Compensation Or Calibration Patents (Class 700/254)
  • Patent number: 9014853
    Abstract: A pair of manipulators are caused to take a plurality of attitudes in a state where distal ends of the manipulators are coupled to each other, coordinates of joints between links at each attitude change are acquired on the basis of detection signals, at each attitude change, of rotary encoders provided for servomotors that drive the links of the manipulators, and a position and attitude of an installation point of a slave robot with reference to an installation point of a master robot are calculated on the basis of the joint coordinates acquired at the corresponding attitude change in a forward kinematics manner. A deviation vector for each attitude change between actual measured values of the installation point of the slave robot and the calculated values of the installation point of the slave robot is calculated, and robot constants of both manipulators are identified from the deviation vector.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 21, 2015
    Assignee: JTEKT Corporation
    Inventors: Hiromichi Ohta, Yasuharu Mukai, Kazuya Numazaki
  • Publication number: 20150105905
    Abstract: In an elastic-deformation-compensation control device (10), a first dynamic characteristic calculation unit (300) performs filtering processing with respect to a motor-angle command value (?mc) outputted from a motor-angle-command-value calculation unit (600), and outputs a processed motor-angle target value (?md). A second dynamic characteristic calculation unit (400) is provided with a high-frequency cutoff characteristic having a cutoff frequency which is lower than that of the first dynamic characteristic calculation unit (300), performs filtering processing with respect to the output from an axial force torque calculation unit (200), and outputs a processed axial force torque compensation value (fd).
    Type: Application
    Filed: May 30, 2013
    Publication date: April 16, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoshiharu Nishida, Takashi Wada, Yoshihide Inoue, Shuichi Inada
  • Patent number: 9008842
    Abstract: A medical robotic system has a joint coupled to medical device or a slave manipulator or robotic arm adapted to hold and/or move the medical device for performing a medical procedure, and a control system for controlling movement of the joint according to user manipulation of a master manipulator. The control system includes at least one joint controller having a sliding mode control for reducing stick-slip behavior on its controlled joint during fine motions of the joint. The sliding mode control computes a distance to a sliding surface, computes a reaching law gain, and processes the distance and reaching law gain to generate a sliding mode control action that is in absolute value less that a maximum desired feedback control action. The sliding mode control action is then further processed to generate a feedback torque command for the joint motor.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 14, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Giuseppe M. Prisco, David Q. Larkin
  • Patent number: 9002516
    Abstract: A calibration method for calibration a tool center point for a robot manipulator includes the steps of: driving the tool to move above one of the inclined surfaces; defining a preset coordinate system TG; rotating the TCP relative to the UG-axis by about 180 degrees, calculating the value of ?w; updating the position parameters of the preset TCP, defining a new preset coordinate system TG?; rotating the TCP relative to the UG?-axis by about 90 degrees, calculating the value of ?v; updating the position parameters of the new preset TCP, defining a new preset coordinate system TG?; driving the tool to move above a planar horizontal surface; rotating the TCP relative to a axis by about 30 degrees, calculating the value of ?u; repeating the aforementioned steps until the deviation ?P (?w, ?v, ?u) is less than or equal to a maximum allowable deviation of the robot manipulator.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: April 7, 2015
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Long-En Chiu, Yong Wu
  • Patent number: 9002515
    Abstract: The present embodiments relate to a monitoring system for a medical device, wherein the medical device comprises a robot and an image recording part which can be moved by the robot. Provision is made for a radiation source which is attached to the medical device, and for a radiation receiver which is situated remotely from the medical device and is for receiving radiation that is emitted from the radiation source. A comparison entity compares the point of impact of radiation on the radiation receiver with one or more predetermined points of impact of radiation on the radiation receiver. The invention further relates to a corresponding method for monitoring a medical device.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: April 7, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Oliver Hornung, Donal Medlar
  • Patent number: 9002514
    Abstract: Methods and systems for positioning wafers using a dual side-by-side end effector robot are provided. The methods involve performing place moves using dual side-by-side end effector robots with active wafer position correction. According to various embodiments, the methods may be used for placement into a process module, loadlock or other destination by a dual wafer transfer robot. The methods provide nearly double the throughput of a single wafer transfer schemes by transferring two wafers with the same number of moves.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 7, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Shawn Hamilton, Rich Blank, Sheldon Templeton
  • Patent number: 8996166
    Abstract: A touch screen testing platform may be used to perform repeatable testing of a touch screen enabled device using a robotic device tester and a controller. Prior to running a test, the controller and/or robot may be calibrated to determine a planar surface of the touch screen and to establish a relative coordinate system across the touch screen. The controller may then be programmed to allow a robot to engage the touch screen using known input zones designated using the coordinate system. The platform may employ object recognition to determine and interact with content rendered by the device. The platform may use various types of tips that engage the touch screen, thereby simulating human behavior. The platform may perform multi-touch operations by employing multiple tips that can engage the touch screen simultaneously.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 31, 2015
    Assignee: T-Mobile USA, Inc.
