Plural Controlled Devices Or Plural Nonvision Controlling Devices Patents (Class 700/247)
  • Patent number: 8368339
    Abstract: A method of confining a robot in a work space includes providing a portable barrier signal transmitting device including a primary emitter emitting a confinement beam primarily along an axis defining a directed barrier. A mobile robot including a detector, a drive motor and a control unit controlling the drive motor is caused to avoid the directed barrier upon detection by the detector on the robot. The detector on the robot has an omnidirectional field of view parallel to the plane of movement of the robot. The detector receives confinement light beams substantially in a plane at the height of the field of view while blocking or rejecting confinement light beams substantially above or substantially below the plane at the height of the field of view.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: February 5, 2013
    Assignee: iRobot Corporation
    Inventors: Joseph L. Jones, Philip R. Mass
  • Patent number: 8352074
    Abstract: A path planning apparatus and method of a robot, in which a path, along which the robot accesses an object to grasp the object, is planned. The path planning method includes judging whether or not a robot hand of a robot collides with an obstacle when the robot hand moves along one access path candidate selected from plural access path candidates along which the robot hand accesses an object to grasp the object, calculating an access score of the selected access path candidate when the robot hand does not collide with the obstacle, and determining an access path plan using the access score of the selected access path candidate.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics
    Inventors: Guochunxu, Kyung Shik Roh, San Lim, Bok Man Lim, Myung Hee Kim
  • Patent number: 8346391
    Abstract: A system and method can provide a command and control paradigm for integrating robotic assets into human teams. By integrating sensor to detect human interaction, movement, physiology, and location, a net-centric system can permit command of a robotic platform without an OCU. By eliminating the OCU and maintaining the advantages of a robotic platform, a robot can be used in the place of a human without fatigue, being immune to physiological effects, capable of non-humanoid tactics, a longer potential of hours per day on-station, capable of rapid and structured information transfer, has a personality-free response, can operate in contaminated areas, and is line-replaceable with identical responses. A system for controlling a robotic platform can comprise at least one perceiver for collecting information from a human or the environment; a reasoner for processing the information from the at least one perceiver and providing a directive; and at least one behavior for executing the directive of the reasoner.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: January 1, 2013
    Assignee: Science Applications International Corporation
    Inventors: David Anhalt, Keith D. Gremban
  • Patent number: 8335597
    Abstract: A remote-controlled mobile machine has a pair of flexible shafts (10) formed by inserting torque transmission driving wires (11) into tubes (12). One ends of the flexible shafts (10) are respectively connected to power sources (2), and the other ends thereof are respectively connected to a pair of left and right crawler mechanisms (102). The crawler mechanisms (102) are driven/controlled by remote control via the flexible shafts (10) to make the mobile machine travel.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 18, 2012
    Assignee: Kagoshima University
    Inventors: Ryota Hayashi, Showzou Tsujio, Yong Yu
  • Publication number: 20120290130
    Abstract: An improved method to model and program a robotic workcell. Two-dimensional (2D) images of a physical workcell are captured to facilitate, in part, initial integration of any preexisting three-dimensional (3D) component models into a 3D model workcell. 3D models of other essential workcell components are synthesized and integrated into the 3D workcell model. The robot is then configured and programmed. The resultant 3D workcell model more faithfully reflects the “as-built” workcell than a traditional model that represents the “as-designed” workcell.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 15, 2012
    Applicant: AGILE PLANET, INC.
