Having Control Of Force Patents (Class 700/260)
  • Patent number: 7295891
    Abstract: In a method for controlling the movement of a manipulator associated with an interpretation of a given point sequence of poses (positions and orientations) by splines, the motion components are separately parameterized. Thus, marked, subsequent changes to the orientation of robot axes have no undesired effects on the Cartesian movement path of the robot. Suitable algorithms are provided for orientation control by using quaternions or Euler angles.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: November 13, 2007
    Assignee: KUKA Roboter GmbH
    Inventors: Manfred Hüttenhofer, Günther Wiedemann, Stefan Burkhart
  • Patent number: 7292912
    Abstract: A robot system that includes a robot and a remote station. The remote station may be a personal computer coupled to the robot through a broadband network. A user at the remote station may receive both video and audio from a camera and microphone of the robot, respectively. The remote station may include a graphical user interface that can be selected to generate an alert input to the robot. The user initially establishes a voice communication between the remote station and the robot. To obtain video access the user may select a graphical icon to generate and transmit the alert input to the robot. The caller recipient at the robot may grant the request for video of themselves by inputting a response into the robot. This procedure allows someone at the robot to control the initiation of a video-conference with the user of the remote station.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 6, 2007
    Assignee: lnTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Jonathan Southard, Marco Pinter
  • Patent number: 7292913
    Abstract: In the articulated robot, types of teaching a moving track of the robot can be optionally selected. The articulated robot comprises: a switch for manually selecting a moving axis to move an arm section along the selected axis; a manual pulse generator generating pulses; first controller for controlling motors to linearly move a front end of the arm section a prescribed distance, which corresponds to number of pulses; an operating board including a selecting switch, which is used to move the arm section along the selected axis; second controller for automatically controlling the motors so as to move the arm section while the selecting switch is turned on; third controller for stopping the motors to freely move the arm section while the arm section is manually moved; and a switch for selecting a type of teaching action.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: November 6, 2007
    Assignee: Kabushiki Kaisha Koyama
    Inventors: Hideo Tokutake, Tatsuo Niimura
  • Patent number: 7289885
    Abstract: A dual purpose media drive exchanges data with removable media items. The drive includes at least one port to receive various control signals, including (1) data exchange commands directing the drive to read and/or write data to a media item mounted by the drive, and (2) robotic device management commands. The drive includes a processor that responds to incoming data exchange commands by reading and/or writing to the loaded media item. The processor responds to at least some robotic device management signals by forwarding them to a robotic media transport device. The processor withholds the data exchange commands from the robotic device, since they are only pertinent to operations of the drive itself. The robotic device may be configured to restrict host access to library components according to predefined logical partitions.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Robert B. Basham, Brian G. Goodman, Leonard G. Jesionowski
  • Patent number: 7289884
    Abstract: According to the hand control system (2), the position and posture of a palm (10) are controlled such that the object reference point (Pw) and the hand reference point (Ph) come close to each other and such that the i-th object reference vector (?wi) and the i-th hand reference vector (?hi) come close to each other. During the controlling process of the position and posture of the palm, the operation of a specified finger mechanism is controlled such that the bending posture of the specified finger mechanism gradually changes (for example, such that the degree of bending gradually increases). This ensures accurate grasping of an object of an arbitrary shape.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: October 30, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuyuki Takahashi, Tadaaki Hasegawa
  • Patent number: 7289883
    Abstract: A method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 30, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Louis Kavoussi
  • Patent number: 7269479
    Abstract: An article transporting robot or an article transporting system includes a state recognizing means for recognizing the state of the article, a transportation method specifying means for specifying the transportation method according to the state recognized by the state recognizing means, and a transporting device for transporting the article according to the transportation method specified by the transportation method specifying means.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: September 11, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Yoshihiko Matsukawa, Tomonobu Naruoka, Toru Tanigawa, Satoshi Sato
  • Patent number: 7269480