    Inventor: David Ross Jenkinson
  • Publication number: 20150088311
    Abstract: A robot calibrating apparatus calibrating a command value for a robot body 2 whose position and orientation is controlled based on the command value, includes an operating unit configured to calculate a calibrating function of calibrating the command value, based on the difference between an ideal position and orientation of the robot body 2 and an actual position and orientation of the robot body 2. The ideal position and orientation is operated based on a command value RHTcom for calibration used during calibration or on a control result value which is a result of control according to the command value. The actual position and orientation is operated based on a measurement value RHT?meas for calibration acquired by a camera 3 arranged at a prescribed relative position and orientation with respect to the robot body 2 during the robot body 2 being controlled according to the command value for calibration.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 26, 2015
    Inventors: Hideaki Suzuki, Shingo Amano
  • Patent number: 8989898
    Abstract: A robot mechanism for controlling the position of a machine tool in a large-scale manufacturing assembly includes six rotary axes and one linear axis. Secondary feedback systems are included on at least several of the axes. A controller receives secondary feedback information and uses it to control the position of the machine tool within an accuracy of ±0.3 mm.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 24, 2015
    Assignee: Electroimpact, Inc.
    Inventor: Russell C. DeVlieg
  • Patent number: 8983660
    Abstract: Aspects of the present disclosure describe a robot which has a controller, actuators, encoders, and mechanical components. The robot may produce motion about an X, Z, RU, RL, and Theta axes. Movements of the robot are controlled by the controller. The repeatability of the robot is improved by designing the robot such that a control cycle frequency of the controller is 50 times or more greater than a vibrational frequency of one or more of the mechanical components. In order to reduce the release of particulates, a baffled enclosure may be used. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. This abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: March 17, 2015
    Assignee: KLA-Tencor Corporation
    Inventor: Yoram Hanfling
  • Patent number: 8965574
    Abstract: A method for controlling an automated work cell which includes at least one robot arm having at least three degrees of freedom controlled according to a plurality of control axes; a control center; a device for controlling the robot arm which includes a plurality of motor controllers each controlling operation of one motor and suitable for operating at least one portion of the robot arm; and a communication bus between the control center and the device for controlling the robot arm; wherein the method includes steps of: a) sending instructions emitted by the control center to control the control axes to a single arithmetic unit belonging to the device for controlling the robot; b) determining, within the arithmetic unit and according to instructions received from the orders for each of the motors controlled by a motor controller; and c) sending each motor controller an order, determined in step b), for the motor controlled by each motor controller.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 24, 2015
    Assignee: Staubli Faverges
    Inventors: Luc Joly, Jean Michel Bonnet Des Tuves, François Pertin, Gérald Vogt
  • Publication number: 20150025683
    Abstract: A control apparatus calculates a calibration value based on a position in the robot coordinate system 41 and a position in the vision coordinate system 42, for at least three teaching points set within a calibration area. Markers 21 of two of the three teaching points have the same inclination in relation to an optical axis of a camera 3 as a visual sensor, and the two points are placed on different positions of the same plane normal to the optical axis. The remaining one of the three teaching points other than the two points is set such that the inclination of the marker 21 in relation to the optical axis is different from that of the two points. As a result, influence of a large quantization error in the optical axis direction as a measurement error of the camera 3 can be reduced.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Inventor: Shingo Amano