    Inventor: Chetan Kapoor
  • Patent number: 8306658
    Abstract: A field device for data- and parameter-processing in a decentralized automation system, wherein other connected fieldbus components of the decentralized automation system communicate with one another via a fieldbus connected to the field device, and wherein a unified automation system is formed from a plurality of encapsulated function blocks, which run decentralized in the individual fieldbus components of the fieldbus and communicate with one another. An object of the invention, therefore, is to provide a function block for field devices of process automation technology, which enables a simple, controlled storage of data and/or parameters from the various function blocks of the decentralized units of the automation system and which permits an autonomous re-parametering of the function blocks of the relevant field device.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: November 6, 2012
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Markus Kilian
  • Patent number: 8295978
    Abstract: The present invention relates to a system for cooperation of multiple mobile robots and a method thereof that allow the multiple mobile robots to cooperatively execute one complicated task. The system and method can use centralized control architecture, create robot cooperation application codes on the basis of conceptual behavior units without depending on actual physical robots, and dynamically bind behavior units used to create the robot cooperation application at the time of executing the robot cooperation application to actual functions of the robots, thereby actively adjusting to changes in a dynamical environment, such as a change in the types, the number, and the functions of robots for cooperation.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 23, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Joonmyun Cho, Hyoungsun Kim
  • Patent number: 8280553
    Abstract: Various embodiments of a lip moving device for use in robots are provided. A lip moving device has first and second lip members. The first and second lip members are made from a flexible material. First and second driving parts apply torques to both ends of the first lip member, while third and fourth driving parts apply torques to both ends of the second lip member. The first and third driving parts are mounted in a first frame. The second and fourth driving parts are mounted in a second frame. The first and second frames are pivotally coupled to a supporting part. An adjusting part pivots the first and second frames relative to the supporting part to adjust a distance between the first and second frames.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 2, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Goune Oh, Seung-Jong Kim, Myoung Soo Jang, Chan Yul Jung
  • Patent number: 8271135
    Abstract: An apparatus for holding a medical device has an arm unit equipped with, for example, a polyarticular arm, which holds the medical device such as endoscope movably in the space. Additionally to a determination unit and a controller, the holding apparatus has an operation unit equipped with a plurality of operation members with which an operator's operation causes the arm unit to be moved spatially. The determination unit determines whether or not operator's operations at the plurality of operation members corresponds to an improper state deviating from a properly operated state in which at least two predetermined operation members have been operated within a predetermined period of time which is set to measure simultaneity for operations. If it is determined that the operation is in the improper state, the controller prohibits the arm unit from moving. As long as the operation is proper, the arm unit can be moved.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: September 18, 2012
    Assignee: Olympus Corporation
    Inventors: Keiji Shioda, Satoshi Otsuka, Masaaki Ueda, Kazuhito Nakanishi
  • Patent number: 8265793
    Abstract: A mobile robot provides telecommunication service between a remote user at a remote terminal and a local user in proximity to the mobile robot. The remote user can connect to the mobile robot via the Internet using a peer-to-peer VoIP protocol, and control the mobile robot to navigate about the mobile robot's environment. The mobile robot includes a microphone, a video camera and a speaker for providing telecommunication functionality between the remote user and the local user. Also, a hand-held RC unit permits the local user to navigate the mobile robot locally or to engage privacy mode for the mobile robot. When NAT or a firewall obstructs connection from the remote terminal to the mobile robot, an Internet server facilitates connection using methods such as STUN, TURN, or relaying.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: September 11, 2012
    Assignee: Irobot Corporation
    Inventors: Matthew Cross, Tony Campbell
  • Patent number: 8258917
    Abstract: A control device for a vehicle or mechanism includes a portable displacement controller which permits a non-technical user to achieve effective control of the vehicle or mechanism, by moving the portable displacement controller intuitively with little learning effort. A first sensing device, attached to the displacement controller, detects the user's controlling motion. A second sensing device, attached to the object being controlled, detects motion thereof. An interface device receives signals from the sensing devices, processes those signals to determine relative motion of the controlling motion and the object's motion and outputs a control signal in accordance with the processed signals. The sensing devices each detect motion in six degrees of freedom; the sensing devices each include a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. In specific embodiments, the accelerometers, gyroscopes, and magnetometers include micro-electromechanical system (MEMS) devices.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 4, 2012
    Assignee: Measurement Systems, Inc.