    Abstract: A mobile robot which has a communication with a detection target by a motion of the mobile robot or by an utterance from the mobile robot, the mobile robot includes: a personal identification unit detecting an existence of the tag based on a signal transferred from the tag and obtaining the identification information stored on the tag; a position information acquisition unit obtaining distance information indicating a distance from the mobile robot to the detection target; a locomotion speed detection unit detecting a locomotion speed of the mobile robot; a personal information acquisition unit acquiring personal information based on the identification information; a communication motion determination unit determining contents of a communication motion based on the personal information; and an operation determination unit adjusting a start timing of each content of the communication motion based on distance information and on the locomotion speed of the mobile robot.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: September 11, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Sachie Hashimoto, Satoki Matsumoto
  • Patent number: 7260450
    Abstract: An internal pressure of a hydropneumatic drive actuator is measured by a pressure measurement device, a displacement amount of a movable mechanism is measured, a desired value and a measurement value of the displacement are inputted so that a position error is compensated by a position error compensation device, a desired value of a pressure difference of the actuator to which antagonistic driving is performed by the desired value is calculated by a desired pressure difference calculation device, outputs from the position error compensation device, the desired pressure difference calculation device, and the pressure measurement device are inputted, and a pressure difference error is compensated by pressure difference error compensation device.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 21, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasunao Okazaki, Masaki Yamamoto, Yuji Adachi, Katsuhiko Asai
  • Patent number: 7254464
    Abstract: Methods for operating robotic devices (i.e., “robots”) that employ adaptive behavior relative to neighboring robots and external (e.g., environmental) conditions. Each robot is capable of receiving, processing, and acting on one or more multi-device primitive commands that describe a task the robot will perform in response to other robots and the external conditions. The commands facilitate a distributed command and control structure, relieving a central apparatus or operator from the need to monitor the progress of each robot. This virtually eliminates the corresponding constraint on the maximum number of robots that can be deployed to perform a task (e.g., data collection, mapping, searching). By increasing the number of robots, the efficiency in completing the task is also increased.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 7, 2007
    Assignee: iRobot Corporation
    Inventors: James McLurkin, Jennifer Smith
  • Patent number: 7245990
    Abstract: A robot control unit for controlling a robot mechanism unit constantly detects the status of a robot and stores it as robot status data. An operation command input by voice from a head set is converted into character data by a voice/character data conversion device, and input to a control device. The control device searches a command corresponding to an operation command input in operation commands stored in management data. An executing program group is specified for link and storage with the corresponding operation command.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 17, 2007
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Hiroji Nishi
  • Patent number: 7239940
    Abstract: A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms/instruments.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: July 3, 2007
    Assignee: Intuitive Surgical, Inc
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin Uecker, James Wright, Amante Mangaser
  • Patent number: 7236852
    Abstract: A legged mobile robot itself is responsive to the result of error detection during robot operations to perform error avoiding processing autonomously. In detecting an error, requested commands are all blocked by the internal processing within the robot so that an input to an actuating system does not affect the robot. The type of the error that has occurred is also notified to the actuating system so that feedback to an inputting system 32 may be applied in a manner specific to the error type. When the error is eliminated, that effect is notified to the actuating system to enable re-initiation of the usual command input from the remote operating system.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: June 26, 2007
    Assignees: Sony Corporation
    Inventors: Tomohisa Moridaira, Jinichi Yamaguchi
  • Patent number: 7233842
    Abstract: A method determines axial alignment between the centroid of an end effector and the effective center of a specimen held by the end effector. The method is implemented with use of an end effector coupled to a robot arm and having a controllable supination angle. A condition in which two locations of the effective center of the specimen measured at 180° displaced supination angles do not lie on the supination axis indicates that the centroid is offset from the actual effective center of the specimen.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: June 19, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Paul Bacchi, Paul S. Filipski
  • Patent number: 7228203
    Abstract: Autonomous personal service robot to monitor its owner for symptoms of distress and provide assistance. The system may include sensors to detect situations before they affect people such as smoke, heat, temperature and carbon monoxide sensors. The system can provide security for the home. The PRA may comprise features such as a medicine dispenser and blood pressure cuff. Features such as broadband internet, MP3 player, reading lights and eye glass tracker provide butler type capabilities that enable the system to appeal to markets beyond the elderly and infirmed. The system may also include an X10 transmitter/receiver to automatically control various household lights and appliances. Equipping the system with a robot arm enables the robot to fetch items, turn on and off wall switches and open the refrigerator.
