied to a heating zone, heated therein so as to form a drawing bulb, and the component is continuously drawn therefrom.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: September 13, 2011
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Joachim Peekhaus, Ralph Sattmann, Joerg Werner
  • Patent number: 7963124
    Abstract: A method for producing an optical fiber that includes a method for producing an optical fiber, said method comprising: (i) drawing a bare optical fiber from a preform along a first pathway at a rate of at least 10 m/sec; (ii) contacting said bare optical fiber with a region of fluid in a fluid bearing and redirecting said bare optical fiber along a second pathway as said bare optical fiber is drawn across said region of fluid cushion; (iii) coating the bare optical fiber; and (iv) irradiating said coated fiber in at least one irradiation zone to at least partially cure said coating, while subjecting the optical fiber to UV light.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Andrey V Filippov, Bruce Warren Reding, Bradley Kent Shepard, David Andrew Tucker
  • Patent number: 7963122
    Abstract: The invention relates to a method and an apparatus for producing optical glass elements, in particular optical prisms or optical rod lenses, using a drawing process. The geometry of the glass strand which is to be produced is controlled by means of cooling or heating elements positioned at least around portions of the periphery or longitudinal axis of the glass strand, inside or outside the heating apparatus.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: June 21, 2011
    Assignee: Schott AG
    Inventors: Frank Büellesfeld, Andreas Langsdorf, Ulrich Lange, Volker Plapper
  • Publication number: 20110132039
    Abstract: A glass preform drawing apparatus feeds a glass preform into a heating furnace at a predetermined feeding speed and produces a glass rod having a uniform diameter. Specifically, the drawing apparatus for producing a glass rod having a desired outer diameter by heating and drawing a glass preform is characterized in that, at a normal operating temperature T (K) of the heating furnace, the top chamber is transparent at a wavelength of ? (?m) expressed by the following formula 1: ?=2898/T.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 9, 2011
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Tetsuya Otosaka
  • Patent number: 7937971
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Publication number: 20110094269
    Abstract: An optical fiber manufacturing method comprises preparing first base materials each of which includes at least one core forming part to form a core and a cladding forming part to form a cladding; performing a first elongating to form second base materials by forming a first bundle by bundling two or more base materials including at least one of the first base materials having been prepared at the preparing and by thermally elongating the first bundle; and performing a second elongating at least once to form a second bundle by bundling two or more base materials including at least one of the second base materials and by thermally elongating the second bundle, wherein the second bundle is thermally elongated up until the point when the optical fiber is formed at the second elongating.
    Type: Application
    Filed: September 29, 2010
    Publication date: April 28, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Kazunori MUKASA
  • Patent number: 7926304
    Abstract: A non-contact method for measuring the tension applied to a drawn optical fiber includes drawing an optical fiber and displacing the optical fiber by applying a pressurized fluid to the optical fiber. The pressurized fluid may be applied to the optical fiber using a fluid bearing. The fluid bearing may include a fiber support channel. The optical fiber may be directed through the fiber support channel and is displaced relative to the fluid bearing by supplying the pressurized fluid to the fiber support channel. The displacement of the optical fiber caused by the application of the pressurized fluid to the optical fiber may then be measured. The tension applied to the optical fiber may then be determined based on the determined displacement.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 19, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, Andrey V. Filippov
  • Publication number: 20110016925
    Abstract: A method and device for making high precision glass tubes. A glass rod is pushed into a heated chamber and the tube is pulled from the chamber. Preferably, both the push rate and the pull rate are controlled. Fiber optic glass ferrules and other components manufactured by the use of this invention have precision dimensions that fall well within the tight dimensional tolerances required for ferrules and others.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Applicant: QUANTUM QUARTZ, LLC
    Inventors: Vaughan Morrill, JR., Roger Wilke, JR.