    Inventors: Steven Cai, Paul J. LeBlanc, Thomas R. Ecsedy, Leslie W. Yoho
  • Patent number: 8255107
    Abstract: A traveling control method, medium, and apparatus for autonomous navigation. The traveling control method of controlling an autonomous navigation machine, having at least on the right and left sides thereof at least first and second receivers that receive a radio signal transmitted from a transmitter disposed at a specific position in a traveling area, the method includes allowing at least one of the first and second receivers to receive the radio signal, recognizing a command included in the received radio signal, acquiring data indicating a size of a recognizable area reached by the radio signal and a position of the transmitter while the autonomous navigation machine moves along the border of the recognizable area, and executing the recognized command in the recognizable area.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyunghye Yang, Yonggook Park, Hyunjin Kim, Seokwon Bang
  • Patent number: 8244402
    Abstract: A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 14, 2012
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: James W. Wells, Neil David Mc Kay, Suhas E. Chelian, Douglas Martin Linn, Charles W. Wampler, II, Lyndon Bridgwater
  • Patent number: 8209053
    Abstract: An improved cleaning robot that uses a simple structure to sense an obstacle is provided. The cleaning robot includes a robot main body comprising a driving unit to drive the cleaning robot, and a cleaning unit to remove dust, a bumper unit which is movably mounted in the robot main body to protect the robot main body from collision with an obstacle, a sensor unit which supports the bumper unit movably in a plurality of directions to sense the collision of the bumper unit and the obstacle, and a control unit which controls the driving unit on the basis of a signal sensed by the sensor to avoid the obstacle.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: June 26, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-woung Kim, Sam-jong Jeung, Jeong-gon Song, Myeong-ho Kim, Tae-young Ryu, Ju-sang Lee, Heung-yi Kim, Sam-hyun Choi, Jang-youn Ko, Dae-hyung Kim, Hak-bong Lee, Yoon-kyunh Cho
  • Patent number: 8188408
    Abstract: A conveyorized oven that provides uniform cooking with control of the heater and/or the conveyor belt speed. The oven includes a controller that monitors power consumption of the heater and uses the power consumption to control the heater and/or the speed of the motor that drives the conveyor belt. The power consumption is monitored by counting the on time cycles of a switch that connects and disconnects the heater to a power main. Changes in the power consumption due to changes in loading are used by the controller to reduce recovery times of the oven temperature to a set temperature by controlling the heater and/or the motor. By using a stepper motor, there is no need for a gear box.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: May 29, 2012
    Assignee: Enodis Corporation
    Inventors: Jan Claesson, Raymond Carr, Roberto Nevarez
  • Patent number: 8175747
    Abstract: A robot component is provided as assembly units for assembling a robot toy with a great variety of configuration. The robot component has three connectors, i.e., a rotatable connector of a gear shaft, a laterally protruding connector of the gear shaft, and a receivable connector of a middle housing. These connectors are engaged with various joint members so several robot components are joined to each other to realize the complete robot toy. The robot toy has a master main-processor unit board provided in one of the robot components and joint control systems respectively provided in the other robot components. Each joint control system operates the robot component according to a predefined operation pattern when the master main-processor unit board transmits robot control signals.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: May 8, 2012
    Assignee: IROBOU Co., Ltd.
    Inventors: Nam-Yong Lee, Dae-Kyung Kim, Chang-Bae Park
  • Patent number: 8170717
    Abstract: A surgical robot that includes at least one robotic arm having multiple joints and at least six degrees of freedom, the robotic arm also including: a magnetic resonance (MR) compatible structural material; multiple MR-compatible joint motors; and multiple MR-compatible joint encoders.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: May 1, 2012
    Assignee: Neuroarm Surgical Ltd.