    Type: Grant
    Filed: March 26, 2005
    Date of Patent: June 5, 2007
    Assignee: Vision Robotics Corporation
    Inventors: Harvey Koselka, Bret Wallach, David Gollaher
  • Patent number: 7222000
    Abstract: A remote controlled robot system that includes a robot and a remote control station. A user can control movement of the robot from the remote control station. The remote control station may generate robot control commands that are transmitted through a broadband network. The robot has a camera that generates video images that are transmitted to the remote control station through the network. The user can control movement of the robot while viewing the video images provided by the robot camera. The robot can automatically stop movement if it does not receive a robot control command within a time interval. The remote control station may transmit a stop command to the robot if the station does not receive an updated video image within a time interval.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: May 22, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7221999
    Abstract: When an operator attempts to move a robot from a current position to a desired position, she/he operates a manipulator lever (26) corresponding to a desired direction of a manipulator (23) of a remote control device (22), for example, a number of times corresponding to a predetermined moving amount in the moving direction. At this point, the moving amount for each moving direction depending on this number of operations is set, and a leg of the robot is actuated according to a setting value of the moving amount for each moving direction to move the robot. The moving amount that can be set by the operation of the manipulator lever (26) has a relatively small moving amount that the robot may be moved by performing a lifting/landing action once for each of the legs of the robot, and a relatively large moving amount requiring multiple walking steps of the lifting/landing action for each leg of the robot.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: May 22, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Shigeo Sano
  • Patent number: 7218993
    Abstract: A robot system is provided and includes an autonomous mobile robot. In the system in which monitoring is performed using the autonomous mobile robot which travels along a predetermined path, an interval between the time when a user requests transmission of images and the time when the user obtains the images may be reduced. The autonomous mobile robot travels along a predetermined path at predetermined times, a camera takes photographs at predetermined locations during the travel along the predetermined path, images taken by the camera are stored, and the stored images are sent to a requesting cell phone in response to a transmission request from the cell phone.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: May 15, 2007
    Assignee: Fujitsu Limited
    Inventors: Yusuke Yasukawa, Masayasu Hino
  • Patent number: 7212886
    Abstract: A robot control apparatus including a motion torque calculating section for calculating a motion torque command which is required for a motion of a servo motor, a disturbance torque estimating section for calculating a disturbance torque, a minute displacement relationship calculating section for calculating a minute displacement relationship between a task coordinate system of a robot and a joint coordinate system of the servo motor, an external force calculating section for carrying out a conversion to an external force on the task coordinate system, a force control section for calculating a position correction amount on the task coordinate system of the robot, and a joint angle correction amount calculating section for carrying out a conversion to a joint angle correction amount on the joint coordinate system.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: May 1, 2007
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hideo Nagata, Kenichi Yasuda, Yasuyuki Inoue
  • Patent number: 7209803
    Abstract: A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 24, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Tomonobu Naruoka, Yoshihiko Matsukawa, Satoshi Sato
  • Patent number: 7206668
    Abstract: A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: April 17, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Tomonobu Naruoka, Yoshihiko Matsukawa, Satoshi Sato
  • Patent number: 7206667
    Abstract: The robot alignment system is used for establishing a predetermined alignment position between a movable robot member and an article that is processed by the robot. The system includes a laser transmitter that emits a focused laser beam and a target against which the focused laser beam is directed. The laser transmitter is preferably supported by the robot and the target is supported by the article that is processed by the robot. A signaling device cooperates with the target to produce a detectable signal when the focused laser beam is received at a predetermined location on the target. The detectable signal signifies establishment of a predetermined alignment position between the robot and the article that is processed by the robot.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: April 17, 2007
    Assignee: Siemens Medical Solutions Diagnostics
    Inventor: David Kleinschmitt
  • Patent number: 7191035
    Abstract: A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Tomonobu Naruoka, Yoshihiko Matsukawa, Satoshi Sato
  • Patent number: 7187999
    Abstract: A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 6, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Tomonobu Naruoka, Yoshihiko Matsukawa, Satoshi Sato
  • Patent number: 7187998
    Abstract: A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 6, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shusaku Okamoto, Osamu Yamada, Tomonobu Naruoka, Yoshihiko Matsukawa, Satoshi Sato
  • Patent number: 7184858
