Artificial Intelligence (e.g., Fuzzy Logic) Patents (Class 701/44)
  • Patent number: 10220844
    Abstract: A vehicle having a system for detecting another vehicle is disclosed. The vehicle includes a vehicle sensor configured to sense a steering angle and a yaw rate of the vehicle. The vehicle also has a computing system configured to detect another vehicle within an adjustable angular range from a point of the vehicle. The angular range for detecting another vehicle is adjusted using at least one of the vehicle's current steering angle and yaw rate.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: March 5, 2019
    Assignee: HUYNDAI MOTOR COMPANY
    Inventors: HyeongMin Ko, Jaewoong Choi, Dae Seok Jeon
  • Patent number: 10220853
    Abstract: An apparatus for controlling an own vehicle that is a vehicle carrying the apparatus in a proper manner taking into account driver's driving maneuver tendencies is provided. The apparatus acquires travel situation information including target information regarding a target or targets around the own vehicle and travel information regarding the own vehicle, and if the travel situation information meets a prescribed travel condition, acquires driving maneuver information regarding a driving maneuver performed by the driver of the own vehicle. The apparatus stores, as a learned value, the driving maneuver information acquired by the second information acquirer in association with the prescribed travel condition, and performs automatic driving control based on the learned value stored by the learner in association with the prescribed travel condition met by the travel situation information currently acquired by the first information acquirer.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: March 5, 2019
    Assignee: DENSO CORPORATION
    Inventor: Toshiya Habu
  • Patent number: 9751553
    Abstract: In one exemplary embodiment of the present invention, a steering column assembly is provided. The assembly includes a mounting bracket, a steering column adjustable in a telescope direction and a rake direction, at least one actuator assembly configured to translate the steering column in the telescope direction and/or the rake direction, and a controller configured to drive the at least one actuator assembly to sequentially or simultaneously telescope and/or rake the steering column in a predefined geometric pattern.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: September 5, 2017
    Assignee: STEERING SOLUTIONS IP HOLDING CORPORATION
    Inventors: Jacob A. Caverly, Gerald M. McCann
  • Patent number: 9483927
    Abstract: A method and control system for maintaining attentiveness of a driver of a vehicle during an autonomous control mode. A series of cognitively demanding tasks is presented to the driver via a man-machine interface during the autonomous control mode. Driver responses to the tasks are monitored, and an audible alert is provided to the driver if the response of the driver and/or a reaction time of the driver in making the response indicate an insufficient level of driver attentiveness.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 1, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Stefan Wolter, Florian Golm
  • Patent number: 9399449
    Abstract: A vehicle travel control device includes a control instruction value calculation unit, a driver acceleration intent quantification unit, and a control instruction value correction determination unit that determines whether correction of a control instruction value is required in response to a quantified driver's acceleration intent. The vehicle travel control device also includes a control instruction value correction unit that corrects the control instruction value in response to a correction determination result of the control instruction value correction determination unit. The driver acceleration intent quantification unit quantifies the driver's acceleration intent using an integral value of the longitudinal jerk occurring according to the brake operation of the driver.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: July 26, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Keiichiro Nagatsuka, Makoto Yamakado, Mitsuhide Sasaki, Mikio Ueyama
  • Patent number: 9053593
    Abstract: The invention provides a vehicle data analysis method that enables quantitative analysis of characteristics of vehicle data indicating transition in a driver's driving operation, and a vehicle data analysis system using this analysis method. A plurality of vehicle data are collected based a plurality of types of driving operations. Based on an evaluation criterion as an index for evaluating levels of the driving operations, the collected vehicle data are grouped into at least two groups. Characteristic values of the vehicle data differing between these groups are extracted.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 9, 2015
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, THE UNIVERSITY OF TOKYO
    Inventors: Hironobu Sugimoto, Shojiro Takeuchi, Satomi Yoshioka, Yoshihiro Suda, Yoichi Sato, Takayuki Hirasawa, Daisuke Yamaguchi, Shuguang Li
  • Patent number: 9043092
    Abstract: A vehicle control apparatus capable of automatic steering control while reducing discomfort or stress on vehicle occupants. In the apparatus, a lane detection unit detects a lane in which the vehicle is traveling. An offset setting unit sets an offset within the lane suitable for making a driver feel less stressed. An occupant detection unit detects the presence of a designated occupant of a seat opposite a driver's seat. An offset adjustment unit, when the designated occupant is detected, adjusts the offset set by the offset setting unit to be decreased. A vehicle-path estimation unit estimates a vehicle path in the lane such that the vehicle can travel along the vehicle path from a current lateral position to a target lateral position of the vehicle. An automatic steering control unit automatically controls steering so that the vehicle travels along the estimated vehicle.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: May 26, 2015
    Assignees: Nippon Soken, Inc., DENSO CORPORATION
    Inventors: Yusuke Ueda, Motonori Tominaga, Tomohiko Tsuruta, Takeshi Hatoh
  • Patent number: 8996252
    Abstract: An ECU includes two drive circuits corresponding to the motor coils of two systems independent of each other, and a microcomputer that outputs control signals of two independent systems to the drive circuits. The microcomputer includes a first control signal output portion that outputs the control signal to the drive circuit of the first system by executing an electric current control so as to generate a motor torque that corresponds to the assist force. The microcomputer further includes a second control signal output portion that outputs the control signal to the drive circuit of the second system by executing a position control on the basis of a steering angle command value that is input from a superior ECU via an in-vehicle network so as to change the steering angle of the steering road wheels.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 31, 2015