  • Patent number: 8935004
    Abstract: A robot control method includes gripping a work with a hand unit; transferring the work to the vicinity of a plane; dropping the work to the plane by reducing the grip force of the hand unit, and aligning the work with the plane; and re-gripping the work, which is aligned with the plane, again with the hand unit.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 13, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Izumi Iida
  • Patent number: 8930022
    Abstract: Methods and systems for determining a status of a component of a robotic device are provided. An example method includes triggering an action of a component of a robotic device, and responsively receiving information associated with the action of the component from a sensor. The method further includes a computing system having a processor and a memory comparing the information with calibration data and determining a status of the component based on the comparison. In some examples, the calibration data may include information derived from data received from a pool of one or more robotic devices utilizing same or similar components as the component. The determined status may include information associated with a performance of the component with respect to performances of same or similar components of the pool of robotic devices. In one example, the robotic device may self-calibrate the component based on the status.
    Type: Grant
    Filed: February 3, 2013
    Date of Patent: January 6, 2015
    Assignee: Google Inc.
    Inventors: James J. Kuffner, Jr., Ryan Hickman
  • Patent number: 8923602
    Abstract: Disclosed herein are embodiments and methods of a visual guidance and recognition system requiring no calibration. One embodiment of the system comprises a servo actuated manipulator configured to perform a function, a camera mounted on the face plate of the manipulator, and a recognition controller configured to acquire a two dimensional image of the work piece. The manipulator controller is configured to receive and store the face plate position at a distance “A” between the reference work piece and the manipulator along an axis of the reference work piece when the reference work piece is in the camera's region of interest. The recognition controller is configured to learn the work piece from the image and the distance “A”. During operation, a work piece is recognized with the system, and the manipulator is accurately positioned with respect to the work piece so that the manipulator can accurately perform its function.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 30, 2014
    Assignees: Comau, Inc., Recognition Robotics, Inc.
    Inventors: Simon Melikian, Maximiliano A. Falcone, Joseph Cyrek
  • Publication number: 20140379129
    Abstract: An example modular reconfigurable workcell for quick connection of peripherals is described. In one example, a modular reconfigurable workcell comprises modular docking bays on a surface of the workcell that support attachment of docking modules in a fixed geometric configuration, and respective modular docking bays include electrical connections for a variety of power and communication busses of the docking modules to be attached. The workcell also includes an electrical subsystem for coupling the communication busses between the modular docking bays and providing power circuitry to the modular docking bays, and structural features in the modular docking bays to enable insertion of the docking modules in the fixed geometric configuration. The workcell also includes a processor for determining a geometric calibration of attached peripherals based on a location and the orientation of corresponding docking modules attached to the modular docking bays and based on an identification of the attached peripherals.