    Abstract: An internal pressure of a hydropneumatic drive actuator is measured by a pressure measurement device, a displacement amount of a movable mechanism is measured, a desired value and a measurement value of the displacement are inputted so that a position error is compensated by a position error compensation device, a desired value of a pressure difference of the actuator to which antagonistic driving is performed by the desired value is calculated by a desired pressure difference calculation device, outputs from the position error compensation device, the desired pressure difference calculation device, and the pressure measurement device are inputted, and a pressure difference error is compensated by pressure difference error compensation device.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: February 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasunao Okazaki, Masaki Yamamoto, Yuji Adachi, Katsuhiko Asai
  • Patent number: 7181314
    Abstract: An industrial robot that has uses a simulated force vector to allow a work piece held by the robot end effector to be mated with a work piece whose location and orientation is not precisely known to the robot. When the end effector makes contact with the location and orientation in which the other work piece is held the robot provides a velocity command to minimize the force of the contact and also provides a search pattern in all directions and orientations to cause the end effector to bring the work piece it is holding in contact with the other work piece. The search pattern and the velocity command are continued until the two work pieces mate.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: February 20, 2007
    Assignees: ABB Research Ltd., ABB Automation Technologies AB Robotics
    Inventors: Hui Zhang, Zhongxue Gan, Torgny Brogardh, Jianjun Wang
  • Patent number: 7181315
    Abstract: A manual-mode operating system for a robot provided with an end-effector.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: February 20, 2007
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Tatsuya Oumi
  • Patent number: 7177723
    Abstract: A robotic storage library is provided for reducing the transition time to reach an operational state following a transition from a power-off to a power-on state. The robotic storage library can generally include a transport unit for moving data cartridges, or other storage elements, between a location in a shelf system and a drive, or data transfer interface, to complete storage operations for a host computer. The library can further include a controller for causing an audit to be performed to create an inventory of the locations. The audit can be stored in nonvolatile memory prior to the power transition. The inventory information can be transmitted to a host computer after the power transition.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 13, 2007
    Assignee: Spectra Logic Corporation
    Inventors: Matthew T. Starr, Joshua D. Carter, Nathan C. Thompson
  • Patent number: 7177722
    Abstract: An assembling method and an apparatus for carrying out the method capable of efficiently, reliably and easily detecting an insertion and fitting position, for easy automatic assembly. In case a rod-like workpiece is inserted into a hole in an object, an insertable range is determined based an amount of clearance between the workpiece and the hole, an amount of chamfering of the hole, etc. The insertable range is defined as within a range centered at a hole center position 3cp and having a radium of r. A workpiece center position is indicated by 1cp. While the workpiece is moved once throughout a search range (XL-XU) in the X-axis direction, it is moved in the Y-axis direction by an amount equal to or less than an insertable range amount 2r. As shown by a dotted line, the workpiece center 1cp passes without fail through the insertable range during the motion throughout the search range (XL-XU, YL-YU).
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 13, 2007
    Assignee: Fanuc Ltd
    Inventors: Tetsuaki Kato, Takashi Sato
  • Patent number: 7171286
    Abstract: A robotic system that includes a plurality of robots that are linked to a plurality of remote stations. The robots have an input device and software that allows control of another robot. This allows an operator in close physical proximity to a robot to operate another robot. Each robot can be either a master or slave device.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 30, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Keith Phillip Laby, Jonathan Southard, Marco Pinter
  • Patent number: 7164969
    Abstract: A method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: January 16, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Louis Kavoussi
  • Patent number: 7164968
    Abstract: A robotic system, and corresponding method, performs the function of a human scrub technician in an operating room. A device, and associated method for using the device, performs one, or more, of the following functions: instrument identification, instrument localization, instrument handling, interaction with a human, and integration of functions through a cognitive system. A method for movement of the device comprises the steps of modeling the arm of the robot to create a model comprising elements of finite mass joined by junctions, using an algorithm to calculate results of the effect of applying force to the elements of the model, using attractive, replusive and postural forces in the algorithm, and using the results of the model to direct motion of the device.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: January 16, 2007
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael R. Treat, Martin T. Lichtman, David M. Brady
  • Patent number: 7164970
    Abstract: A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 16, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, Jonathan Southard
  • Patent number: 7158861
