Overload Prevention Patents (Class 700/256)
  • Patent number: 7328086
    Abstract: A tool changer comprising a master module and a tool module includes a rapid-connect communication bus between the master and tool modules. A unique tool identification number, along with other tool-related information, may be transmitted from the tool module to the master module within about 250 msec of the master and tool modules coupling together. The master module includes a robotic system communications network node connected to the rapid-connect communication bus, and operative to transmit data between the tool and the network via the communication bus. The need for a separate network node in the tool module is obviated, reducing cost and reducing the start-up time required to initialize such a network node upon connecting to a new tool. The rapid-connect communication bus may be a serial bus.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: February 5, 2008
    Assignee: ATI Industrial Automation, Inc.
    Inventors: Dwayne Perry, Richard Heavner
  • Patent number: 7324870
    Abstract: A cleaning robot and a control method thereof in which a cleaning path desired by the user is recognizable by the cleaning robot, thereby being capable of cleaning a cleaning area desired by the user in a pattern desired by the user. The cleaning robot includes a running unit to run the cleaning robot, a storage unit for storing a running path, along which the cleaning robot has learned, and a control unit to recognize the learned running path of the cleaning robot when a path learning operation is required, to store the recognized learned running path in the storage unit, and to drive the running unit. When a cleaning operation of the cleaning robot along the stored learned running path is required, the control unit controls the running unit to cause the cleaning robot to perform the required cleaning operation while running along the stored learned running path.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: January 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong Seok Lee
  • Patent number: 7321807
    Abstract: A robotic wash cell is provided and includes a six-axis robotic arm and end effector equipped with nozzles that spray unheated, solvent free, pure water at high-pressure to clean or debur objects by maintaining the nozzles in close proximity and substantially normal to each surface being cleaned or edge being deburred. The robotic cell wash is particularly useful for cleaning contaminants such as oil and grease from items having more complex shapes. The six-axis robotic arm positions the nozzles and their sprays substantially normal to each surface being cleaned or deburred. The nozzles produce a multi-zone spray pattern with a continuous effective cleaning zone. A water recycling and pressurizing system collects the used water, separates out the oil and grease contaminants to a level of about 5 ppm, and pressurizes the pure water to about 3,000 psi for washing operations or about 6,000 psi for deburring operations.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 22, 2008
    Assignee: ABB Inc.
    Inventor: Stephen J. Laski
  • Patent number: 7272467
    Abstract: Apparatus and methods that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: September 18, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, L. Niklas Karlsson, Paolo Pirjanian, Enrico Di Bernardo
  • Patent number: 7245989
    Abstract: A robot arm includes a drive assembly and an articulated arm assembly pivotally connected to the drive assembly. The articulated arm includes a pivoting base link system, a wrist link system, and a first elbow link system rotatably connected to the base link system by a pair of upper arms and connected to the wrist link system by a pair of forearms, a second elbow link system rotatably connected to the base link system by another at least one upper arm and connected to the wrist link system by another at least one forearm, wherein the drive assembly is connected to at least one of the upper arms and the base link system to provide three degrees of freedom by driving the at least one of the upper arms and pivoting the pivoting base link system to position the wrist link system at a given location with a predetermined skew relative to an axis of translation.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: July 17, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Martin Hosek, Michael Valasek
  • Patent number: 7206662
    Abstract: A crane installation, especially a container crane, includes at least one hoist mechanism provided with at least one motor for lifting and lowering a load suspended from the hoist mechanism. The operation of the hoist mechanism is controlled by a control unit which receives load-specific information signals from a device. The load-specific information signals are determined on the basis of load-dependent measuring signals generated by a load measuring assembly associated with the hoist mechanism.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 17, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ernst Sparenborg, Stephan Wöbse
  • Patent number: 7194334
    Abstract: A robotic wash cell including a six-axis robotic arm and end effector equipped with nozzles that spray unheated, solvent free, pure water at high-pressure to clean or debur objects by maintaining the nozzles in close proximity and substantially normal to each surface being cleaned or edge being deburred. The robotic cell wash is particularly useful for cleaning contaminants such as oil and grease from items having more complex shapes. The six-axis robotic arm positions the nozzles and their sprays substantially normal to each surface being cleaned or deburred. The nozzles produce a multi-zone spray pattern with a continuous effective cleaning zone. A water recycling and pressurizing system collects the used water, separates out the oil and grease contaminants to a level of about 5 ppm, and pressurizes the pure water to about 3,000 psi for washing operations or about 6,000 psi for deburring operations.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: March 20, 2007
    Assignee: ABB, Inc.
    Inventor: Stephen J. Laski
  • Patent number: 7174238
    Abstract: The invention is a computerized mobile robot with an onboard internet web server, and a capability of establishing a first connection to a remote web browser on the internet for robotic control purposes, and a capability of establishing a second short range bi-directional digital radio connection to one or more nearby computerized digital radio equipped devices external to the robot. The short-range bi-directional digital radio connection will typically have a maximum range of about 300 feet. In a preferred embodiment, this short-range wireless digital connection will use the 2.4 gHz band and digital protocols following the IEEE 802.11, 802.15, or other digital communications protocol.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: February 6, 2007
    Inventor: Stephen Eliot Zweig
  • Patent number: 7162331
    Abstract: A charging/discharging circuit electrically controls the charge of a battery using supplied current and discharge of it. A micro-controller drives a robot according to instructions from a personal computer, controls the charging/discharging circuit while monitoring the battery state, and during the charge, prohibits the operation of a travel mechanism.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 9, 2007
    Assignee: Fujitsu Limited
    Inventor: Katsushi Sakai
  • Patent number: 7155316
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: December 26, 2006
    Assignee: Microbotics Corporation
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 7133746
    Abstract: An autonomous robot is designed for docking in a docking station. The autonomous robot is configured such that it will locate the docking station and dock therein, before its battery power is exhausted. The docking is such that the autonomous robot is automatically charged, such that its batteries will be fully powered for the subsequent operation.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: November 7, 2006
    Assignee: F Robotics Acquistions, Ltd.
    Inventors: Shai Abramson, Alon Gandel
  • Patent number: 7096090
    Abstract: The invention is a computerized mobile robotic router with an onboard internet web server, and a capability of establishing a first connection to a remote web browser on the internet for robotic control purposes, and a capability of establishing a second short range bi-directional digital radio connection to one or more nearby computerized digital radio equipped computers or devices external to the robot. The short-range bi-directional digital radio connection will typically have a maximum range of about 300 feet. In a preferred embodiment, this short-range wireless digital connection will use the 2.4 gHz band and digital protocols following the IEEE 802.11, 802.15, or other digital communications protocol.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: August 22, 2006
    Inventor: Stephen Eliot Zweig
  • Patent number: 7031805
    Abstract: A robot cleaner system for detecting an external recharging apparatus which is positioned in a non-detectable area by an upper camera thereof, and a docking method for docking the robot cleaner system with the external recharging apparatus. The robot cleaner system includes an external recharging apparatus with a power terminal connected to a utility power supply, a recharging apparatus recognition mark formed on the external recharging apparatus, and a robot cleaner, having a recognition mark sensor that detects the recharging apparatus recognition mark, and a rechargeable battery. The robot cleaner automatically docks to the power terminal to recharge the rechargeable battery. The recharging apparatus recognition mark is made of retroreflective material or a metal tape, and the recognition mark sensor may be a photosensor or a proximity sensor.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: April 18, 2006
    Assignee: Samsung Gwangju Electronics Co., Ltd.
    Inventors: Ju-sang Lee, Ki-man Kim, Jang-youn Ko, Jeong-gon Song, Kyong-hui Jeon
  • Patent number: 7027893
    Abstract: A tool changer comprising a master module and a tool module includes a rapid-connect communication bus between the master and tool modules. A unique tool identification number, along with other tool-related information, may be transmitted from the tool module to the master module within about 250 msec of the master and tool modules coupling together. The master module includes a robotic system communications network node connected to the rapid-connect communication bus, and operative to transmit data between the tool and the network via the communication bus. The need for a separate network node in the tool module is obviated, reducing cost and reducing the start-up time required to initialize such a network node upon connecting to a new tool. The rapid-connect communication bus may be a serial bus.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: April 11, 2006
    Assignee: ATI Industrial Automation, Inc.
    Inventors: Dwayne Perry, Richard Heavner
  • Patent number: 6928337
    Abstract: A computer is connected to a system formed by combining a robot with a peripheral device (such as a welder). The computer receives robot mechanical unit motion position information supplied from a robot controller and command information to be outputted to the peripheral device, and displays motions of the robot mechanical unit and the peripheral device on its display screen in an animation form.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: August 9, 2005
    Assignee: Fanuc Ltd.
    Inventors: Atsushi Watanabe, Tetsuya Kosaka, Yoshiharu Nagatsuka
  • Patent number: 6889117
    Abstract: A main robot apparatus generates a sound scale command at a command generating state (ST2) to enter into a state of waiting for a reaction of a slave robot apparatus (ST3). When the slave robot apparatus outputs a emotion expressing sound responsive to a sound scale command issued by the main robot apparatus, the main robot apparatus recognizes this emotion expressing sound to output the same emotion expressing sound. In a state of the reaction action (ST4), the main robot apparatus selects an action (NumResponse), depending on the value of the variable NumResponse which has counted the number of times of the reactions to output the action.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: May 3, 2005
    Assignee: Sony Corporation
    Inventors: Kohtaro Sabe, Kazuo Ishii
  • Patent number: 6868307
    Abstract: A robot cleaner, a robot cleaning system and a method for controlling the same capable of efficiently performing work on command by recognizing the driving distance and direction of the robot cleaner regardless of a of wheel slippage or irregularity in the floor. The robot cleaner performs a working operation while moving about a floor, and comprises a main body, a driving unit for driving a plurality of wheels disposed on a bottom portion of the main body, a downward-looking camera disposed among the wheels on the bottom portion of the main body for photographing images of the floor perpendicular to the driving direction of the robot cleaner, and a control unit for recognizing driving distance and direction of the wheels using image information of the floor photographed by the downward-looking camera, and for controlling the driving unit corresponding to a target work by using the recognized distance and direction of the wheels.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: March 15, 2005
    Assignee: Samsung Gwangju Electronics Co., Ltd.
    Inventors: Jeong-gon Song, Yun-sup Hwang
  • Patent number: 6853881
    Abstract: A robot controller executes an operating program, calculates a position and posture of a robot, and sends the position and posture information to a personal computer (PC). At the PC side, on the basis of this position and posture information, animation display information of a work cell including the position and posture of the robot is created and then sent to a teaching pendant. In the teaching pendant, the animation display information is received, and an animation image is displayed on a display section. Until the operating program is terminated, this operation is performed so that an operating animation of the robot is displayed on the display section of the teaching pendant.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: February 8, 2005
    Assignee: Fanuc Ltd.
    Inventors: Atsushi Watanabe, Tetsuya Kosaka, Yoshiharu Nagatsuka
  • Patent number: 6845295
    Abstract: A method of controlling a robot (32) includes the steps of selecting an initial configuration from at least one of a first, second, and third sets to position a TCP at a starting point (44) along a path (33) and selecting a final configuration different than the initial configuration to position the TCP at an ending point (46). Next, the TCP moves from the starting point (44) while maintaining the initial configuration, approaches the singularity between a first point (48) and a second point (50), and selects one of the axes in response to reaching the first point (48). The angle for the selected axis is interpolated from the first point (48) to the second point (50). After the interpolation, the angles about the remaining axes are determined and positions the arms in the final configuration when the TCP reaches the second point (50) and moves to the ending point (46) while maintaining the final configuration.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: January 18, 2005
    Assignee: FANUC Robotics America, Inc.
    Inventors: Sai-Kai Cheng, Di Xiao, Chi-Keng Tsai, H. Dean McGee, Min-Ren Jean
  • Patent number: 6804579
    Abstract: The present invention pertains to a robotic wash cell including a six-axis robotic arm and end effector equipped with nozzles that spray unheated, solvent free, pure water at high-pressure to clean or debur objects by maintaining the nozzles in close proximity and substantially normal to each surface being cleaned or edge being deburred. The robotic cell wash is particularly useful for cleaning contaminants such as oil and grease from items having more complex shapes. The six-axis robotic arm positions the nozzles and their sprays substantially normal to each surface being cleaned or deburred. The nozzles produce a multi-zone spray pattern with a continuous effective cleaning zone. A water recycling and pressurizing system collects the used water, separates out the oil and grease contaminants to a level of about 5 ppm, and pressurizes the pure water to about 3,000 psi for washing operations or about 6,000 psi for deburring operations.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: October 12, 2004
    Assignee: ABB, Inc.
    Inventor: Stephen J. Laski
  • Patent number: 6804580
    Abstract: A system for controlling a plurality of robots and a method for controlling said system. Said system comprises a plurality of controllers, each having an associated motion system adapted to control attached robots, with each motion controller being able to receive motion instructions from at least one motion instruction source and at least one of said motion instruction sources being a control program, as well as a computer network over which said controllers communicate. In this way, the invention can be applied to solve problems which are commonly encountered in coordination activities such as load sharing, mating of parts while processing, fixtureless transfer, teaching, manual motion of coordinated operations, and time coordinated motion.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: October 12, 2004
    Assignee: Kuka Roboter GmbH
    Inventors: Kenneth A. Stoddard, R. William Kneifel, II, David M. Martin, Khalid Mirza, Michael C. Chaffee, Andreas Hagenauer, Stefan Graf
  • Patent number: 6772053
    Abstract: A surgical method and a control system is provided. The surgical method and the control system can advantageously be used in a minimally invasive surgical apparatus. The method includes generating a desired surgical instrument movement command signal. It further includes comparing the desired surgical instrument movement command signal with at least one preset surgical instrument movement limitation. Should the desired surgical instrument command signal transgress the preset surgical instrument movement limitation, the desired surgical instrument movement command signal is restricted to yield a restricted surgical instrument movement command signal. A surgical instrument is then caused to move in response to the restricted surgical instrument movement command signal. The method further provides for haptic feedback on a master control in response to restriction of the desired surgical instrument movement command signal.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: August 3, 2004
    Assignee: Visx, Incorporated
    Inventor: Günter D. Niemeyer
  • Patent number: 6748297
    Abstract: A robot cleaner system capable of accurately docking with an external charging apparatus and a method for docking with an external charging apparatus comprising a power supply terminal connected to a supply of utility power, an external charging apparatus including a terminal stand for supporting the power supply terminal and fixing the external charging apparatus at a predetermined location, a driving unit for moving a cleaner body, an upper camera disposed on the cleaner body, for photographing a ceiling, a charging battery disposed in the cleaner body, for being charged by power supplied from the power supply terminal, a bumper disposed along an outer circumference of the cleaner body and outputting a collision signal when a collision with an obstacle is detected, and a robot cleaner disposed at the bumper to be connected with the power supply terminal and including a charging terminal connected to the charging battery, wherein, prior to starting on operation, the robot cleaner photographs an upward-lookin
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: June 8, 2004
    Assignee: Samsung Gwangju Electronics Co., Ltd.
    Inventors: Jeong-gon Song, Sang-yong Lee
  • Patent number: 6711468
    Abstract: A control system for robots comprising a control unit for generating and controlling the paths of a movement of the moving parts of the robot, a drive unit for generating the control signals for controlling the motors associated to the moving parts of the robot, and an Ethernet-type network for connection of the control unit and the drive unit. An interface module is also provided to connect the control unit to peripheral units and distributed input/output units. The drive unit comprises, in conjunction with a plurality of CPUs that close the control loops of the torques generated by the individual motors, a main CPU responsible for position control in the framework of the drive unit. The latter CPU thus retains knowledge of the overall status of the machine.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: March 23, 2004
    Assignee: Comau S.p.A.
    Inventors: Aldo Bottero, Luciano Cane, Giorgio Cantello, Guido Cargnino, Antonio Zaccagnini
  • Patent number: 6684131
    Abstract: A robot controller capable of minimizing an increase in the tact time during work, reducing changes in joint axes of the robot, thereby providing the structure with long mechanical life. The robot controller i) stores a plurality of movement data formed of amount and time for movement; ii) checks whether a movement of a robot has acceleration exceeding a predetermined level by calculation on the basis of the stored movement data; iii) increases the time for movement of the corresponding movement data, the preceding and following data to the movement data, if the calculation indicates over-acceleration; and iv) controls the robot according to the time-increased movement data.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: January 27, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Atsumi Hashimoto, Takashi Nakatsuka, Masahiro Ohto
  • Patent number: 6658325
    Abstract: The invention is a computerized mobile robot with an onboard internet web server, and a capability of establishing a first connection to a remote web browser on the internet for robotic control purposes, and a capability of establishing a second short range bi-directional digital radio connection to one or more nearby computerized digital radio equipped devices external to the robot. The short-range bi-directional digital radio connection will typically have a maximum range of about 300 feet. In a preferred embodiment, this short-range wireless digital connection will use the 2.4 gHz band and digital protocols following the IEEE 802.11, 802.15, or other digital communications protocol.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: December 2, 2003
    Inventor: Stephen Eliot Zweig
  • Patent number: 6587749
    Abstract: It is possible to obtain an industrial robot which assures excellent reduction in maintenance. The industrial robot includes a robot body, a manipulator to control the operation of the robot body, a control device to control the manipulator, a first path disposed between the manipulator and the control device, and a second path between a commercial power source and the manipulator. Since the voltage supplied from the commercial power source in the second path is applied to the manipulator, the robot body becomes freely movable without being controlled by the manipulator.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Kazunori Matsumoto
  • Patent number: 6584377
    Abstract: A legged robot is provided with a plurality of basic motion programs. The legged robot can produce a teaching motion program for performing a series of expressive motions by recognizing and language-processing instructions from a user in the form of voice-input, and extracting and combining at least one basic motion in a time series. More sophisticated and complex teaching programs can be edited by controlling the produced teaching motion programs stored in a database and combining the teaching motion programs with the basic motion programs.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: June 24, 2003
    Assignee: Sony Corporation
    Inventors: Hiroki Saijo, Yoshihiro Kuroki
  • Patent number: 6584378
    Abstract: When determining coordinates of a point of an object (2) in a reference system of coordinates and the orientation of the object in the space in a measuring position assumed by the object, the object is moved from a start position having known coordinates and a known orientation to a measuring position while detecting this movement. Said coordinates and the orientation of the object in the measuring position are calculated from information from this detection and about the start position. Furthermore, the acceleration and retardation of the object are measured during the movement, and the coordinates and the orientation of the object in the measuring position are calculated from information from this measurement.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: June 24, 2003
    Assignee: ABB Flexible Automation
    Inventor: Ole Arnt Anfindsen
  • Patent number: 6556891
    Abstract: An apparatus system is provided with at least one robot and with a control unit accommodated in a control cabinet. To improve the integration of robot and technology control units and to utilize synergistic effects, at least one additional, independent electronic system different from the control unit for the robot is provided accommodated in the control cabinet.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: April 29, 2003
    Assignee: Kuka Roboter GmbH
    Inventors: Gerhard Hietmann, Thomas Finsterwalder
  • Patent number: 6549825
    Abstract: An alignment apparatus which obtains an amount of correction for centering a semiconductor wafer from four points of a wafer edge detected by noncontact proprioceptors in a wafer delivery position P1 where the semiconductor wafer is passed to a wafer carrying unit from a wafer carrying robot and centers the semiconductor wafer.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: April 15, 2003
    Assignee: Olympus Optical Co., Ltd.
    Inventor: Shunsuke Kurata
  • Patent number: 6493606
    Abstract: A legged mobile robot realizes a motion language by a time-series change in an actuator angle or a motion pattern using the four limbs and the trunk. A motion language which includes, for example, a motion pattern which is an approximation of the contour/shape of a character is used, so that even a robot or a human being which does not possess the same motion language database can determine the meaning and character which is indicated by each motion pattern as a result of visually recognizing and interpreting the contour/form which is indicated by each motion pattern. For example, a robot which has stepped into a dangerous working area can give a message concerning, for example, the condition of the working area to an observer at a remote location without using any data communications device. The legged mobile robot communicates by moving the limbs and/or the trunk.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: December 10, 2002
    Assignee: Sony Corporation
    Inventors: Hiroki Saijo, Yoshihiro Kuroki
  • Patent number: 6459955
    Abstract: An autonomously movable cleaning robot comprising a platform and motive force to autonomously move the robot on a substantially horizontal surface having boundaries. The robot further has a computer processing unit for storing, receiving and transmitting data, and a cleaning implement operatively associated with the robot. The robot receives input data from an external source. The external source may be physical manipulation of the robot, remote control, or by triangulation from at least three external transmitters.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: October 1, 2002
    Assignee: The Procter & Gamble Company
    Inventors: Eric Richard Bartsch, Charles William Fisher, Paul Amaat France, James Frederick Kirkpatrick, Gary Gordon Heaton, Thomas Charles Hortel, Arseni Velerevich Radomyselski, James Randy Stigall
  • Patent number: 6377869
    Abstract: A robot controller having a function of monitoring abnormality of a robot operation to prevent an accident by stopping supply of energy or operational substance to an operational tool when the operational tool is abnormally stopped. Motion command pulses for a robot motion are obtained by computing operations when a motion statement of the operation program is read out and stored in a shared memory. Motors for driving respective robot axes are driven based on the motion command pulses. When an I/O output command is issued on a signal line to actuate an arc welder, the operation control software demands to set a predetermined waiting time period to a timer. The managing software demands to start a countdown of the timer and informs the operation control software of an elapse of the set waiting time period.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: April 23, 2002
    Assignee: Fanuc Ltd.