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 8150650
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 3, 2012
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, Enrico Di Bernardo, Paolo Pirjanian, L. Niklas Karlsson
  • Patent number: 8140188
    Abstract: An example method for allowing a robot to assist with a task, the task being carried out in an environment including one or more non-human objects each having associated object locations, comprises detecting one or more changes in object locations within the environment, predicting a task requirement (such as a future object location change, or task goal) by comparing the change in the object location with stored data, the stored data including object location changes associated with previously observed tasks; and providing robotic assistance to achieve the task requirement. Example apparatus are also disclosed.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: March 20, 2012
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Mori Takemitsu, Steven F. Kalik
  • Patent number: 8123740
    Abstract: A robotic apparatus has eight actuators (M0-M7) and a linkage (LINK 0-LINK 5) that actuates an end effector. Three serial macro freedoms have large ranges of motion and inertias. Four serial micro freedoms have small ranges of motion and inertias. Translation of the end effector in any direction is actuated by at least one micro joint and at least one macro joint. The apparatus can be part of a master and slave combination, providing force feedback without any explicit force sensors. The slave is controlled with an Inverse Jacobian controller, and the mater with a Jacobian Transpose controller. A slave having more degrees of freedom (DOFs) than the master can be controlled. A removable effector unit actuates its DOFs with cables. Beating heart surgery can be accomplished by commanding the slave to move with a beating heart and cancelling out any such motion in the motions perceived by the master.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: February 28, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Akhil J. Madhani, J. Kenneth Salisbury, Jr., Gunter D. Niemeyer
  • Patent number: 8126591
    Abstract: A robotic arm comprises a plurality of articulated elements, and control means for controlling the position of various of the elements such that the arm may adopt serpentine shape for tip following movement. Means for measuring directly the relative positions of at least some of the elements are provided in order to calculate deviation from the theoretical shape, and apply corrections to the arm control means.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 28, 2012
    Assignee: Oliver Crispin Robotics Limited
    Inventors: Robert Oliver Buckingham, Andrew Crispin Graham
  • Patent number: 8112177
    Abstract: In the wafer position teaching method for a wafer carrying system, a teaching tool is mounted at a position of the container or the processing equipment where the semiconductor wafer is to be set. The teaching tool is sensed by a sensor provided at a wafer gripping portion of the robot. Prior to sensing the teaching tool by the sensor, external teaching tools mounted on a front external wall of the processing equipment are sensed by the sensor to roughly estimate the position of the teaching tool. Based on the estimated position, the sensor approaches and senses the teaching tool to obtain the position of the semiconductor wafer. Thus, the wafer position can be taught precisely and automatically without causing interference, even when the frontage of processing equipment is narrow.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Masaru Adachi, Mitsunori Kawabe
  • Patent number: 8112176
    Abstract: A system of self-organizing mobile robotic agents (MRAs) in a multi-robotic system (MRS) is disclosed. The MRAs use simulations to organize the behaviors of groups of robots in the MRS. The MRAs use software agents to model the MRS and the environment. By developing simulations of environmental change, the system provides methods for the MRS to interact with its environment to produce collective epigenetic behaviors.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 7, 2012
    Inventor: Neal Solomon
  • Patent number: 8099184
    Abstract: Disclosed is a method and system for compensating for the load a part places on a part positioner system that positions the part for work operations by a robot. The part positioner system rotates a part holding assembly about the axis of rotation of a shoulder drive. The part holding assembly may have a column that extends perpendicular to the shoulder center line. A counter weight system is incorporated into the column that includes a counter weight pack that is moved along the length of the column. The shoulder drive drives the part and part holding assembly load in order to measure a torque applied to the shoulder drive. A load offset may be calculated based on the applied torque. The counter weight pack may then be moved to a position on the column calculated to balance the load of the part and part holding assembly.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: January 17, 2012
    Assignee: Rimrock Automation, Inc.