    Type: Application
    Filed: February 27, 2014
    Publication date: December 25, 2014
    Inventors: Aaron Edsinger, Anthony Sean Jules, Stefan Nusser, Advait Jain, James Nicholas Vines
  • Patent number: 8918210
    Abstract: In a 6-axis robot, as an example, an inter-axis offset can be measured and calibrated. A light emitting diode is installed on an end effector, and the end effector is located on a plurality of target positions of movement on the axis X (Xb) of a robot coordinate. Then, the position of the light emitting diode is measured by a three-dimensional gauge, and an inter-axis offset F is detected based on an error between the target positions of movement and actually moved positions. For the inter-axis offset F, DH parameters are calibrated.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 23, 2014
    Assignee: Denso Wave Incorporated
    Inventor: Naoya Kagawa
  • Patent number: 8918211
    Abstract: A medical robotic system includes an entry guide with articulated instruments extending out of its distal end. A controller is configured to command manipulation of one of the articulated instruments towards a state commanded by operator manipulation of an input device while commanding sensory feedback to the operator indicating a difference between the commanded state and a preferred pose of the articulated instrument, so that the sensory feedback serves to encourage the operator to return the articulated instrument back to its preferred pose.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 23, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nicola Diolaiti, Paul E. Lilagan
  • Patent number: 8918209
    Abstract: A mobile robot that includes a drive system, a controller in communication with the drive system, and a volumetric point cloud imaging device supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 23, 2014
    Assignee: iRobot Corporation
    Inventors: Michael T. Rosenstein, Michael Halloran, Steven V. Shamlian, Chikyung Won, Mark Chiappetta
  • Publication number: 20140365006
    Abstract: The visual datum reference tool calibration method includes a work object. The work object emits a pair of beam-projecting lasers acting as a crosshair, intersecting at a tool center point. The visual datum reference tool calibration method provides a calibration method which is simpler, which involves a lower investment cost, which entails lower operating costs than the prior art, and can be used for different robot tools on a shop floor without having to perform a recalibration for each robot tool. The visual datum reference tool is applicable to multiple robotic processes, including but not limited to, spot welders, material handlers, and MIG welders, assembly, cutting, painting and coating, and polishing and finishing.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventor: Matthew E. Trompeter
  • Publication number: 20140365007
    Abstract: The visual datum reference tool calibration method includes a work object. The work object emits a pair of beam-projecting lasers acting as a crosshair, intersecting at a tool center point. The visual datum reference tool calibration method provides a calibration method which is simpler, which involves a lower investment cost, which entails lower operating costs than the prior art, and can be used for different robot tools on a shop floor without having to perform a recalibration for each robot tool. The visual datum reference tool is applicable to multiple robotic processes, including but not limited to, spot welders, material handlers, and MIG welders, assembly, cutting, painting and coating, and polishing and finishing.
    Type: Application
    Filed: September 11, 2013
    Publication date: December 11, 2014
    Inventor: Matthew E. Trompeter
  • Patent number: 8909374
    Abstract: A robot arm includes a grip part which is structured to be separated from an end effector attached to the robot arm. When the grip part is gripped by the user and shifted, the robot arm shifts tracking the grip part. Further, the grip part includes contact sensors, and a tracking control method is switched according to the value of the contact sensors.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Yudai Fudaba, Masaki Yamamoto, Yuko Tsusaka, Taichi Sato
  • Patent number: 8903549
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Intuitive Surgical Opeations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Günter D. Niemeyer, David S. Mintz
  • Patent number: 8903546
    Abstract: An articulated instrument is controllably movable between areas of different work space limits, such as when it is extendable out of and retractable into a guide tube. To avoid abrupt transitions in joint actuations as the joint moves between areas of different work space limits, a controller limits error feedback used to control its movement. To provide smooth joint control as the instrument moves between areas of different work space limits, the controller imposes barrier and ratcheting constraints on each directly actuatable joint of the instrument when the joint is commanded to cross between areas of different work space limits.