    Inventors: Atsushi Watanabe, Tetsuya Kosaka, Hiromitsu Takahashi
  • Patent number: 6374158
    Abstract: A robotic machine includes a machine tool removably supported in a mount for following a programmable path over a workpiece. A calibration pointer includes a housing configured like the tool for being supported in the mount, and a laser is affixed in the housing for emitting a laser beam at the workpiece. In a method of operation, the laser beam is projected from the laser in a focused spot at the workpiece at an offset therefrom. The spot permits accurate programming of the machine without contacting the workpiece.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: April 16, 2002
    Assignee: General Electric Company
    Inventor: Robert Anthony Fusaro, Jr.
  • Patent number: 6356808
    Abstract: A method for cell alignment, identification and calibration of part of a robot tool, preferably a part of the robot tool, is positioned close to a detector, whereupon it is moved repeatedly past the limit of the area of detection of the detector. During the movement, the pose of the robot is registered each time the surface of said robot tool comes into tangential contact with the area of detection, and an over determined system of equations is formed, consisting of a correlation between the registered poses and unknown parameters regarding the detection area of the detector and the location of the robot part in space. An error vector is introduced into the system of equations, which is then solved while minimizing the error vector, preferably in the least square sense, in order to thus identify said unknown parameters and the error vector.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: March 12, 2002
    Assignee: Robotkonsult AB
    Inventor: Björn Stenberg
  • Patent number: 6356806
    Abstract: A method for handling the voltage drop, at least in the control unit of a robot with a PC control is provided that minimizes the time of a plant stoppage and avoids wasteful process interruptions. The PC control has a real time operating system for the time critical control and regulation of the robot movement and a standard PC operating system for communication with an operator. In the case of a voltage drop a battery/accumulator operation takes place with running robot movement and optionally application operations broken off or ended in a clearly defined manner. Then, working processes of the control are terminated. The contents of the working memory at the termination time concerning the real time operating system and robot control programs are stored, particularly as an image, in at least one mass memory. For restarting the robot after such a stoppage thereof the standard PC operating system is loaded in the conventional manner into the working memory and started.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: March 12, 2002
    Assignee: Kuka Roboter GmbH
    Inventors: Franz Grob, Stefan Sturm, Carsten Spie&bgr;
  • Patent number: 6327516
    Abstract: Parameters of a robot is displayed on a display device of an operation terminal in a manner that parameters having been changed and parameters having not been changed of all the parameters are displayed in a distinguished manner such that the background color of the parameters having been changed differs from that of other data.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: December 4, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hideo Zenke
  • Patent number: 6295484
    Abstract: When a multiaxial robot with a mechanism having spring elements between electric motors of respective axes and robot arms is controlled, the path precision of a tool tip is increased without causing vibrations produced by mechanical interference between axes and high-frequency vibrations of electric motors. A model controller (1) is supplied with position commands Xref—L, Xref—U with respect to the electric motors and outputs model motor position commands &thgr;Mm—L, &thgr;Mm—U, model motor speed commands {dot over (&thgr;)}Mm—L, {dot over (&thgr;)}Mm—U, and model feed-forward commands UFF—L, UFF—U to feedback controllers (10L, 10U) which actuate and control the electric motors and the robot arms. The model controller (1) includes therein corrective quantity calculators (3L, 3U) for calculating corrective quantities (corrective torques) in view of interfering forces acting between the axes from the other axes to cancel the interfering forces.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: September 25, 2001
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Masao Ojima, Hirokazu Kariyazaki, Hidenori Tomisaki
  • Patent number: 6285920
    Abstract: A method for teaching movements to a robot (12) is disclosed. The robot (12) includes a fixture (14) for cooperating with a workpiece (16), at least one sensor (18) for sensing a spatial relationship of the robot fixture (14) relative to the workpiece (16), at least one motor (20), and a microprocessor (22) for controlling motion of the robot (12) relative to the workpiece (16).
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: September 4, 2001
    Assignee: Fanuc Robotics North America
    Inventors: H. Dean McGee, Peter Swanson, Eric C. Lee
  • Patent number: 6256556
    Abstract: A remote operation system for a robot for facilitating the restoring operation of the robot. In the system, when an abnormal operation or abnormal parameter on a user side is detected, the information of such an abnormality is displayed on the operation terminal of a service staff side and further operation instruction and comments relating to the restoring operation are applied from the service staff side to the operation terminal of the user side and displayed thereon.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: July 3, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hideo Zenke