  • Publication number: 20110011135
    Abstract: The method that enables high yield production of a glass preform comprises an assembling step, a soot deposition step, a pulling step, a consolidation step, and a collapse step. In at least one traverse of the reciprocating movement during the soot deposition step, the relative transfer velocity of the base rod unit and the glass synthesizing burner in a second range is made slower than the relative transfer velocity of the base rod unit and the glass synthesizing burner in a first range, where the first range is a range extending from a boundary position to the tip portion of the starting mandrel and the second range is a range extending from the boundary position to a part of the tubular handle, the boundary position being a position that is 30 mm or more distanced from one end of the tubular handle to the direction of the tip portion of the starting mandrel.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tomohiro ISHIHARA
  • Publication number: 20100292065
    Abstract: A process for producing an optical glass fiber from crystal-glass phase material. In one embodiment, the process includes the step of providing a molten crystal-glass phase material in a container, wherein the temperature of the molten crystal-glass phase material is at or above the melting temperature of the molten crystal-glass phase material, Tm, to allow the molten crystal-glass phase material is in liquid phase. The process further includes the step of cooling the molten crystal-glass phase material such that the temperature of the molten crystal-glass phase material, T1, is reduced to below Tm to cause the molten crystal-glass phase material to be changed from the liquid phase to a viscous melt.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 18, 2010
    Applicant: Northwestern University
    Inventors: Mercouri G. Kanatzidis, In Chung
  • Patent number: 7832234
    Abstract: A method of hot forming of at least a part of an article is provided. The article includes a material selected from the group consisting of transparent and semitransparent materials. The method includes semi-homogeneously heating at least a part of the article by radiation and forming the heated part of the article.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: November 16, 2010
    Assignee: Schott AG
    Inventors: Bernd Hoppe, Andreas Hirsch, Ulrich Fotheringham, Michael Weisser, Paulette Onorato, Edward Skowron, Vijay Shanbhag
  • Publication number: 20100281922
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Application
    Filed: November 26, 2007
    Publication date: November 11, 2010
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V. Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Publication number: 20100238538
    Abstract: A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Inventors: Robert R. Rice, Michael G. Wickham, Hiroshi Komine, Peter Livinaston, Peter Thielen, Charles Phillip Asman
  • Publication number: 20100236293
    Abstract: A system for producing a tapered fiber optic component, the system including a support platform, coupled with a first end of an optical fiber, a weight suspended from a second end of the optical fiber, such that the weight applies longitudinal pulling pressure on the optical fiber, and a moveable heater, positioned adjacent to a predetermined area of the optical fiber, the predetermined area is positioned between the first end and the second end of the optical fiber, the moveable heater applying thermal energy to the predetermined area of the optical fiber, when the optical fiber is lengthened by the pulling pressure, the movable heater follows the predetermined area, such that the movable heater remains adjacent to the predetermined area of the optical fiber.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Applicant: V-GEN LTD.
    Inventor: Eran INBAR
  • Patent number: 7797965
    Abstract: In a known method for producing tubes of quartz glass, a hollow cylinder (2) of quartz glass is continuously supplied to a heating zone (1) and is softened therein in regions, and a tube strand (21) is drawn off at a drawing speed from the softened region with formation of a drawing bulb (26), and the tubes to be produced are cut to length in the form of tube strand pieces by separating the tube strand (21) at a desired separation point (T, Vu, Vo) and an internal pressure differing from the external pressure applied to the outer cladding is maintained in the inner bore (4) of the hollow cylinder (2) in that the inner bore (4) of the tube strand is provided with a flow obstacle.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: September 21, 2010
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Norbert Cibis, Oliver Ganz
  • Publication number: 20100232754
    Abstract: A method of making an optical fiber includes the steps of: providing an optical fiber preform; heating an end portion of the optical fiber preform so as to obtain a softened preform end portion; drawing the softened preform end portion to form the optical fiber; applying to the optical fiber a substantially sinusoidal spin having a spin amplitude and a spin period, the substantially sinusoidal spin being transmitted to the softened preform end portion, and determining an actual spin amplitude applied to the fiber, wherein the actual spin amplitude is the spin amplitude applied in correspondence to the softened preform end portion. The spin amplitude and spin period of the substantially sinusoidal spin are selected in such a way that a ratio of the actual spin amplitude to the spin period is in the range of approximately 0.8 to approximately 1.4 turns/m2.
    Type: Application
    Filed: June 22, 2006
    Publication date: September 16, 2010
    Inventors: Davide Sarchi, Maddalena Ferrario
  • Patent number: 7788951
    Abstract: There is provided an elongation method of an optical fiber base material, by which a base material rod not requiring a process for modifying a bend from base material ingot is obtained. The method for elongating base material ingot to be a base material rod having a diameter smaller than before to manufacture an optical fiber base material, includes the steps of: elongating the base material ingot while controlling a control position so that a neck-down within a horizontal surface of the base material ingot is located at a target position; measuring a bending direction and a bending amount of an elongated base material rod; and adjusting the target position based on the result. In addition, it is preferable to adjust a position of a pendant portion of base material ingot in order to control the position of the neck-down to be the target position. For example, the position of the pendant portion may be moved in an XY direction, more particularly, in a direction in which the measured bend shows convexity.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: September 7, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Tadakatsu Shimada, Takaaki Nagao, Soichiro Kemmochi