    Abstract: A robotic system that allows a consultant to provide remote consulting services through a remotely controlled robot. The robot provides a video image to a remote station that is manned by the consultant. The video image may include a therapist performing a therapeutic routine on a patient. The consultant can view the therapeutic routine and provide consultant information such as instructions to modify or otherwise change the routine. The consultant information is transmitted to the robot and conveyed to the therapist. The system allows a consultant to provide consulting services without have to be physically present at the site of the patient. The remote station also allows the consultant to control movement of the robot so that the video image tracks movement of the therapist and/or patient.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: January 2, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan
  • Patent number: 7158860
    Abstract: A robotic system that includes a mobile robot linked to a plurality of remote stations. The robot provides both audio and visual information to the stations. One of the remote stations, a primary station, may control the robot while receiving and providing audio and visual information with the remote controlled robot. The other stations, the secondary stations, may also receive the audio and visual information transmitted between the robot and the primary station. This allows operators of the secondary stations to observe, communicate and be trained through the robot and primary station. Such an approach may reduce the amount of travel required to train personnel.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 2, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7158859
    Abstract: A robotic system that includes a remote controlled robot with at least five degrees of freedom and a teleconferencing function. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform provides three degrees of freedom to allow the robot to move about a home or facility to locate and/or follow a patient. The robot also has mechanisms to provide at least two degrees of freedom for the camera.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: January 2, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, James Cuevas, Jonathan Southard, Mike Medus
  • Patent number: 7151542
    Abstract: The problem of editing motion data can be solved by providing a way to specify control points (herein called “handles”) along the path of the motion data and to describe the motion data as a combination of layers of information describing the motion in relationship to these handles. A first layer may describe, for each point in the motion data, the distance of the point between the handles. For example, a path between two handles may be defined. Each point in the motion data is closest to a point along that path. That point along the line has a distance to the two handles. These distances may be defined as a percentage of the length of the path. A second layer may describe the offset of points in the motion data from the line between the two handles.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: December 19, 2006
    Assignee: Avid Technology, Inc.
    Inventor: Michael Isner
  • Patent number: 7148644
    Abstract: A robot adapted to operate in association with an interface surface having disposed therein or thereon coded data indicative of a plurality of reference points of the interface surface, the robot comprising: movement means to allow the robot to move over the interface surface; a sensing device which senses at least some of the coded data and generates indicating data indicative of a position of the robot on the interface surface; communication means to transmit the indicating data to a computer system running a computer application, and to receive movement instructions from the computer application; and, a marking device adapted to selectively mark the interface surface in response to marking instructions received from the computer application.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Patent number: 7142945
    Abstract: A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: November 28, 2006
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, Jonathan Southard
  • Patent number: 7142947
    Abstract: A method for monitoring a patient with a robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: November 28, 2006
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, Jonathan Southard
  • Patent number: 7136723
    Abstract: A robot controller for teaching a robot with high efficiency. The robot controller including command storage unit (21) where a movement command and a work command are stored, command identifying unit (24) for discriminating between the movement and work commands, unit (22) for making/editing a series of work programs or discrete work programs by a combination of the commands, work program storage units (23) where the work programs are stored so as to control the robot according to the stored program, further including a work section identifying unit (25) for identifying a work section of the work program by way of the command identification unit (24) and work section automatic stopping unit (27) for automatically stopping or suspending the execution of the work program at the work section in a standby state when the work section identifying unit (25) identifies the work section during the execution of the work program.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 14, 2006
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Takahide Hirayama, Shinji Okumura, Hiyoyuki Handa, Takeshi Okamoto
  • Patent number: 7136722
    Abstract: A human-type link system, such as a humanoid robot having a dynamically feasible motion of the link system that is generated when a reference joint acceleration that is only calculated from a kinematical constraint condition is determined not feasible by an evaluation of external force computed based on an inverse dynamics calculation, or is generated by calculating from a dynamic constraint condition and a kinematical constraint condition simultaneously, the dynamic constraint condition is formulated by using an actuation space inverse inertial matrix that represents the relation of force acting on the link system and the acceleration of the link system caused by the force.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: November 14, 2006
    Assignee: The University of Tokyo
