Using Particular Manipulator Orientation Computation (e.g., Vector/matrix Calculation) Patents (Class 700/262)
  • Patent number: 7089085
    Abstract: Disclosed herein is a method of calibrating a robot. The robot has a robot arm with a mechanically restricted moving displacement. In the robot calibration method of the present invention, a first moving displacement between a normal position of the robot arm and a contact position, where the robot arm comes into contact with the body of the robot, is obtained. A second moving displacement between a current position of the robot arm and the contact position is obtained by moving the robot arm to the contact position. The current position of the robot arm is corrected to the normal position on the basis of a difference between the first and second moving displacements.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: August 8, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Eun-Chan Kim
  • Patent number: 7076337
    Abstract: The stability of attitude of a robot can be recovered by an ambulation control apparatus and an ambulation control method if it is lost in the course of a gesture for which the upper limbs take a major role. The apparatus and the method obtain the pattern of movement of the entire body for walking by deriving the pattern of movement of the loins from an arbitrarily selected pattern of movement of the feet, the trajectory of the ZMP, the pattern of movement of the trunk and that of the upper limbs. Therefore, a robot can determine the gait of the lower limbs so as to realize a stable walk regardless if the robot is standing upright or walking. Particularly, if the robot is made to gesture, using the upper body half including the upper limbs and the trunk while standing upright, it can determine the gait of the lower limbs so as to make a stable walk in response to such a gait of the upper body half.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: July 11, 2006
    Assignees: Sony Corporation, Jinichi Yamaguchi
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 7062356
    Abstract: A robot apparatus 1 is a four-legged mobile robot, and leg units 3A, 3B, 3C, and 3D are connected to the left and side parts in the front and rear sides of a body unit 2. Ahead unit 4 is connected to the front end of the body unit 2. The head unit 4 has a mouth (jaw) part capable of biting and holding a toy 200 shaped like a bone. The mouth part is constituted by upper and lower jaw parts, and adopts a structure capable of biting and securely holding a bite part 203 of the bone 200. A CPU as a control part executes programs according to an image recognition processing algorithm for recognizing the bone 200, a bone-bite control algorithm for biting the bone, and a bone-bite detection algorithm for detecting the bone.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: June 13, 2006
    Assignee: Sony Corporation
    Inventors: Seiichi Takamura, Wataru Kokubo, Shingo Tsurumi
  • Patent number: 7058476
    Abstract: A robot apparatus 1 is a four-legged mobile robot, and leg units 3A, 3B, 3C, and 3D are connected to the left and side parts in the front and rear sides of a body unit 2. Ahead unit 4 is connected to the front end of the body unit 2. The head unit 4 has a mouth (jaw) part capable of biting and holding a toy 200 shaped like a bone. The mouth part is constituted by upper and lower jaw parts, and adopts a structure capable of biting and securely holding a bite part 203 of the bone 200. A CPU as a control part executes programs according to an image recognition processing algorithm for recognizing the bone 200, a bone-bite control algorithm for biting the bone, and a bone-bite detection algorithm for detecting the bone.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: June 6, 2006
    Assignee: Sony Corporation
    Inventors: Seiichi Takamura, Wataru Kokubo, Shingo Tsurumi
  • Patent number: 7054715
    Abstract: System and method for allowing execution of control over robot hardware other than specific robot hardware by using control software that does not have features to be applied to the robot hardware other than the specific hardware designed for control. Control software makes an inquiry about the presence of robot function requested by control software through the use of interface recording and robot function searching. If it has been found that the robot function is present, there is a requests that robot motion be performed. If it has been found that the robot function is not present, the request is skipped, or the request is made to similar robot function.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: May 30, 2006
    Assignee: NEC Corporation
    Inventor: Yosuke Takano
  • Patent number: 7047108
    Abstract: A mechanical robot can detect intruders using a camera or other motion sensor or aurally using a microphone, and then alert a user in response.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: May 16, 2006
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventors: Rajiv Rainier, Milton Massey Frazier, Christopher Daniel Russo, Christopher Peter Wieck
  • Patent number: 7039498
    Abstract: A robot arm positioning error is corrected by employing a specimen gripping end effector in which a light source and a light receiver form a light transmission pathway that senses proximity to the specimen. A robot arm old position is sensed and recorded. The robot arm retrieves the specimen from the old position and employs old position information to replace the specimen at a new position that is ideally the same as the old position. A robot arm new position is sensed and recorded. A difference between the new and old positions represents a position error. A correct position is obtained by processing the position error and the old position information.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: May 2, 2006
    Assignee: Newport Corporation
    Inventors: Paul Bacchi, Paul S. Filipski
  • Patent number: 7039501
    Abstract: Generally, a method of determining a position of a robot is provided. In one embodiment, a method of determining a position of a robot comprises acquiring a first set of positional metrics, acquiring a second set of positional metrics and resolving the position of the robot due to thermal expansion using the first set and the second set of positional metrics. Acquiring the first and second set of positional metrics may occur at the same location within a processing system, or may occur at different locations. For example, in another embodiment, the method may comprise acquiring a first set of positional metrics at a first location proximate a processing chamber and acquiring a second set of positional metrics in another location. In another embodiment, substrate center information is corrected using the determined position of the robot.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 2, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Marvin L. Freeman, Jeffrey C. Hudgens, Damon Keith Cox, Chris Holt Pencis, Michael Rice, David A. Van Gogh
  • Patent number: 7027878
    Abstract: An automation system for programming appliances having programmable controllers, programmable devices and trigger devices that communicate over a communication link. The user programs the programmable devices by placing the programmable controller in its training mode, activating the trigger device to generate a trigger signed and places select programmable devices in their programmed state. After all of the desired programmable devices have been put in then programmed states, the user takes the programmable controller out of its training mode. When the programmable controller is out of its training mode, it monitors the communication link for the trigger event. Upon detecting the trigger event, the programmable controller sends messages to the selected programmable devices instructing them to go to their programmed state.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: April 11, 2006
    Assignee: SBC Properties, L.P.
    Inventor: Raymond W. Bennett
  • Patent number: 7020537
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: March 28, 2006
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 6996456
    Abstract: Methods and apparatuses for calibrating and teaching a robot to accurately work within a work environment. The present invention preferably provides one or more tactile sensor devices that may be operatively coupled with a robot or positioned at one or more desired locations within a work environment of the robot. In one aspect of the present invention a method comprises the steps of providing a touch sensitive surface in the work environment, causing the touch sensitive surface to contact an object, generating a signal indicative of the position of the contact with respect to the touch sensitive surface, and using information comprising the generated signal to teach the robot the location of the contact in the work environment.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 7, 2006
    Assignee: FSI International, Inc.
    Inventors: Andrew W. Cordell, Keith W. Redding
  • Patent number: 6993413
    Abstract: A manipulator operative in a master/slave operative mode, comprising: a master unit commanding an operation; a slave unit having a work unit; a detector detecting the orientation of the master unit and the orientation of the slave unit; and a control device controlling the slave unit in response to the command from the master unit, wherein the control device includes: a function of determining a non-mater/slave operative mode or a master/slave operative mode; a function of calculating a difference between the orientation of the master unit and the orientationof the slave unit; and a function of comparing the absolute value of the difference with a preset reference value; and depending upon the result of the comparison, determining a normal master/slave operative mode or a transitional master/slave operative mode, in the master/slave operative mode, the transitional master/slave operative mode is a transitional mode from the non-master/slave operative mode to the master/slave operative mode.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: January 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takamitsu Sunaoshi
  • Patent number: 6952629
    Abstract: A robot apparatus 1 is a four-legged mobile robot, and leg units 3A, 3B, 3C, and 3D are connected to the left and side parts in the front and rear sides of a body unit 2. A head unit 4 is connected to the front end of the body unit 2. The head unit 4 has a mouth (jaw) part capable of biting and holding a toy 200 shaped like a bone. The mouth part is constituted by upper and lower jaw parts, and adopts a structure capable of biting and securely holding a bit part 203 of the bone 200. A CPU as a control part executes programs according to an image recognition processing algorithm for recognizing the bone 200, a bone-bite control algorithm for biting the bone, and a bone-bite detection algorithm for detecting the bone.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: October 4, 2005
    Assignee: Sony Corporation
    Inventors: Seiichi Takamura, Wataru Kokubo, Shingo Tsurumi
  • Patent number: 6943519
    Abstract: The aim of the invention is to compensate for the position-dependent length changes caused by the effect of weight in a variety of closed kinematic chains (K1 . . . Kn), for connecting a stationary first element (E1) to a movable second element (E2). Said aim is achieved, by using a back transformation (??1), which determines a compensation value for each length change (dq1, dq2 . . . dqn), resulting from the application of the weight (Fg) impinging on the movable element (E2) in each kinematic chain.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: September 13, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Puchtler, Dirk Staimer
  • Patent number: 6941192
    Abstract: A robot having a spindle is calibrated by disposing a calibration tool in the robot spindle. The position of the calibration tool is measured. An axis of the spindle is determined based on the measured position. A calibration tool center point is determined based on the measured position. A robot tool rotation axis is determined based on the determined spindle axis, robot tool center point, the determined calibration tool center point, and difference in length between the calibration tool and a robot tool.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 6, 2005
    Assignee: ABB Research Ltd.
    Inventors: Qing Tang, Hakan Brantmark, Zhongxue Gan, Torgny Brogardh
  • Patent number: 6934606
    Abstract: In one embodiment, a wafer-handling robot in a wafer processing system is automatically calibrated by determining an orientation of the robot relative to a chassis of the wafer processing system, determining hand-off coordinates of a load port in the wafer processing system, and determining hand-off coordinates of a load lock in the wafer processing system. Also disclosed is a calibration fixture for automatically calibrating the wafer-handling robot to the load port.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 23, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Wayne Tang, Mikhail Bojinov, Stephan Minard
  • Patent number: 6925357
    Abstract: A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: August 2, 2005
    Assignee: InTouch Health, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, Jonathan Southard
  • Patent number: 6920376
    Abstract: A system and method of mobile telepresencing includes providing a surrogate capable of viewing outward and of translational movement, displaying the views outward for a user and sensing rotation of a user in a direction of a view outward and a user translation instruction for causing translation of the surrogate in the direction relative to the view outward.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: July 19, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Norman Paul Jouppi, Vaughan Stanton Thomas
  • Patent number: 6917854
    Abstract: A method for recognition, determination and localization of at least one arbitrary object or space and the picking up of said object, by at least on robot, in particular, a service robot, which operates independently on the base surface. The method is achieved, whereby the robot is oriented within at least one room by room co-ordinates and/or co-ordinates of arbitrary objects in the room, transmitted to the robot by at least one sensor element, in particular, a transponder or transmitter.
    Type: Grant
    Filed: December 9, 2000
    Date of Patent: July 12, 2005
    Assignee: Wittenstein GmbH & Co. KG
    Inventor: Thomas Bayer
  • Patent number: 6917855
    Abstract: Embodiments provide a strategy for computing the motions of a mobile robot operating in an obstacle-laden environment without requiring prior knowledge of the distribution of obstacles in the environment or knowing the trajectory of a target tracked by the robot. Embodiments provide an algorithm that governs the motion of the observer robot based on measurements of the target's position and the location of obstacles in the environment. The algorithm computes a description of the geometric arrangement between the target and the observer's visibility region produced by the obstacles and computes a continuous control rule using this description. Embodiments employ an escape-path tree data structure to categorize the target's possible modes of escaping from the observer robot's sensors and use the escape-path tree to determine the target's shortest escape path.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: July 12, 2005
    Assignees: Honda Motor Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hector Gonzalez-Banos, Cheng-Yu Lee, Jean-Claude Latombe
  • Patent number: 6915173
    Abstract: Failure prediction for complex processes is performed utilizing one or more nonlinear regression models to relate operational variable values measured at two or more times to predicted process metric values and maintenance variable values.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 5, 2005
    Assignee: Ibex Process Technology, Inc.
    Inventors: Wai T. Chan, Edward A. Reitman, Jill P. Card
  • Patent number: 6904335
    Abstract: A system of self-organizing mobile robotic agents (MRAs) in a multi-robotic system (MRS) is disclosed. MRAs cooperate, learn and interact with the environment. The system uses various AI technologies including genetic algorithms, genetic programming and evolving artificial neural networks to develop emergent dynamic behaviors. The collective behaviors of autonomous intelligent robotic agents are applied to numerous applications. The system uses hybrid control architectures. The system also develops dynamic coalitions of groups of autonomous MRAs for formation and reformation in order to perform complex tasks.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: June 7, 2005
    Inventor: Neal Solomon
  • Patent number: 6901313
    Abstract: A legged mobile robot controls the posture of the body thereof in a stable manner using a ZMP stability determination criterion with a relatively long sampling period. The legged mobile robot has a stable ZMP region which is a supporting polygon formed of the ground contact point of a sole of a movable leg and a walking surface, and a ZMP behavior space in which a momentum of the robot body is generated so that the ZMP shifts to the approximate center of the stable ZMP region. In the ZMP behavior space, the momentum of the robot shifts in a positive direction or in a negative direction. In the negative direction, a space distortion shifts the ZMP to the periphery of the stable region, and in the positive direction, a space distortion shifts the ZMP to the center of the stable region.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: May 31, 2005
    Assignees: Sony Corporation
    Inventors: Naoto Mori, Yuichi Hattori, Jinichi Yamaguchi
  • Patent number: 6898487
    Abstract: Robot arm end effectors rapidly transfer semiconductor wafers between a wafer cassette and a processing station. Preferred embodiments of the end effectors include proximal and distal rest pads, the latter having pad and backstop portions that support and grip the wafer at its peripheral edge or within an annular exclusion zone that extends inward from the peripheral edge of the wafer. Preferred embodiments of the end effectors also include fiber optic light transmission sensors for determining various wafer surface, edge, thickness, tilt, and location parameters. The sensors provide robot arm extension and elevation positioning data supporting methods of rapidly and accurately placing and retrieving a wafer from among a stack of closely spaced wafers stored in the wafer cassette.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: May 24, 2005
    Assignee: Newport Corporation
    Inventors: Paul Bacchi, Paul S. Filipski
  • Patent number: 6898484
    Abstract: Global positioning system inputs are used in a manufacturing process where location of a work piece relative to a robotic manipulator is input into a control system. The manipulator is located and tracked by using “GPS” signals, as is an associated work piece. Radio signal based position indicators associated with work pieces transmit work piece location and status. In some embodiments manipulator locations are sensed by position indicators associated with manipulators and signals relating to the position of the manipulators are transmitted to the control system. The control system controls the manipulator and may also control material handling equipment for the transport of work pieces.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: May 24, 2005
    Inventors: Dorothy Lemelson, Robert D. Pedersen, Tracy D. Blake, Jerome H. Lemelson
  • Patent number: 6889116
    Abstract: A manipulator comprises an operation command unit provided with an attitude adjusting unit and an end effector control unit, a connecting unit having one end connected to the operation command unit, a working unit connected to the other end of the connecting unit and provided with an end effector and a support unit supporting the end effector for motions, and a control unit that transmits an operation command provided by the attitude adjusting unit to the support unit to adjust the attitude of the end effector and transmits an operation command provided by the end effector control unit to the end effector to operate the end effector. The support unit includes a first joint capable of turning about a first axis perpendicular to the center axis of the connecting unit, and a second joint capable of turning about a second axis perpendicular to the first axis. The end effector can be turned for rolling about an axis substantially parallel to the second axis of the second joint.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 3, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Makoto Jinno
  • Patent number: 6889119
    Abstract: A robotic device for moving at least one object between locations, including a servo motor system having a single servo axis for effecting motion in at least two directions of motion. The robotic device includes a link arm rotationally coupled to said servo motor system for lifting and placing said at least one object, a head assembly having gripper arms for gripping and releasing said at least one object at said locations. The head assembly includes a leveling mechanism for maintaining said at least one object in a desired orientation, and a split ring sensing mechanism, disposed between said gripper arms, for determining the presence of said at least one object.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 3, 2005
    Assignee: Thermo CRS, Ltd.
    Inventors: Michael Paul Riff, Thomas Ian Hatherley
  • Patent number: 6889120
    Abstract: A method and system are provided for user and participant telepresencing including viewing a user from a plurality of views to obtain an image of a user, communicating the image of the user to a surrogate, and displaying the image of the user on the surrogate with eye contact between the user and the participant preserved.
    Type: Grant
    Filed: December 14, 2002
    Date of Patent: May 3, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Norman Paul Jouppi
  • Patent number: 6885912
    Abstract: There is therefore provided, in accordance with a preferred embodiment of the present invention, a robotic system for systematically moving about an area to be covered. The system includes at least one boundary marker (48) located along the outer edge of the area to be covered, a robot (40) with a navigation system (41) and a sensor unit (43). The navigation system (41) navigates the robot (40) in generally straight, parallel lines from an initial location and turns the robot (40) when the robot (40) encounters one of the boundary markers (48), thereby to systematically move about the area to be covered. The sensor unit (43) senses proximity to one of the at least one boundary marker (48).
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: April 26, 2005
    Assignee: F Robotics Acquistions Ltd.
    Inventors: Ehud Peless, Shai Abramson, Ronen Friedman, Ilan Peleg
  • Patent number: 6882901
    Abstract: A multiple degree-of-freedom ultra-precision (DOF) robotic system yielding either rigid body guidance or large deformation analysis (LDRS, i.e. semi-flexible and flexible robotics) is developed based on the technology of integrating a multiple DOF ultra-precision shadow robotic measurement system with a multiple DOF robot for form a closed-loop linkage chain to establish a corresponding closed-loop feedback control of end-effecter of said robotic system without the use and limitation of any target or artificial marker in work-cell as the reference. In this way, the major degrading problems that greatly drag down the positioning accuracy of a robot have been fairly resolved. The embodiment conducts the details of the development of such a multiple DOF ultra-precision robotic system for the general applications in precision engineering.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: April 19, 2005
    Inventor: Shao-Wei Gong
  • Patent number: 6879877
    Abstract: A method and apparatus for providing a motion object with psychological and emotional expressions characterized by simplified processing and reduced control data associated with controlling a series of motions for body groups of the motion object including a fundamental control signal made up of an oscillating numerical value signal representing a psychological state, and a signal representing a body-group motion sequence.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: April 12, 2005
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Toru Nakata
  • Patent number: 6879880
    Abstract: Surgical robots and other telepresence systems have enhanced grip actuation for manipulating tissues and objects with small sizes. A master/slave system is used in which an error signal or gain is artificially altered when grip members are near a closed configuration.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: April 12, 2005
    Assignee: Intuitive Surgical, Inc.
    Inventors: William C. Nowlin, Gary S. Guthart, Robert G. Younge, Thomas G. Cooper, Craig Gerbi, Steven J. Blumenkranz, Dean F. Hoornaert
  • Patent number: 6879879
    Abstract: A method and system for mutually-immersive telepresencing includes determining a height of a user and monitoring a height of an image of the user on an adjustable height surrogate. The method includes transmitting the height of the user and the image of the user, and moving the height of the image of the user on the adjustable height surrogate towards the height of the user.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: April 12, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Norman Paul Jouppi, Vaughan Stanton Thomas
  • Patent number: 6859684
    Abstract: A table angle controlling method capable of effectively preventing an article placed on a table (20), from falling off by tilting the table so that the synthetic vector of horizontal acceleration and gravitational acceleration which act on the table acts on the table perpendicular thereto. The method has the steps of measuring the synthetic vector of horizontal acceleration and gravitational acting on the table (20) or a carriage (11) with the movement of the carriage (11), and tilting the table so that the synthetic vector obtained acts on the table perpendicular thereto. Alternatively the method has the steps of estimating acceleration acting on the table from a speed command value input to drive device for the carriage (11) for moving the carriage, calculating the synthetic vector of the estimated horizontal acceleration and gravitational acceleration, and tilting the table so that the synthetic vector obtained acts on the table perpendicular thereto.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: February 22, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazushige Kakutani, Shin Miyaji, Naoto Tojo
  • Patent number: 6853878
    Abstract: A robot controller for teaching a robot with high efficiency. The robot controller including command storage unit (21) where a movement command and a work command are stored, command identifying unit (24) for discriminating between the movement and work commands, unit (22) for making/editing a series of work programs or discrete work programs by a combination of the commands, work program storage units (23) where the work programs are stored so as to control the robot according to the stored program, further including a work section identifying unit (25) for identifying a work section of the work program by way of the command identification unit (24) and work section automatic stopping unit (27) for automatically stopping or suspending the execution of the work program at the work section in a standby state when the work section identifying unit (25) identifies the work section during the execution of the work program.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: February 8, 2005
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Takahide Hirayama, Shinji Okumura, Hiyoyuki Handa, Takeshi Okamoto
  • Patent number: 6853879
    Abstract: A medical master/slave manipulator is excellent in operability and capable of reducing burden on the operator. The medical master/slave manipulator includes a master unit provided with an operation control portion, a slave unit provided with a working device, an interlocking mechanism interlocking the slave unit with the master unit, an orientation difference measuring mechanism for measuring the orientation difference between the orientation of the master unit and that of the slave unit, and a control mechanism for controlling the slave unit to adjust the orientation of the slave unit to that of the master unit so that the orientation difference is reduced to zero in a transient master/slave operation mode in which an operation mode changes from an unrestricted operation mode to a master/slave operation mode.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: February 8, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takamitsu Sunaoshi
  • Patent number: 6842650
    Abstract: An automation system for programming appliances having programmable controllers, programmable devices and trigger devices that communicate over a communication link. The user programs the programmable devices by placing the programmable controller in its training mode, activating the trigger device to generate a trigger signed and places select programmable devices in their programmed state. After all of the desired programmable devices have been put in then programmed states, the user takes the programmable controller out of its training mode. When the programmable controller is out of its training mode, it monitors the communication link for the trigger event. Upon detecting the trigger event, the programmable controller sends messages to the selected programmable devices instructing them to go to their programmed state.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 11, 2005
    Assignee: Ameritech Services, Inc.
    Inventor: Raymond W. Bennett
  • Patent number: 6839612
    Abstract: A medical robotic system with a handle assembly that is used to control a medical instrument. The handle assembly and medical instrument have five degrees of freedom. Five degrees of freedom may provide greater dexterity than medical robotic systems of the prior art with four or less degrees of freedom. Five degrees of freedom reduces the size and complexity of the instrument.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: January 4, 2005
    Assignee: Institute Surgical, Inc.
    Inventors: Dan Sanchez, Darrin Uecker, Oleg Svanidze, James Wright, Yulun Wang
  • Patent number: 6836702
    Abstract: A method for fine tuning of a robot program for a robot application comprising an industrial robot, a tool and a work object to be processed by the tool along a path comprising a number of desired poses on the work object, the robot program comprises a number of program instructions containing programmed poses corresponding to the desired poses, wherein the method comprises: defining a fine tuning coordinate system Xft, Yft, Zft, selecting one of said programmed poses pi, calculating said selected pose in the fine tuning coordinate system, producing program instructions for said selected pose in the fine tuning coordinate system, running said one or more program instructions by the robot, determining the difference between the pose obtained after running the program instructions and the desired pose, adjusting the fine tuning coordinate system in dependence of said difference, producing program instructions for said selected pose in the adjusted fine tuning coordinate system Xft′, Yft′, Zft′
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: December 28, 2004
    Assignee: ABB AB
    Inventors: Torgny Brogårdh, Håkan Brantmark, Zhongxue Gan, Gregory Rossano, Xiongzi Li, Yunquan Sun, Quing Tang
  • Patent number: 6826449
    Abstract: A method to produce natural motions, or self-motion, of animate or inanimate bodies or their parts by the application of pulses at two or more locations on the surface, or inside, of the bodies or their parts. Here, energy is converted into motion in one step. Turn on the pulses, and motion results instantly. The mechanism can emulate living motions, and as living motions can take on infinite gaits and forms, so can the mechanism produce infinite forms of motion. Smooth, repeatable, controllable or random motions can be induced. Just as living muscles convert the pulses from the nervous system into natural motion in one step, so will the mechanism convert artificially generated pulse-trains into motion in one step. The dynamic coupling or modulation of waves which travel within a body, and which are caused by artificially generated pulse-trains, produces the desired motions in directions perpendicular to the plane of the pulses.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: November 30, 2004
    Inventor: Ali F. Abu-Taha
  • Patent number: 6819978
    Abstract: A robot is provided, wherein it is possible to reduce incorrect identification in the case of executing face identification in a place where lighting variations are large such as in a house and in a place where there exists a lighting environment that is bad for identification. A face area of a person is detected from an image picked up at an imaging means and stored, and a face detecting and identifying means identifies a person using face image information stored before then. An identification result reliability calculating means calculates, using information from the imaging means, whether or not a present lighting state is suitable for face identification. When the result of calculation indicates that the lighting state is not suitable for face identification, the robot is moved by a moving means. Thereby, incorrect identification can be reduced.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: November 16, 2004
    Assignee: NEC Corporation
    Inventor: Junichi Funada
  • Publication number: 20040162640
    Abstract: A quantum gate for running a Grover's quantum algorithm using a binary function having a vector basis of n qubits is provided. The quantum gate includes a superposition subsystem, an entanglement subsystem and an interference subsystem. The interference subsystem performs an interference operation on components of entanglement vectors for generating components of output vectors. The interference subsystem performs the interference operation in a very fast manner by using an adder receiving as input signals representing even or odd components of an entanglement vector, and generating a sum signal representing a weighted sum with a scale factor of the even or odd components.
    Type: Application
    Filed: November 4, 2003
    Publication date: August 19, 2004
    Applicant: STMicroelectronics S.r.l.
    Inventors: Marco Branciforte, Antonino Calabro, Domenico Porto
  • Patent number: 6763284
    Abstract: An image of a reference object is captured using a camera and displayed. A measurement starting point is pointed by an image position pointing device. A corresponding view line is obtained using a position on the image and a position and a direction of the camera, a robot approaches to the reference object such that it does not deviate from a projecting direction to move to a position suitable for measurement. A light is projected on the reference object and measurement of an inclination of a face of the object in the vicinity of a measuring point is started. An image including a bright line image on the reference object is photographed and 3-dimensional positions of points sequentially measured along a working line. A movement path of a robot is created using these positions as teaching points for a working robot.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: July 13, 2004
    Assignee: Fanuc Ltd.
    Inventors: Atsushi Watanabe, Tetsuya Kosaka, Katsutoshi Takizawa, Fumikazu Warashina, Kazunori Ban, Makoto Yamada, Akihiro Terada, Mitsuhiro Okuda
  • Publication number: 20040111185
    Abstract: A method for machining workpieces by means of a multiaxial manipulator, such as an industrial robot, with a tool moved proportionally by a control unit of the manipulator and which can perform characteristic movements with several degrees of freedom is characterized in that the degrees of freedom of the tool are evaluated together with the degrees of freedom of axes of the manipulator in real time for moving a tool tip (TCP) in accordance with a predetermined, continuous machining path or a portionwise continuous machining geometry (step function) and for determining a movement of the manipulator. The invention also proposes a device suitable for performing the aforementioned method, in which the tool and a tool tip, during workpiece machining, are movement-controllable by the manipulator control unit. In this way it is possible to drastically reduce the overall machining time.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 10, 2004
    Inventor: Peter Gmeiner
  • Patent number: 6738691
    Abstract: A method and system for controlling an intelligent assist device, robot, or other powered system that is partially or fully directed by the intent of a human operator. The method and system includes measuring a force or motion imparted by the human operator to a control. The measurement is determined with respect to the motion of the machine at a point of the machine that allows the benefit of collocation of sensing and actuation, or of approximation of such collocation. The system includes a support attached to the machine at the beneficial point, and a plurality of sensors to measure the force, torque, or motion imparted by the human operator to the support with respect to the beneficial point. The method and system provide improved stability of control of the system, and improved responsiveness to the intent of the human operator.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 18, 2004
    Assignee: The Stanley Works
    Inventors: J. Edward Colgate, Michael A. Peshkin, Julio Santos-Munné, Alex Makhlin, Paul F. Decker, Stephen H. Klostermeyer
  • Patent number: 6728598
    Abstract: An arithmetic processing device for inter-object data communication has an object manager for connecting objects so as to enable exchange of data between the objects, and a connection data supplying unit for supplying the object manager with connection data necessary for achieving the connection between the objects. Disclosed also are an inter-object communication method and a robot incorporating the arithmetic processing device. The robot may be designed to enable a user to replace parts thereof, thus changing the robot configuration. The robot preferably includes a part detection unit for detecting parts attached to the robot, and outputting a part detection result in accordance with the detection. An information storage unit stores information corresponding to the part detection result for each configuration obtained by replacement of the parts.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: April 27, 2004
    Assignee: Sony Corporation
    Inventors: Masahiro Fujita, Takayuki Sakamoto, Kotaro Sabe, Tsuyoshi Takagi
  • Patent number: 6725128
    Abstract: Methods of operating a robot comprised of a plurality of modules during reconfiguration, rearrangement to provide a support structure and internal manipulation, each module made of a cubic shape with six faces, each face including an arm for expansion and contraction with another module.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: April 20, 2004
    Assignee: Xerox Corporation
    Inventors: Tad H. Hogg, Arancha Casal, Jeremy Kubica
  • Patent number: 6701278
    Abstract: An apparatus and a method for generating a set-point value for triggering at least one drive mechanism, in particular for a machine tool, are proposed, wherein, in a parts program (20) for describing a path of motion of a tool (12) movable by the at least one drive mechanism (18), at least two parts program positions (X1, Y1, Z1; X2, Y2, Z2; X3, Y3, Z3) are stored in memory. A controller (18) which from the parts program (20) ascertains at least one drive mechanism set-point value (VA(S)) for triggering the drive mechanism (18). Means (18) are provided for ascertaining a distance (S) that is located between the at least two parts program positions (X1, Y1, Z1; X3, Y3, Z3) and for generating a drive mechanism set-point value (VA(S)) as a function of the distance (S) and of at least one parts program parameter (V1, V2).
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: March 2, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Barg, Joerg Deisenroth
  • Patent number: 6697711
    Abstract: A robot apparatus (1) includes leg blocks (3A to 3D), head block (4), etc. as a moving part (16), a motion controller (102), learning unit (103), prediction unit (104) and a drive unit (105). When the moving part (106), any of the blocks, is operated from outside, the learning unit (103) learns a time-series signal generated due to the external operation. The motion controller (102) and drive unit (105) control together the moving part (106) based on a signal generated at the moving part (106) due to an external force applied to the robot apparatus (1) and a signal having already been learned by the learning unit (103) to make an action taught by the user. The prediction unit (105) predicts whether the moving part (106) makes the taught action according to the initial signal generated at the moving part (106) due to the applied external force. Thus, the robot apparatus (1) can learn an action taught by the user and determine an external force-caused signal to make the taught action.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 24, 2004
    Assignee: Sony Corporation
    Inventors: Jun Yokono, Kohtaro Sabe, Gabriel Costa, Takeshi Ohashi
  • Patent number: 6690999
    Abstract: A method for controlling a hyper-redundant manipulator including a plurality of links coupled by joints by determining the shape the manipulator takes when the end of the manipulator is moved to a target position, includes modeling each link as an elastic body having a natural length and a suitable modulus of elasticity that enables the elastic body to stretch and contract, simulating the overall shape of the manipulator when the end has been moved to the target position with the joints locked at a freezed angle and the joints are unlocked to return each link to its natural length, and moving the manipulator end to the target position by controlling each joint angle to match the simulation outcome.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: February 10, 2004
    Assignee: Communications Research Laboratory, Independent Administrative Institution
    Inventor: Shinichi Kimura