    Inventors: John Schoening, Lance F. Guymon
  • Patent number: 8099192
    Abstract: A method is provided for teaching a transfer robot used in conjunction with a workpiece processing system including a pedestal assembly, a light sensor having an optical input fixedly coupled to the pedestal assembly, a transfer robot having an end effector, and a processing chamber containing the pedestal assembly and light sensor. The method includes the steps of producing light within the processing chamber, moving the end effector over the optical input such that amount of light reaching the light sensor varies in relation to the position of the end effector, and recording the signal gain as the end effector is moved over the optical input. The method also includes the step of establishing from the recorded signal gain a desired position of the end effector relative to the pedestal assembly.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 17, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Heinrich Von Bunau, Tarek Radwan, Karen Townsend
  • Patent number: 8086351
    Abstract: Disclosed are methods and systems that include a method for controlling movement of a first unmanned vehicle (UV) to search an area, where the method includes generating a first trace associated with prior positions in which the first UV has been located, determining a direction in which the first UV is to move using the first generated trace, and causing the first UV to move in the determined direction. The trace may be a numerical value that decreases as a function of the time that has elapsed since the first trace was generated. The methods and systems may also include receiving data relating to a second trace, and using that second trace to determine the direction. The second trace may be generated by a second UV. The second trace may be associated with a position within a predetermined radius from a position associated with the first UV.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: December 27, 2011
    Assignee: Icosystem Corporation
    Inventors: Paolo Gaudiano, Benjamin Shargel, Eric Bonabeau
  • Patent number: 8078321
    Abstract: A behavior control system is capable of causing an agent carry out a task by smooth motions. The behavior control system makes it possible to reproduce a typical shape characteristic of a reference trajectory, i.e., the characteristic of a motion of an instructor carrying out a task, by using a first model defined on the basis of a plurality of reference trajectories representing the position of a first state variable in a time-series manner. Further, a learning trajectory representing the position of a second state variable in a time-series manner is generated on the basis of a second model, which represents an agent's motion in which the position of the second state variable corresponding to the first state variable and one or a plurality of time differential values (a displacing velocity and acceleration) thereof continuously change, in addition to the first model.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 13, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Soshi Iba
  • Patent number: 8073567
    Abstract: A production control apparatus of a production system provided with a storing means for storing in advance a production system model comprised of workpiece information regarding workpieces and program information regarding a plurality of work programs of robots and a plurality of machining programs of machine tools, an updating means for updating the production system model based on run status signals showing run statuses of the robots and machines tools and workpiece signals from the detectors, and an instructing means for selecting one work program and one machining program based on the updated production system model and instructing running of the selected work program and work program to the robot and machine tool. Due to this, by calling up a work program of the robot etc. in accordance with the state of the production system, it is possible to change the program and restore the system from error.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 6, 2011
    Assignee: Fanuc Ltd
    Inventors: Hiroji Nishi, Jun Mizuno
  • Patent number: 8060251
    Abstract: Systems and methods are presented that enable a higher-level software application to control a robot's motion through a generic motion interface. In one embodiment, a system includes a controller, an interface, and a set of robot driver modules. The interface receives a command from the controller and translates the command into another command to send to the driver modules. The interface includes a client, a server, and a network. The server includes two interfaces: a client interface to communicate with the client and a driver interface to communicate with the driver modules. The server also includes two buffers: a command queue and a reply queue. The command queue stores commands received from the controller (via the client). The reply queue stores replies received from the driver modules.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: November 15, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hector H. Gonzalez-Banos, Victor Ng-Thow-Hing, Allen Y. Yang
  • Patent number: 8054752
    Abstract: A data packet is provided that includes a synchronization field and an acknowledgement field indicative of an acknowledgement of receipt of a prior data packet. The data packet also includes a response field that includes information indicative of a system fault, a header field, and a sequence number field that includes a number assigned to the data packet. The data packet further includes a data field, an end of packet field, and an error-checking field. Methods and computer program products are provided that, in some implementations, include retransmitting packets if the acknowledgement field in a received data packet is a no acknowledgement (NAK) and/or placing a node into a safe state in response to a fault signal that is included in the received data packet.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 8, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Michael B. Druke, Christopher J. Jacques
  • Patent number: 8050797
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: November 1, 2011
    Assignee: C.H.I. Development Mgnt. Ltd. XXIV, LLC
    Inventor: John R. Lapham
  • Patent number: 8032605
    Abstract: A method of causing movement of at least one target device based on at least one of a plurality of motion programs stored on a content server connected to a network. At least one identified characteristic of the at least one target device is identified. At least one selected motion program is selected from the plurality of motion programs stored on the content server. The at least one identified characteristic and the at least one selected motion program are transferred to the motion server. A motion media data set is generated at the motion server for the target motion device based on the at least one identified characteristic of the target device and the at least one selected motion program. The motion media data set is transferred from the motion server to the target motion device to cause the target device to perform the desired sequence of movements.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: October 4, 2011
    Assignee: Roy-G-Biv Corporation
    Inventors: David W. Brown, Jay S. Clark
  • Patent number: 8024067
    Abstract: Immediately before a robot 20 starts to move at a high speed, a monitoring area 53 is expanded in a returning direction Y, and absence of an obstacle in the monitoring area 53 is confirmed. During the high speed movement of the robot 20, the monitoring area 53 is expanded forward, so that a safety of an operator is secured, an effective use of a working station area can be made, and an improvement of productivity can be achieved.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: September 20, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Sakai, Tetsuya Ozawa, Kazuyoshi Fukuzawa, Yoshito Ohtake, Hiroki Baba
  • Patent number: 8024070
    Abstract: The present disclosure provides a fixed point stabilization device for a legged mobile body having a generating mechanism for generating a fixed point. The present disclosure also provides a fixed point stabilization device for a legged mobile body comprising a stabilizing device for stabilizing the fixed point in accordance with a leg grounding position of the legged mobile body. The fixed point is generated by inputting a predetermined constant torque to a joint of a leg of the legged mobile body on the basis of the energy balance in the legged mobile body, leg switching, and a leg swinging motion. The fixed point is stabilized globally by keeping the leg grounding position of the legged mobile body constant using a stopper.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: September 20, 2011
    Assignee: Nagoya Institute of Technology
    Inventors: Akihito Sano, Hideo Fujimoto, Yoshito Ikemata
  • Patent number: 8019473
    Abstract: A manipulator includes: a drive section which electrically drives a joint; an instruction input section which executes instruction input; a control section which generates a driving signal in response to the instruction input; a sensor which detects an operation status of the joint or the drive section in time series; a setting section which sets an allowable operation range of the drive section; a determination section which determines whether an operation status signal including a detection signal is within the allowable operation range; and a replacement section which, in a case when the operation status signal is determined as deviating from the allowable operation range, replaces the detection signal with a previous detection signal acquired just before the determination of deviance in order to generate a driving signal.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: September 13, 2011
    Assignee: Olympus Medical Systems Corp.
    Inventors: Yoshitaka Umemoto, Kazuhiko Takahashi
  • Patent number: 8014898
    Abstract: A robot controller (7) controlling a robot (1) used combined with a machine tool (5, 6) provided with a communication unit (9) connecting the robot controller to a machine tool, a detection unit (52) detecting through the communication unit a type and number of machine tools, and a setting unit (55) setting the robot controller based on the type and number of machine tools detected by the detection unit. Due to this, machine tool and robot startup work can be simply and easily performed without requiring skill or increasing the startup man-hours. The setting unit selects one setting file from among a plurality of setting files for the robot controller, stored in the robot controller, based on the type and number of machine tools detected by the detection unit.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: September 6, 2011
    Assignee: Fanuc Ltd
    Inventors: Hiroji Nishi, Yoshitaka Ikeda
  • Patent number: 8005572
    Abstract: An apparatus provides selective communication between multiple programmable robot controllers and one or more teaching devices connected by a network. The network controls communication between the teaching devices and the controllers including active tasks and passive tasks for preventing communication of active tasks between any of the controllers and more than one of any of the teaching devices. The network permits communication of the passive tasks between any of the controllers and one of the teaching devices communicating active tasks with another one of the controllers.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: August 23, 2011
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Judy A. Evans, Kenneth W. Krause, Glenn F Nowak
  • Patent number: 8005571
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: August 23, 2011
    Assignee: NeuroArm Surgical Ltd.
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 8000837
    Abstract: In one aspect, a programmable load forming system is programmed to perform the method of downloading a calculated path from the computer to the robot controller, moving one or more bundles along the calculated path to position the one or more bundles in a predetermined stacking position of a stacking pattern using the robot, and determining if the robot has completed moving along the calculated path. The calculated path is defined, in part, by the stacking pattern and other parameters such as, for example, bundle geometry, bundle levelness, bundle compressibility, among other parameters. In another aspect, the system is programmed to perform a method of sensing the top of a bundle and controllably placing a bundle. Additional aspects are directed to systems and methods of safely operating the robot and an inventive hopper design for holding bottom/tie sheets.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: August 16, 2011
    Assignee: J&L Group International, LLC
    Inventors: Robert M. Allen, Kevin P. Brown, Andrew B. Holt, Lynn E. Vershum
  • Patent number: 7979157
    Abstract: A dynamically configurable robotic system and method for performing surgical operations using a plurality of robotic arms remotely controlled by at least one operator console. The system comprises a track system configured for mounting to a patient support table, such that the track system provides a stable operating platform for the robotic arms and for facilitating placement of a proximal end of each of the arms at a selected position about a periphery of the patient support table.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 12, 2011
    Assignee: McMaster University
    Inventor: Mehran Anvari
  • Publication number: 20110153078
    Abstract: A field device for data- and parameter-processing in a decentralized automation system, wherein other connected fieldbus components of the decentralized automation system communicate with one another via a fieldbus connected to the field device, and wherein a unified automation system is formed from a plurality of encapsulated function blocks, which run decentralized in the individual fieldbus components of the fieldbus and communicate with one another. An object of the invention, therefore, is to provide a function block for field devices of process automation technology, which enables a simple, controlled storage of data and/or parameters from the various function blocks of the decentralized units of the automation system and which permits an autonomous re-parametering of the function blocks of the relevant field device.
    Type: Application
    Filed: November 29, 2005
    Publication date: June 23, 2011
    Inventor: Markus Kilian
  • Publication number: 20110153077
    Abstract: Provided is a technique that enables a robot to be remotely controlled (by a server) and enables a robot component to access an external component (a component of a server) in order for cooperation of heterogeneous robots operating on the basis of different component models. A component integration apparatus for collaboration of a heterogeneous robot according to an embodiment of the present invention comprises: a standard interface unit that provides a common standard interface for controlling components that control the individual functions of the robot; an adapter component that transmits commands to enable external components to call the components through the standard interface unit; and a proxy component that transmits commands to enable the components to call the external components through the standard interface unit.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 23, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young-Ho SUH, Kang-Woo LEE, Hyun KIM
  • Patent number: 7966093
    Abstract: The invention integrates software and knowledge engineering with robotics technology to improve robot-to-robot and robot-to-human conversational interface and provide on-the-fly translations of situational requirements into adaptive behavior models and further down to service scenarios for a collaborative robot teams.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: June 21, 2011
    Inventor: Yefim Zhuk
  • Patent number: 7962265
    Abstract: Vehicular sensor systems are provided. The vehicular sensor systems includes a support, first, second, and third sensors, and a support actuator. The first sensor is coupled to the support and configured to rotate about a first sensor axis. The first sensor has a first field of detection with a first central axis. The second sensor is coupled to the support and configured to rotate about a second sensor axis. The second sensor has a second field of detection with a second central axis. The third sensor is coupled to the support and configured to rotate about a third sensor axis. The third sensor has a third field of detection with a third central axis. The support actuator is coupled to the support and configured to rotate the support about a support axis. The first, second, and third central axes are substantially within a plane.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: June 14, 2011
    Assignee: Honeywell International Inc.
    Inventor: Charles P. Pinney
  • Patent number: 7957838
    Abstract: A control system for a plurality of mechanical units, namely robots and/or external axes. A manually-operated control, such as a joy-stick or key panel, is adapted to move at least one of the mechanical units or part thereof. The control system includes an indicator adapted to indicate whether the at least one mechanical unit or part thereof that is to be moved is associated with any other mechanical unit(s) or part(s) thereof and consequently indicate that movement of the at least one mechanical unit or part thereof will also result in the movement of the indicated associated mechanical unit(s) or part(s) thereof.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 7, 2011
    Assignee: ABB AB
    Inventors: Christian Poljén, Fredrik Hedenfalk
  • Patent number: 7949428
    Abstract: A robot apparatus having a plurality of movable sections includes a motion control section that generates a control signal for the periodic motion of at least part of the movable sections according to the output of an oscillator showing self-oscillation and entrainment characteristics, an environment measuring section that measures the motion according to the control signal for the movable sections or the physical environment at the time of the motion of the movable sections, a periodic oscillator control section that inputs a periodic signal to the oscillator as feedback according to the outcome of the measurement by the environment measuring section and generates an entrainment phenomenon and a non-periodic oscillator control section that inputs a non-periodic or temporary feedback signal to the oscillator.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 24, 2011
    Assignees: Sony Corporation, Japan Science and Technology Agency, Advanced Telecommunications Research Institute International
    Inventors: Gen Endo, Jun Morimoto, Jun Nakanishi, Gordon Chang
  • Patent number: 7904201
    Abstract: A robot programming device, in which the teaching of the cooperative motion of a plurality of robots may be carried out in a short time so as to reduce the number of man-hours for starting-up a robot system including the robots. The robot system includes two handling robots each having a hand for gripping a workpiece and a welding robot having a welding torch, a robot controller for controlling the robots, a personal computer with a robot programming device connected to the controller, and a teaching operation panel connected to the controller for teaching each robot.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 8, 2011
    Assignee: Fanuc Ltd
    Inventors: Yoshiharu Nagatsuka, Kozo Inoue
  • Patent number: 7885727
    Abstract: A robot apparatus, an information processing method and a program therefore are capable of notifying a user of the state of communication with an access point. A humanoid robot 5, which independently determines an action in accordance with an instruction from a user or a surrounding environment, communicates with an access point 2 based on IEEE 802.11b. For example, the robot 5 controls a household electrical appliance 4-1 through a network 3 and receives a command from a personal computer 4-2 over the network 3 to execute a predetermined process. The robot 5 measures the quality of communication with the access point 2 at regular intervals. When the communication quality of a predetermined level or lower is continued for a predetermined period, the robot 5 generates speech, e.g., “I cannot see the access point. What should I do?” and waits for an instruction from the user. When receiving an instruction from the user, the robot 5 takes an action according to the instruction.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventor: Masanori Omote
  • Patent number: 7881824
    Abstract: The lumbar part of a robot as a controlled-object point where the mass amount becomes maximum is set as the origin of a local coordinate, an acceleration sensor is disposed at the controlled-object point to directly measure the attitude and acceleration at that position to control the robot to take a stable posture on the basis of a ZMP. Further, at each foot which touches the walking surface, there are provided a floor reaction force sensor and acceleration sensor to directly measure a ZMP and force, and a ZMP equation is formulated directly at the foot nearest to a ZMP position. Thus there can be implemented a stricter and quick control of the robot for a stable posture.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: February 1, 2011
    Assignees: Sony Corporation
    Inventors: Kenichiro Nagasaka, Jinichi Yamaguchi, Satoru Shimizu, Yoshihiro Kuroki
  • Patent number: 7860614
    Abstract: A trainer for training a human to use a physical robot in a physical environment, the physical robot being controlled in the physical environment by an operator control unit, the trainer comprising an input device; a visual display; a computer connected to the input device and the visual display; and computer software disposed in the computer for creating a virtual robot and a virtual environment on the visual display, the virtual robot and the virtual environment being simulations of the physical robot and the physical environment wherein interaction between the virtual robot and the virtual environment simulates interaction between the physical robot and the physical environment.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: December 28, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Bernard D. Reger