    Type: Grant
    Filed: August 15, 2009
    Date of Patent: December 2, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nicola Diolaiti, Paul E. Lilagan
  • Publication number: 20140343727
    Abstract: In an example embodiment, a robot positioning device includes a first interface configured to communicate with a robot and a second interface configured to communicate with a location measuring system. The robot positioning device includes a calibrator, a modeler, and an instructor. The calibrator is configured to direct the location measuring system to determine robot calibration locations when robot joints are positioned in calibration joint positions. The modeler is configured to create a calibrated model relating robot joint positions to robot locations based at least in part on the robot calibration locations received from the location measuring system and associated calibration joint positions of the robot joints. The instructor is configured to receive a goal location from the robot. The instructor is further configured to transmit goal joint positions to the robot, the goal joint positions based at least in part on the goal location and the calibrated model.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Inventors: Joseph M. Calkins, Robert J. Salerno
  • Patent number: 8892255
    Abstract: A method for the automated control of a process robot with a controller performing movement and work sequences and with one or more sensors that record a work progress. A planning tool compares a recorded progress of work with an aimed-for processing objective and determines, from a difference between the processing objective and an actual value of the process that corresponds to the recorded progress of work, movement and work sequences with which the aimed-for processing objective is achieved. Then the determined movement and work sequences are converted into robot-executable control commands in real time or in-step with the process, and the process robot is controlled in such a way as to achieve the aimed-for processing objective.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 18, 2014
    Assignee: Convergent Information Technologies GmbH
    Inventor: Christof Eberst
  • Patent number: 8886359
    Abstract: A robot (100) has a robot mechanism unit (1) having a sensor (10) and a control unit (2), and the control unit (2) includes a normal control unit (4) that controls the operation of the robot mechanism unit, and a learning control unit (3) that, when the robot mechanism unit (1) is operated by a speed command that is given by multiplying a teaching speed designated in a task program by a speed change ratio, performs learning to calculate, from a detection result by the sensor (10), a learning correction amount for making the trajectory or position of the control target in the robot mechanism unit (1) approach the target trajectory or target position, or for reducing the vibration of the control target, and performs processes so that the control target position of the robot mechanism unit (1) moves along a fixed trajectory regardless of the speed change ratio.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 11, 2014
    Assignee: FANUC Corporation
    Inventors: Kiyonori Inaba, Masakazu Ichinose
  • Patent number: 8886357
    Abstract: It is possible to perform robot motor learning in a quick and stable manner using a reinforcement learning apparatus including: a first-type environment parameter obtaining unit that obtains a value of one or more first-type environment parameters; a control parameter value calculation unit that calculates a value of one or more control parameters maximizing a reward by using the value of the one or more first-type environment parameters; a control parameter value output unit that outputs the value of the one or more control parameters to the control object; a second-type environment parameter obtaining unit that obtains a value of one or more second-type environment parameters; a virtual external force calculation unit that calculates the virtual external force by using the value of the one or more second-type environment parameters; and a virtual external force output unit that outputs the virtual external force to the control object.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 11, 2014
    Assignees: Advanced Telecommunications Research Institute International, Honda Motor Co., Ltd.
    Inventors: Norikazu Sugimoto, Yugo Ueda, Tadaaki Hasegawa, Soshi Iba, Koji Akatsuka
  • Publication number: 20140330434
    Abstract: Telerobotic, telesurgical, and surgical robotic devices, systems, and methods selectively calibrate end effector jaws by bringing the jaw elements into engagement with each other. Commanded torque signals may bring the end effector elements into engagement while monitoring the resulting position of a drive system, optionally using a second derivative of the torque/position relationship so as to identify an end effector engagement position. Calibration can allow the end effector engagement position to correspond to a nominal closed position of an input handle by compensating for wear on the end effector, the end effector drive system, then manipulator, the manipulator drive system, the manipulator/end effector interfacing, and manufacturing tolerances.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 6, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventor: TOM NIXON
  • Patent number: 8880221
    Abstract: A humanoid robot fall controller controls motion of a robot to minimize damage when it determines that a fall is unavoidable. The robot controller detects a state of the robot during the fall and determines a desired rotational velocity that will allow the robot to re-orient itself during the fall to land on a predetermined target body segment (e.g., a backpack). The predetermined target body segment can be specially designed to absorb the impact of the fall and protect important components of the robot.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Sung-Hee Lee, Ambarish Goswami
  • Patent number: 8874263
    Abstract: A walking robot and a control method in which conversion between walking servo control methods is stably carried out. The walking robot includes a sensor unit to measure angles and torques of joints, and a control unit to calculate voltages applied in a Finite State Machine (FSM) control mode and a Zero Moment Point (ZMP) control mode according to the angles and torques of the joints to drive respective joint motors, to store last target joint angles in the FSM control mode during conversion from the FSM control mode to the ZMP control mode, and to perform a motion based on the FSM control mode by substituting the last target joint angles in the FSM control mode for target joint angles in the FSM control mode during conversion from the ZMP control mode to the FSM control mode, thereby performing stable conversion between walking servo control modes without joint sagging.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho Seong Kwak, Kyung Shik Roh, Woong Kwon, Min Hyung Lee, Joo Hyung Kim
  • Patent number: 8874270
    Abstract: An article take-out apparatus including, acquiring a reference container image including an open end face of a container by imaging operation by an camera, setting an image search region corresponding to a storage space of the container based on the reference container image, setting a reference plane including the open end face of the container, calculating a search region corresponding to the image search region based on a calibration data of the camera stored in advance, converting the search region to a converted search region, taking out 3D points included in the converted search region by projecting a plurality of 3D points measured by the 3D measuring device on the reference plane, and recognizing positions of articles inside the container using the 3D points.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 28, 2014
    Assignee: Fanuc Corporation
    Inventor: Toshiyuki Ando
  • Publication number: 20140316568
    Abstract: A device and method for controlling a real time weaving motion are provided. In order to control operation of a robot in a working space, a main moving path of the robot in the working space is determined, a unit motion constituting the determined main moving path is generated, while a continuous motion in which a unit motion is connected, weaving that dynamically changes offset is generated, and a compensation displacement or a compensation rotation amount that is determined according to the work environment is generated. A position and a rotation amount of the robot are calculated in the working space according to at least one of the unit motion, the weaving, the compensation displacement, and the compensation rotation amount.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 23, 2014
    Inventors: Youngjun Park, Youngyoul Ha, Sangmin Kang
  • Patent number: 8868236
    Abstract: A method and apparatus for calibration of a robot on a platform and a robot, in relation to an object using a measuring unit mounted on the robot including placing CAD models so that the robot reaches the object, manipulating the CAD models to move the measuring unit to a pose in relation to the platform allowing measurement of a feature on the object, storing the pose, and generating a CAD model of the feature. The real robot is moved to the pose, the real platform is moved where measurements of the feature can be made, 3D measurements of the feature are performed and based thereon generating a second CAD model, performing a best fit between the CAD models, and calculating a 6 degrees of freedom pose difference between the CAD models, and instructing the mobile platform to move to compensate for the pose difference.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 21, 2014
    Assignee: ABB Research Ltd.
    Inventor: Torgny Brogårdh
  • Patent number: 8868240
    Abstract: A walking robot, respective joints of which are operated through torque servo control to achieve stable pose control, and a pose control method thereof. A virtual acceleration of gravity is calculated using the COG of the robot and gravity compensation torques to apply force to links are calculated from the calculated acceleration of gravity so as to actively cope with external changes including external force or a tilt of the ground, thereby allowing the robot to stably maintain an erect pose and a desired upper body angle. Further, the robot maintains the erect pose with respect to the direction of gravity even under the condition that data regarding whether or not the ground is level or tilted are not given in advance, and maintains uniform poses of an upper body and legs while actively changing angles of ankle joints even if the ground is gradually tilted.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kee Hong Seo
  • Patent number: 8862271
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: October 14, 2014
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Frederick D. Hook, Mario E. Munich, Dhiraj Goel
  • Patent number: 8855821
    Abstract: A bipedal robot having a pair of legs with 6 degrees of freedom and a control method thereof which calculate a capture point by combining the position and velocity of the center of gravity (COG) and control the capture point during walking to stably control walking of the robot. A Finite State Machine (FSM) is configured to execute a motion similar to walking of a human, and thus the robot naturally walks without constraint that the knees be bent all the time, thereby being capable of walking with a large stride and effectively using energy required while walking.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kee Hong Seo, Joo Hyung Kim, Kyung Shik Roh
  • Patent number: 8849456
    Abstract: A robot includes: an arm; a driving source that pivots the arm; an angle sensor that detects a pivot angle and outputs pivot angle information; an inertia sensor that is attached to the arm and outputs inertial force information; a control command generating unit that outputs a control command defining rotational operation of the arm; a control conversion determining unit that determines whether the inertial force information is used when the driving source is controlled; and an arm operation control unit that performs a first control based on the control command, the pivot angle information, and the inertial force information, if the control conversion determining unit determines that the inertial force information should be used, and performs a second control based on the control command and the pivot angle information, if the control conversion determining unit determines that the inertial force information should not be used.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 30, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Masaki Motoyoshi, Izumi Iida
  • Patent number: 8849455
    Abstract: A robot system according to embodiments includes a position command generating unit that corrects a position command of a motor based on a rotation angle of the motor, which drives a link of a robot via a speed reducer, and a rotation angle of an output shaft of the speed reducer.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Tetsuro Izumi, Tomohiro Matsuo
  • Patent number: 8849452
    Abstract: A control system or the like capable of causing a controlled object to act in an appropriate form in view of an action purpose of the controlled object to a disturbance in an arbitrary form. Each of a plurality of modules modi, which are hierarchically organized according to the level of a frequency band, searches for action candidates which are candidates for an action form of a robot R matching with a main purpose and a sub-purpose while giving priority to a main purpose mainly under the charge of the module over a sub-purpose mainly under the charge of any other module. The actions of the robot R is controlled in a form in which the action candidates of the robot R searched for by a j-th module of a high frequency are reflected in preference to the action candidates of the robot R searched for by a (j+1)th module of a low frequency.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: September 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masanori Takeda, Mitsuhide Kuroda, Shigeru Kanzaki, Takahide Yoshiike, Takumi Kamioka
  • Patent number: 8845520
    Abstract: A wire-operated selective compliance mobile platform (100), in particular for endoscopic surgery devices, obtains a perfect and precise mobility and thus it allows to handle, in the most effective way, the supported instruments, and comprises a mobile surface (1), a connecting base (2) apt to be connected to a flexible tubular duct (4) for endoscopic uses, a plurality of supporting elements (3), apt to permit the motion of said mobile surface (1) relative to said base (2), characterized in that said supporting elements (3) have at least a selective compliance turning pair (31) and a number of joints (32, 34) so as to provide a predetermined number of degrees of freedom to said platform (100), neither determining any over-constraining, nor forcing the system to be deformed in unselected directions, each supporting element (3) being operated by moving means (51, 52) so as to move said mobile surface (1).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: September 30, 2014
    Assignee: Universita' degli Studi di Roma “La Sapienza”
    Inventors: Nicola Plo Belfiore, Massimillano Scaccia, Francosco Ianniello, Massimillano Presta, Luca Perfetti
  • Publication number: 20140277715
    Abstract: A robot system includes a plurality of robots, a control device, a common work table, and a calibration device. The control device is configured to control the plurality of robots. On the common work table, the plurality of robots are configured to work. Based on a position of a first robot having a calibrated coordinate relative to a position of a second robot among the plurality of robots, the calibration device is configured to calibrate a coordinate of the second robot.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Ryoichi NAGAI, Tamio NAKAMURA, Dai KOUNO, Tetsuro IZUMI
  • Publication number: 20140277722
    Abstract: A robot system includes a robot, a tool, a control device, a work table, a calibration jig, a detector, and a calibrator. The tool is mounted to a distal end of the robot and includes a first plane and a second plane orthogonal to each other. The control device controls the robot. On the work table, the robot works. The calibration jig is fixed to the work table. The detector detects a reference position determined by pressing the first plane and the second plane of the tool against at least one of the jig and the work table. Based on the reference position, the calibrator calibrates coordinates of the robot to be used by the control device.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Ryoichi NAGAI, Tamio NAKAMURA, Dai KOUNO, Tetsuro IZUMI
  • Patent number: 8831777
    Abstract: A program changing device includes a sequence interchanging unit for interchanging plural teaching points in a teaching sequence such that total movement time of a robot becomes smaller than that when the robot is moved in line with an initial teaching sequence of the teaching points, a calculating unit for calculating difference amounts between the initial teaching points and a trajectory of the robot that is obtained by executing an after-interchanged operational program by simulation, a position adjusting unit for adjusting positions of the teaching points of the after-interchanged operational program until the difference amounts become equal to or smaller than a predetermined allowable value, and a teaching point changing unit for changing the adjusted teaching points to be the initial teaching points when cycle time of the after-interchanged operational program including the adjusted teaching points is longer than initial cycle time.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: September 9, 2014
    Assignee: Fanuc Corporation
    Inventor: Yuuki Kimoto
  • Patent number: 8831779
    Abstract: The invention relates to a medical robot (R) and a method for meeting the performance requirements of a medical robot (R). The robot (R) comprises several axes (1-6) and a controller (17). A medical tool (21-24) is fixed to a fixing device (18) on the robot (R) and the working range (30) of the robot (R) is set by the controller (17) in particular with safe techniques such that the robot (R) meets the performance requirements of the medical tool (21-24).
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 9, 2014
    Assignee: KUKA Laboratories GmbH
    Inventors: Tobias Ortmaier, Marc-Walter Ueberle
  • Patent number: 8825211
    Abstract: The present invention provides an automated steering wheel leveling system and method. Particularly, the automated steering wheel leveling system includes a machine vision, a plurality of motor cylinders, a motor, and a robot, each operated by a process PC. The machine vision photographs a steering wheel to obtain position information of the steering wheel and determines a stroke of a motor cylinder and a grip position of a gripper using the position information. The plurality of motor cylinders move a plurality of grippers to steering wheel to secure the steering wheel. The motor rotates the steering wheel in order to adjust a zero-point of the steering wheel. The robot then moves the machine vision, the motor cylinder, and the motor to the steering wheel to align a shaft of the servo motor with a shaft of the steering wheel.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 2, 2014
    Assignee: Hyundai Motor Company
    Inventor: Ji Hoon Park
  • Patent number: 8818557
    Abstract: A methodology for using cortical signals to control a multi jointed prosthetic device for direct real-time interaction with the physical environment, including improved methods for calibration and training.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: August 26, 2014
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Meel Velliste, Sagi Perel, Andrew S. Whitford, Andrew Schwartz
  • Patent number: 8818560
    Abstract: A master-slave manipulator includes a remote manipulation device, a slave manipulator, and a control unit. The remote manipulation device as a master gives an operating command corresponding to a plurality of degrees of freedom. The slave manipulator includes a plurality of joints corresponding to the degrees of freedom. The slave manipulator includes a redundant joint among the joints. The control unit controls operations of the joints in accordance with the operating command. The control unit calculates an orientation change of the remote manipulation device from the operating command at predetermined time intervals and selects and drives one of the joints in redundancy relationship among the joints in accordance with the orientation change.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: August 26, 2014
    Assignee: Olympus Corporation
    Inventor: Kosuke Kishi
  • Patent number: 8812158
    Abstract: A handling system and method for automatically moving a gravity-based load body using a robot. The load body is supported by a load body holding means connected to an end effector flange of the robot. A gravity compensation device includes a connector element acting on an element or the end effector flange of the robot to compensate for the gravity of the load body.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 19, 2014
    Assignee: KUKA Roboter GmbH
    Inventors: Sven Brudniok, Günter Schreiber, Johann Maischberger
  • Patent number: 8812157
    Abstract: When an error occurs in robot system, a difference between first and second detection values of two sensors or first and second sensors occurs due to differences in position and responsibility. When this difference exceeds a predetermined threshold, control section detects that a difference has occurred in robot system. The first and second detection values of two sensors or first and second sensors are compared, and therefore, reliability of the detection values can be secured. Further, the abnormal state can be determined through the difference between the first and second detection values, and therefore, errors resulting from problems such as variations in gears and speed reducers due to temperature changes of the operational state and disposition environment of the robot can be avoided.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: August 19, 2014
    Assignee: Fanuc Corporation
    Inventors: Masahiro Morioka, Satoshi Adachi