    Inventors: Yoshihiko Nakamura, Katsu Yamane, Manabu Tange
  • Patent number: 7133744
    Abstract: An input motion acquiring unit acquires a motion trajectory of an object from an image recognizing unit. A dynamic modelling processor models a plurality of robot motion patterns stored in a robot motion pattern storage unit in a dynamic system form, and stores the modelled robot motion patterns into a robot-motion-pattern-model storage unit. A motion converting unit linearly transforms the plurality of robot motion dynamic models stored in the robot-motion-pattern-model storage unit into prediction motion trajectories. A motion comparing unit compares the input motion trajectory acquired by the motion acquiring unit with the prediction motion trajectories transformed by the motion converting unit. A robot motion selecting unit selects a robot motion pattern having the highest similarity from the robot motion pattern storage unit.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: November 7, 2006
    Assignee: Sony Corporation
    Inventor: Masato Ito
  • Patent number: 7117067
    Abstract: Methods for operating robotic devices (i.e., “robots”) that employ adaptive behavior relative to neighboring robots and external (e.g., environmental) conditions. Each robot is capable of receiving, processing, and acting on one or more multi-device primitive commands that describe a task the robot will perform in response to other robots and the external conditions. The commands facilitate a distributed command and control structure, relieving a central apparatus or operator from the need to monitor the progress of each robot. This virtually eliminates the corresponding constraint on the maximum number of robots that can be deployed to perform a task (e.g., data collection, mapping, searching). By increasing the number of robots, the efficiency in completing the task is also increased.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: October 3, 2006
    Assignee: iRobot Corporation
    Inventors: James McLurkin, Jennifer Smith
  • Patent number: 7112938
    Abstract: A posture control system for a mobile robot. When an unexpected external force acts, the system is configured to control and stabilize the posture of the robot driving an arm link such that, in response to a first external force that is a component in a predetermined direction of an unexpected external force, a second external force acts on the arm link in a direction orthogonal to the predetermined direction. With this, when the mobile robot receives a reaction force, even if the posture becomes unstable or the robot receives an unexpected reaction force, it becomes possible to preserve the dynamic balance and to maintain a stable posture.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: September 26, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Tadaaki Hasegawa, Takashi Matsumoto
  • Patent number: 7107124
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. Use of the teleoperator system for surgical procedures also is disclosed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 12, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 7099743
    Abstract: A two-legged walking robot includes a pair of foot members a calf member provided above each foot member, a double-axis ankle joint provided between the foot member and the calf member to allow the foot member to rotate relative to the calf member in forward and backward directions and in right and left directions. The robot also includes a femoral member provided above each calf member, a single-axis knee joint provided between the calf member and the femoral member, a hip member provided above the femoral member, and a double-axis hip joint provided between the femoral member and the hip member to allow the femoral member to rotate relative to the hip member in the forward, backward, right, and left directions. Thus, the two-legged walking robot operates similar to a human ankle, knee and hip.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: August 29, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-kwun Lee, Yeon-taek Oh, Soo-sang Yang, Ja-woo Lee
  • Patent number: 7076338
    Abstract: A predetermined action sequence is generated by using basic motion units which include time-sequential motion of each joint and compound motion units in which basic motion units are combined. Motion natterns of a robot including walking are classified into motion units, each motion unit servins as a unit of motion, and one or more motion units are combined to generate various complex motions. Dynamic motion units are defined on the basis of basic dynamic attitudes, and a desired action sequence can be generated by using the dynamic motion units. This is a basic control method necessary for a robot to autonomously perform a continuous motion, a series of continuous motions, or motions which are chanaed in real-time by commands.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: July 11, 2006
    Assignees: Sony Corporation
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 7076337
    Abstract: The stability of attitude of a robot can be recovered by an ambulation control apparatus and an ambulation control method if it is lost in the course of a gesture for which the upper limbs take a major role. The apparatus and the method obtain the pattern of movement of the entire body for walking by deriving the pattern of movement of the loins from an arbitrarily selected pattern of movement of the feet, the trajectory of the ZMP, the pattern of movement of the trunk and that of the upper limbs. Therefore, a robot can determine the gait of the lower limbs so as to realize a stable walk regardless if the robot is standing upright or walking. Particularly, if the robot is made to gesture, using the upper body half including the upper limbs and the trunk while standing upright, it can determine the gait of the lower limbs so as to make a stable walk in response to such a gait of the upper body half.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: July 11, 2006
    Assignees: Sony Corporation, Jinichi Yamaguchi
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi