Mutual Comparison Of Plural Identical Sensors Patents (Class 701/30.6)
  • Patent number: 11842575
    Abstract: The present invention generally relates to a novel concept of analyzing vehicle data for determining e.g. a status of component comprised with the vehicle, specifically by correlating collected vehicle diagnosis data. The invention also relates to a corresponding system and a computer program product. In addition, the invention additionally relates to an arrangement for collecting said vehicle diagnosis data.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 12, 2023
    Assignee: WIRETRONIC AB
    Inventor: Christoffer Weber
  • Patent number: 11454510
    Abstract: The present disclosure relates to monitoring data in and around a vehicle to predict anomalous, e.g., unsafe, road conditions, and using the data to suggest a corrective action to avoid the unsafe road conditions. A computing device receives information indicative of imagery, sound, or vehicle operation via sensors and/or cameras mounted in or near a vehicle. The information may be received via the vehicle itself or via a device. The computing device then determines whether there is an indication of an anomalous road condition. The computing device also receives vehicle operation data extracted from one or more vehicle sensors. The computing device then determines whether there is an indication of unsafe road conditions, and if there is, the computing device may output a notice or alert via a notification system to alert the driver.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 27, 2022
    Assignee: United Services Automobile Association (USAA)
    Inventors: Emily Margaret Gray, Daniel Christopher Bitsis, Jr., Qunying Kou, Robert Wiseman Simpson, Manfred Amann, Donnette Moncrief Brown, Eric David Schroeder, Meredith Beveridge, Michael J. Maciolek, Bobby Lawrence Mohs, Brian Francisco Shipley, Justin Dax Haslam, Ashley Raine Philbrick
  • Patent number: 10701093
    Abstract: Disclosed herein is a method for use in detection of anomalous behavior of a device of a computer system. The method is arranged to be performed by a processing system. The method includes deriving values, m1, . . . , mN, of a metric, M, representative of data associated with the device; modeling a distribution of the values; and determining, in accordance with the distribution of the values, the probability of observing a more extreme value of the metric than a given value, m, of the metric, wherein the probability is used to determine whether the device is behaving anomalously. Also disclosed is an equivalent computer readable medium and anomalous behavior detection system.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: June 30, 2020
    Assignee: Darktrace Limited
    Inventors: Tom Dean, Jack Stockdale
  • Patent number: 10656245
    Abstract: A blockage detection system and methods for use in a radar sensor such as a side object detection (SOD) sensor in an automotive radar system are described. The blockage detection system and method operate in systems including two or more radar sensors having overlapping field-of-views (FOVs). The blockage detection system includes a storage in a first radar sensor having stored therein a tracked object list including detections/tracks for one or more targets made by a second radar sensor and a processor for adjusting an overlap zone associated with the first radar sensor based upon an estimated mounting angle of the first radar sensor.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: May 19, 2020
    Assignee: VALEO RADAR SYSTEMS, INC.
    Inventors: Jan Zelený, Dan Busuioc, Jeffrey Millar, Tomas Vajdiak
  • Publication number: 20150142254
    Abstract: A system and method for detecting and isolating faults in pressure ports (2) and pressure transducers (3) of a pressure sensing system are disclosed. The system comprises a set of pressure ports (2) flushed to a nose cap (1) of a space vehicle in crucifix form. Three pressure transducers (3) are connected to each pressure port (2) through pneumatic tubes (4) for measuring surface pressure from the pressure ports (2). Separate power supplying units (7, 8, 9) are connected to the three pressure transducers (3) for powering the pressure transducers (3) at each pressure port (2). A processing unit (10) is configured to acquire voltage inputs corresponding to the measured surface pressure from the pressure transducers (3). The processing unit (10) executes one or more levels of fault checking to detect and isolate pressure transducer failures and blockage of the pressure ports (2) based on the voltage inputs. Hence, it is possible to enhance the accuracy and reliability of the pressure estimation of the FADS.
    Type: Application
    Filed: December 4, 2014
    Publication date: May 21, 2015
    Applicant: INDIAN SPACE RESEARCH ORGANISATION
    Inventors: Jayakumar MADHAVANPILLAI, Remesh NARAYANAN, Harish Chandran SOUDAMINI, Swaminathan SUBRAMANIAIYER, Sivan KAILASAVADIVOO, Sharma Surendra VIR
  • Patent number: 9002616
    Abstract: In one aspect, a digital engine control system for an aircraft engine is provided. The control system includes a selection unit, the selection unit including a monitoring module configured to determine a measurement of the speed of rotation of the engine from the output signal from one or more protection sensors and to compare the or each speed measurement determined by the selection unit with speed measurements supplied by electronic control units to determine an operating state of each electronic control unit.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: April 7, 2015
    Assignee: Thales
    Inventors: Gilles Genevrier, Claude Bresson
  • Patent number: 8977422
    Abstract: A system maintains integrity of a vehicle, a wheel, and/or a tire. The system includes a sensor mounted to the wheel or the tire and a processor for receiving data from the sensor. The processor analyzes the data and forms a status estimation of the vehicle, the wheel, and the tire. The processor further transmits the status estimation and a recommendation for repair to an appropriate party.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 10, 2015
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: David Michael Westfall
  • Patent number: 8886394
    Abstract: Methods and systems for producing data describing states of a plurality of targets using a processor in a system having at least one onboard sensor. The method includes obtaining data from at least one onboard sensor and performing a first data fusion process on the obtained onboard sensor data to produce onboard sensor fused data. Data is also obtained from at least one off-board sensor, and a second, different data fusion process is performed on the obtained off-board sensor data and the onboard sensor fused data to produce target state data.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 11, 2014
    Assignee: BAE Systems PLC
    Inventor: Colin Anthony Noonan
  • Publication number: 20140142800
    Abstract: A method and system for estimating the state of health of an object sensing fusion system. Target data from a vision system and a radar system, which are used by an object sensing fusion system, are also stored in a context queue. The context queue maintains the vision and radar target data for a sequence of many frames covering a sliding window of time. The target data from the context queue are used to compute matching scores, which are indicative of how well vision targets correlate with radar targets, and vice versa. The matching scores are computed within individual frames of vision and radar data, and across a sequence of multiple frames. The matching scores are used to assess the state of health of the object sensing fusion system. If the fusion system state of health is below a certain threshold, one or more faulty sensors are identified.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shuqing ZENG, Yilu ZHANG, Bakhtiar Brian LITKOUHI, Mutasim A. SALMAN
  • Patent number: 8695424
    Abstract: In order to be able to perform redundant measurements of rotation rates particularly economically, disclosed herein is a sensor device which includes a dual-axis, first rotation rate sensor element with which rotation rates of rotating motions of the sensor device about a first and a second rotation rate measurement axis can be detected, wherein the first and the second rotation rate measurement axes are oriented orthogonally in relation to one another. The sensor device is defined by the fact that the sensor device includes at least one other rotation rate sensor element with which a rotation rate of a rotating motion of the sensor device about a rotation rate measurement axis, which lies in a plane together with the first and the second rotation rate measurement axes, can be deselected.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 15, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Bernhard Schmid, Roland Burghardt, Jörg Heimel, Otmar Simon, Roland Hilser
  • Patent number: 8645003
    Abstract: Provided are a braking control system for a vehicle which is controlled in a priority order, and a method of the same. A braking control system for a vehicle equipped with an electronic brake at each wheel includes a first control unit controlling the operation of a first electronic brake mounted at a front-left wheel and a second electronic brake mounted at a front-right wheel in response to braking signals, and a second control unit controlling the operation of a third electronic brake mounted at a rear-left wheel and a fourth electronic brake mounted at a rear-right wheel in response to the braking signals. In this configuration, when a fail occurs in any one of the first and second control units, the other control unit selectively controls at least one or more of the first to fourth electronic brakes, in accordance with predetermined logic.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 4, 2014
    Assignee: Hyundai Mobis Co., Ltd.
    Inventor: Jong Sung Kim
  • Patent number: 8626372
    Abstract: A condition of an engine is diagnosed based on information provided by signals from speed sensors associated with the engine or other signals associated with a generator operationally connected to the engine. Different types of degradation are distinguished based on discerning characteristics within the information. Thus, a degraded engine component can be identified in a manner that reduces service induced delay.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: January 7, 2014
    Assignee: General Electric Company
    Inventors: Ajith Kumar, Somakumar Ramachandrapanicker, Paul Flynn, Arijit Banerjee, Rupam Mukherjee
  • Patent number: 8565974
    Abstract: In view of the matter that an abnormality occurred in an operating portion of a control system comes out in an early stage as a result of the control, while it takes a time for an abnormality occurred in the generation of a controlling amount for controlling the operation of an operating portion to come out, in ceasing the control when an abnormality has occurred in the control system the controlling amount is decreased at a higher speed when the abnormality of the controlling amount was judged than a speed at which the operation of the operating device is decreased when the abnormality of the operating device was judged.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 22, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Advics Co., Ltd.
    Inventors: Takahiro Kojo, Masato Suzumura, Yoshiaki Tsuchiya, Kenji Asano
  • Publication number: 20130261877
    Abstract: The invention pertains to a method for verifying the consistency of the values (?1,?2,?3) given by the sideslip probes (1,2,3) of an aircraft and to a device implementing this method. This method is noteworthy in that it consists in consolidating the values of two sideslip probes by using the value of the incidence ?.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: AIRBUS OPERATIONS (SAS)
    Inventors: Frédéric TOST, Christoph Heinen
  • Patent number: 8509970
    Abstract: A speed profile for an entire train trip includes a maximum allowable speed at each point of the entire trip, taking into account the ability of the train to comply with speed reductions encountered during the trip. The speed profile includes a braking curve that gradually reduces from a higher speed to a lower speed starting at a point at which the train must begin braking in order to be traveling at the lower speed when the train reaches the point at which the lower speed limit begins. The speed profile is generated on multiple wayside computers, cross checked, and then vitally transmitted to an onboard locomotive control system. The onboard control system includes redundant speed sensors with redundant vital circuits, and also includes redundant speed comparators to ensure that the train doesn't exceed the speed profile. A GPS receiver may be used for greater reliability.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 13, 2013
    Assignee: Invensys Rail Corporation
    Inventors: Mark Edward Kane, Harrison Thomas Hickenlooper
  • Patent number: 8423228
    Abstract: An apparatus for detecting a decrease in air pressure of a tire attached to a vehicle includes a rotation speed detection means for periodically detecting rotation speeds of tires of respective wheels of the vehicle; a rotation wheel speed ratio calculation means for calculating a rotation wheel speed ratio between front wheels and rear wheels of the vehicle; a wheel torque calculation means for calculating a wheel torque of the vehicle; an initialization means for obtaining a relation at a normal internal pressure between the wheel torque and the rotation wheel speed ratio; a comparison means for comparing the rotation wheel speed ratio with the rotation wheel speed ratio at a normal internal pressure obtained from the wheel torque and the relation; and a determination means for correcting the comparison result by a front-to-rear direction acceleration and determining whether there is a tire having a decreased air pressure or not.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 16, 2013
    Assignee: Sumitomo Rubber Industries, Ltd.
    Inventor: Yuji Oshiro
  • Patent number: 8412425
    Abstract: An exemplary transmission system includes a plurality of sensors each configured to output a signal at least partially representative of a speed of at least one of a first transmission input shaft, a second transmission input shaft, a transmission output shaft, and an engine. A transmission control module is in communication with the plurality of sensors and is configured to identify at least one of the plurality of sensors as a failed sensor and another of the plurality of sensors as a working sensor. The transmission control module is further configured to estimate the signal of the failed sensor based on a predetermined relationship between an expected signal from the failed sensor and the signal received from the working sensor.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: April 2, 2013
    Assignee: Eaton Corporation
    Inventors: Kerfegar Khurshed Katrak, Ian Daniel McKenzie, Anthony Stasik, Jeffrey P. Hawarden, Todd William Fritz, Thomas R. Connolly, Kim Ann Brown
  • Patent number: 8380397
    Abstract: An off-road work vehicle has a steer-by-wire steering system having a device for determining the angular displacement of a steering wheel. The device has a cam configured to rotate about an axis at an identical angular speed as the steering wheel, a first sensor proximal to a facing outer surface of the cam and being configured to determine a distance between the first sensor and the facing outer surface of the cam, a second sensor proximal to a facing outer surface of the cam and being configured to determine a distance between the second sensor and the facing outer surface of the cam, and a processor operably connected with the first and second sensors and configured to determine an angular position of the steering wheel and a direction of rotation of the steering wheel based upon data generated by the first and/or the second sensor.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 19, 2013
    Assignee: CNH America LLC
    Inventors: Christopher A. Foster, Richard P. Strosser
  • Patent number: 8359182
    Abstract: Disclosed are systems and methods for evaluating the navigation performance of MEMS inertial sensors. The method uses MEMS inertial sensors static data signals to estimate the static sensor errors and combines them with a reference kinematic signal obtained through field testing of a high-grade inertial sensor. Such emulated field data may then be processed with the corresponding GPS data collected in the same or different field test to evaluate the navigation performance of the MEMS inertial sensors.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: January 22, 2013
    Assignee: UTI Limited Partnership
    Inventors: Xiaoji Niu, Sameh Nassar, Naser El-Sheimy
  • Patent number: 8275509
    Abstract: System and method for detecting and storing at least speed as an information relevant for resignation for a tachograph system. to provide a tamperproof tachograph system offering a high degree of security. An arithmetic unit detects signals for determining the speed from at least two independent sensors and compares them with each other and stores a sensor-related error message if the signals deviate significantly from each other. The signals of at least three independent sensors are compared with each other in the arithmetic unit and are checked for their plausibility by excluding any signals that significantly deviate from a plurality of signals and determining the speed of the vehicle to be stored only using one or more of those signals that deviate from each other only within defined limits.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 25, 2012
    Assignee: Continental Automotive GmbH
    Inventors: Gerd Fritsch, Gunnar Schmidt
  • Patent number: 8260487
    Abstract: Methods and systems for a vital bus system for communicating data in a control system are provided. The system includes a plurality of data communication buses configured in a multiple redundant orientation and at least one safety supervisor module including a database including a plurality of logic rules. The logic rules are programmed to receive data from the plurality of data communication buses and to determine the validity of the received data from each bus using one or more of the plurality of the logic rules. If the received data is invalid, the logic rules are programmed to restore the validity of the data using one or more of the plurality of the logic rules. If the data can not be restored the logic rules are programmed to transmit an alert to the control system. Otherwise, the logic rules are programmed to transmit the validated data to an intended destination.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: September 4, 2012
    Assignee: General Electric Company
    Inventor: Daniel Walter Plawecki
  • Publication number: 20120191291
    Abstract: A method for controlling a communicatively paired device for use with a vehicle (“ATU”) includes, but is not limited to, the steps of detecting a first power state of the vehicle using a vehicle communication interface (“VCI”) that is communicatively coupled to a communication bus on the vehicle, transmitting a wireless signal corresponding to the first power state from the VCI to the communicatively paired device, and altering a second power state of the communicatively paired device to correspond with the first power state.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: GENERAL MOTORS LLC
    Inventors: KEVIN R. KRAUSE, RUSSELL A. PATENAUDE, DANIEL C. McGARRY, KEVIN W. OWENS, NICHOLAS J. PEARISO
  • Patent number: 8185291
    Abstract: A stall prediction apparatus of an axial compressor provided with: a rotor provided with a plurality of rotor blades; and a cylindrical casing facing the rotor blades and provided so as to cover the outer circumference of the rotor, comprising: pressure sensors provided in equal numbers at a plurality of locations in a circumferential direction of an inner wall surface of the casing, an index calculator for calculating an index (stall risk index) for evaluating the stall risk based on time-series data detected by each of the pressure sensors, and a signal processor for predicting the stall occurrence based on the stall risk indexes obtained corresponding to said each of the pressure sensors. In accordance with the present invention, it is possible to obtain a stall risk index which is highly accurate (supersensitive) and stable necessary for the active stall control, and to realize an engine control system with high reliability.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 22, 2012
    Assignees: IHI Corporation, IHI Scube Co., Ltd.
    Inventors: Tomofumi Nakakita, Takashi Tomiyama, Fumitaka Takemura
  • Patent number: 8180518
    Abstract: A system and a method for generating a microenvironment condition report. The microenvironment condition report is generated from information related to a plurality of vehicle conditions. The vehicle condition information is gathered from a plurality of in-vehicle technologies such as a stability control system, ABS, and navigation system. The vehicle condition information is sent to a remote terminal that organizes the information with respect to a set of microareas. The information for each microarea is analyzed and used to generate the microenvironment condition report.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: May 15, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Dennis M. Petricoin, Jr.
  • Patent number: 8180519
    Abstract: Embodiments described herein comprise a system and method for corroborative vehicle diagnostic. The corroborative vehicle diagnostic system allows a vehicle to detect a fault indicator experienced by a vehicle subsystem. The corroborative vehicle diagnostic system allows the vehicle to compare the fault indicator with similar and/or dissimilar conditions experienced by one or more additional vehicle located within a geographic region. A corroborative diagnostic controller compares the fault indicator with the conditions of the additional vehicle. Based on the comparison of the fault indicator with the condition, an error status of the fault indicator is determined. The error status may be that the vehicle subsystem has failed, that the vehicle subsystem has not failed and/or that the results are inconclusive. The corroborative diagnostic controller may communicate directly with a control system of the vehicle.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: May 15, 2012
    Assignee: International Business Machines Corporation
    Inventors: David C. Brillhart, Christopher J. Dawson, Nicholas J. Karels, Michael D. Kendzierski, James W. Seaman
  • Patent number: 8150566
    Abstract: A system for selecting a datum among a set of data representing an air parameter, this set comprising at least two engine data obtained by measurement respectively in the zone of two engines of an aircraft and at least two reference data obtained by measurement in the zone of the fuselage of the aircraft, the system comprising: means for verifying pairwise agreement of three data of the set of data; means for selecting a reference datum among the said three data if such agreement is verified. A process and a computer program relating thereto are also proposed.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 3, 2012
    Assignee: Airbus Operations SAS
    Inventor: Julien Feau