  • Publication number: 20100220965
    Abstract: An optical waveguide including a core, a buffer surrounding the core, and a cladding surrounding the buffer. The core, the buffer and the cladding include silica glass. A refractive index of the buffer is substantially equal to a refractive index of pure amorphous silica glass. The buffer may reduce bubble formation during manufacturing and may facilitate splicing of the waveguide. A numerical aperture of the waveguide may be fine-tuned by adjusting a radial dimension of the buffer in order to compensate variations in the refractive index of the core.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 2, 2010
    Applicant: LIEKKI OY
    Inventors: Markku Rajala, Mircea Hotoleanu, Per Stenius, Harri Valkonen, Simo Tammela, Pauli Kiiveri
  • Publication number: 20100202743
    Abstract: A photonic band gap fiber and method of making thereof is provided. The fiber is made of a germanate glass comprising at least 30 mol % of a germanium oxide and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 90%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 12, 2010
    Inventors: SHYAM S. BAYYA, Jasbinder S. Sanghera, Leslie Brandon Shaw, Ishwar D. Aggarwal
  • Patent number: 7769263
    Abstract: An optical fiber comprising: (i) a core; (ii) a cladding surrounding the core; wherein the cladding comprises a cladding ring that: (a) has a width W equal to or less than 10 microns; (b) includes at least 50 airlines, each airline having a maximum diameter or a maximum width of not more than 2 microns and more than 50% of said airlines have a length of more than 20 m; (c) has an air fill fraction of 0.1% to 10%, and (d) has an inner radius Rin and an outer radius Rout, wherein 6 ?m?Rin?14 ?m, and 8 ?m?Rout?14 ?m; and (iii) an outer cladding surrounding said cladding ring.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 3, 2010
    Assignee: Corning Incorporated
    Inventors: Randy Lee Bennett, Scott Robertson Bickham, Jeffrey Coon, Leonard Charles Dabich, II, Daniel Warren Hawtof, Joseph Edward McCarthy
  • Publication number: 20100159242
    Abstract: A cane having optical properties includes: a core formed of a semiconductor material; and a transparent cladding formed of glass, glass-ceramic, or polymer coaxially oriented about the core, the cane may be used to produce a photovoltaic device, including: a semiconductor core including at least one p-n junction, defined by respective n-type and p-type regions; a substantially transparent cladding in coaxial relationship with the semiconductor core, forming a longitudinally oriented cane; and first and second electrodes, each being electrically coupled to a respective one of the n-type and p-type regions.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Inventors: Venkata Adiseshaiah Bhagavatula, David John McEnroe
  • Publication number: 20100139323
    Abstract: An optical fiber manufacturing apparatus for manufacturing an optical fiber by drawing a optical fiber preform, including: a drawing furnace having therein a muffle tube into which the optical fiber preform is inserted and heating the optical fiber preform; and a first seal member which is disposed at an insert side of the drawing furnace so as to be coaxial with the drawing furnace and which seals the optical fiber preform inserted into an opening formed at the center thereof, wherein the first seal member includes a plurality of inner-circumference slits formed in the inner circumference thereof and a plurality of outer-circumference slits formed in the outer circumference thereof.
    Type: Application
    Filed: December 4, 2009
    Publication date: June 10, 2010
    Applicant: FUJIKURA LTD.
    Inventor: Tomohiro NUNOME
  • Patent number: 7734137
    Abstract: A multicore optical fibre includes a microstructured cladding material formed from a plurality of cladding elements arranged in an array and each cladding element comprising at least two different materials each having different refractive indices, and a plurality of core elements formed within interstitial regions between adjacent cladding elements. A fibre so formed may have a large number of cores per unit cross-sectional area as compared with prior art fibres, and thus allows the fibre to have relatively short distances between adjacent cores for a given required inter-core isolation. A fibre so formed has utility in many areas requiring high core density, such as inter-chip optical communication, or optical communication between circuit boards.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 8, 2010
    Assignee: QinetiQ Limited
    Inventors: Charlotte R H Bennett, Terence J Shepherd, Laurent Michaille, David M Taylor
  • Publication number: 20100107699
    Abstract: The invention relates to a method for producing an infrared transmitting fiber (50) comprising the steps of providing a preform (20) of the infrared transmitting fiber (50) to be produced, said preform (20) comprising a receptacle, which is the precursor of the fiber's cladding, and a solid solution provided inside said receptacle, said solid solution being the precursor of the fiber's core; heating the fiber's preform (20) up to a temperature in which the receptacle softens and the solid solution melts; collecting the flow generated by the softened receptacle; drawing the fiber (50) from the collected flow.
    Type: Application
    Filed: January 7, 2008
    Publication date: May 6, 2010
    Inventors: Evangelos Vassilios Hristoforou, Simón Schwartz Navarro
  • Patent number: 7681416
    Abstract: The production of an optical component from quartz glass, by elongation of a coaxial arrangement of a core rod and a hollow cylinder of a given length, is known. The arrangement is thus introduced into a heating zone with a vertical orientation, such that the lower end begins to partly soften and the component is drawn downwards from the softened part. The hollow cylinder has an inner passage, provided with a restriction in the region of the lower end thereof, on which the core rod is supported. Several methods are disclosed for formation of the restriction in which the inner passage (55) is mechanically machined to a final dimension and, in one version of the method, the restriction in the inner passage (55) is generated by means of softening the lower end face of the hollow cylinder, swaged against a tool and thus folded inwards with formation of a peripheral bead ring.
    Type: Grant
    Filed: July 18, 2004
    Date of Patent: March 23, 2010
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Oliver Ganz, Rene Sowa, Peter Bauer, Norbert Cibis, Ralph Sattmann, Jan Vydra, Clemens Schmitt