    Assignee: JTEKT Corporation
    Inventor: Hiroshi Suzuki
  • Patent number: 8965633
    Abstract: One or more vehicle steering measurements of a vehicle may be measured. One or more expected vehicle steering measurements may be calculated, each calculated expected vehicle steering measurement corresponding to one of the measured vehicle steering measurements. At least one difference between one of the measured vehicle steering measurements and its corresponding calculated expected vehicle steering measurement may be calculated. A speed of the vehicle may be measured. One or more current threshold values may be calculated based on the measured speed, each of the current threshold values corresponding to one of the measured vehicle steering measurements and its corresponding calculated expected vehicle steering measurement. An automatic vehicle control system may be deactivated when one or more of the calculated differences exceeds its corresponding current threshold value.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Bakhtiar Brian Litkouhi
  • Patent number: 8958975
    Abstract: A motor-vehicle driving style estimating system (100) of a motor-vehicle, comprising a measuring apparatus (1) of a kinematic signal representative of a motor-vehicle motion quantity trend (v(t)). The system is characterized in that it further comprises a kinematic signal low-pass filtering module (8) configured to provide a corresponding reference filtered signal associated with a reference trend of said quantity (vF(t)). Furthermore, the system comprises a kinematic signal and reference filtered signal processing module (2) configured to provide an indication of the driving style depending on a comparison of the motor-vehicle motion trend with the reference trend.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 17, 2015
    Assignee: Teleparking S.R.L.
    Inventors: Sergio Matteo Savaresi, Vincenzo Manzoni, Andrea Corti
  • Patent number: 8954236
    Abstract: A device combining motor driven power steering with a compressor, may include a deceleration gearbox connected to a steering shaft, a motor selectively providing a steering force to the deceleration gearbox, a first electronic clutch mounted between the deceleration gearbox and a first shaft of the motor, and transmitting or discontinuing transmission of power from the motor to the deceleration gearbox, a power transmitting gear set transmitting power from the motor to a compressor, a second electronic clutch mounted between a second shaft of the motor and an input side of the power transmitting gear set, and transmitting or discontinuing transmission of power from the motor to the power transmitting gear set, and the compressor for an air conditioner, connected to an output side of the power transmitting gear set.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 10, 2015
    Assignee: Hyundai Motor Company
    Inventors: Dae Suk Jung, Un Koo Lee, Soo Bo Park
  • Patent number: 8897960
    Abstract: A driving assistance control apparatus includes an own-vehicle position acquiring unit that acquires the position of an own vehicle; a curve information acquiring unit that acquires curve information on a driving course; a continuous curves detecting unit that detects a first curve ahead of the own vehicle and a second curve that exists at a far side of the own vehicle with respect to the first curve and that is continuous to the first curve, based on the acquired position of the own vehicle and the acquired curve information; and a curve alert control unit that controls a curve alerting unit that alerts the presence of the second curve before an entrance of the second curve. The curve alert control unit sets the alert timing of the second curve in accordance with the curve information about the first curve.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Honda Motor Co., Ltd
    Inventor: Hiroshi Sekine
  • Patent number: 8897966
    Abstract: Embodiments of the invention provide methods and apparatus for reducing steering effort in a vehicle. In one embodiment, a method for installing a steering-assist system onto a vehicle having an electrically powered steering system is provided. The method includes placing a controller between a torque sensor and an electronic control unit (ECU) disposed on the vehicle, coupling a primary signal line from the torque sensor to be in electrical communication with the controller, and coupling a secondary signal line to the controller to be in electrical communication with the ECU, wherein, when movement is detected by the torque sensor, the torque sensor provides a primary signal to the controller and the controller provides a secondary signal to the ECU, the secondary signal being different than the primary signal.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 25, 2014
    Inventors: Carlos A. Saez, Alejandro Javier Goldsmith Llorenz, Neil Emerson Rollano Conde
  • Patent number: 8897930
    Abstract: This application describes the software invented to control an electric motor system. The electric motor system is mounted on one or more aircraft main wheels or nose wheels to drive an aircraft independently on the ground without aircraft engines or tow vehicles. The software uses closed-loop control together with several other control laws to operate the drive motor or motors. Knowledge of the current operating state of the drive motor, together with knowledge of the commands given to taxi forward, taxi in reverse, or brake in reverse, is used to configure the motors to optimal operating parameters. The software architecture is described along with the pilot interface and many details of software implementation.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: November 25, 2014
    Inventor: Janice Ilene Bayer
  • Patent number: 8892309
    Abstract: A vehicle steering control apparatus is provided with: a first setting device for setting a first target steering angle of rear wheels according to a steering wheel operation of a driver; a second setting device for setting a second target steering angle of the rear wheels which does not work with the steering wheel operation by the driver and which is associated with automatic steering; a controlling device for controlling a steering angle of the rear wheels on the basis of the set first and second target steering angles; and a limiting device for limiting an influence of the first target steering angle on the steering angle of the rear wheels in accordance with a driving condition of the vehicle if the set first and second target steering angles have a mutually anti-phase relation, the limiting device limiting an influence of the second target steering angle on the steering angle of the rear wheels in accordance with the driving condition of the vehicle in preference to the first target steering angle if th
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitaka Fujita, Mitsutaka Tanimoto, Yoshiaki Tsuchiya
  • Patent number: 8880295
    Abstract: A control system for controlling a steering system near an end of travel region is provided. The control system includes a first module that selectively estimates a command adjust value based on a hand wheel position and a hand wheel torque. A second module generates a motor assist command based on the command adjust value to control the steering system.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: November 4, 2014
    Assignee: Steering Solutions IP Holding Corporation
    Inventors: Anthony J. Champagne, Lonnie Newton
  • Patent number: 8862331
    Abstract: It is an object of the present invention to provide a controller for a steering apparatus having easy operation of an adjustment of a tilting angle. The steering apparatus comprises a tilting mechanism adjusting a tilting angle of a steering wheel, and an electrical motor driving the tilting mechanism. The controller for the steering apparatus 1 detects the tilting angle based on a rotational angle of the screw shaft. The controller defines the predetermined supplying current according to the detected amount of the tilting angle as the supplying current to the electrical motor.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: October 14, 2014
    Assignee: JTEKT Corporation
    Inventors: Eiji Tanaka, Tomihide Masuda
  • Patent number: 8797186
    Abstract: A parking assistance system is described for assisting in a parking operation of a vehicle when a plurality of parking spaces is present. A method in a parking assistance system includes performing the following: detecting a plurality of parking spaces; selecting one of the detected parking spaces based on a degree of comfort; and assisting in the parking operation into the selected parking space. The degree of comfort includes at least one predefined condition, on the basis of which the detected parking spaces are classifiable according to the presumed driver acceptance.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 5, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Christian Pampus, Volker Niemz
  • Patent number: 8775025
    Abstract: An object of the present invention is to provide a steering system which does not cause the driver to feel the steering reactive force shock when the operation of the steering wheel is stopped, and which enables the driver to operate the steering wheel comfortably. In order to achieve the above object, there is provided a steering system in which a transfer ratio of a steering angle of a steering wheel to a turning angle of a turning wheel is changed by a variable transfer ratio mechanism, and an auxiliary power is generated during steering by an electric power steering, including: a transfer ratio variable motor for changing the transfer ratio, in which a steering angular velocity of the steering wheel is calculated, and when an absolute value of the steering angular velocity becomes equal to or less than a predetermined value, a current value flowing through the transfer ratio variable motor is set to zero.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: July 8, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takuya Yamaguchi, Yoshimitsu Akuta
  • Patent number: 8775024
    Abstract: A steering damper system for a saddle riding type vehicle having an MR damper includes a damping force calculating unit arranged to calculate a damping force according to a steering angle speed, and an adjusting command output unit arranged to determine a running state from a vehicle speed and a steering angle detected by sensors, with reference to a reference table, and correcting the damping force calculated according to the running state. The reference table has areas divided by a steering angle range according to vehicle speed, and damping force adjustment factors according to running states are assigned to these areas. The steering angle range dividing the areas becomes narrower with an increase in vehicle speed, to accurately reflect the running states of the vehicle. A proper damping force can be generated according to a running state of the vehicle. The steering damper system eases the rider's burden accompanying steering operations, and is excellent in controllability.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 8, 2014
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Nobuo Hara, Yasuhiro Oomura
  • Patent number: 8768571
    Abstract: A vehicle steering device has an electric power abnormality detection portion that detects abnormality of the source power supply capability of an electric power source device, a vehicle speed detection portion that detects the vehicle speed, and a motor control portion that controls the driving of the electric motor on the basis of the steering torque detected by the steering torque detection portion. The motor control portion enhances the output restriction of the electric motor if the vehicle speed detected by the vehicle speed detection portion declines while the abnormality of the source power supply capability of the electric power source device is detected by the electric power abnormality detection portion.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: July 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaharu Yamashita
  • Patent number: 8744689
    Abstract: To provide a vehicle motion control system capable of defining clear guidelines on more specific control timing associated with accelerating, steering, and braking operations, and conducting motion control based on the defined guidelines. An ideal motion control unit 42 within a central controller 40 uses longitudinal jerk information of a vehicle to control the steering of the vehicle. Information for determining the initiation timing of steering is presented from a human-vehicle interface (HVI) 55 to a driver. In accordance with the information presented from the HVI 55, the driver controls the initiation timing of steering.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 3, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Yamakado, Atsushi Yokoyama, Masato Abe
  • Patent number: 8718874
    Abstract: A raster-based system for global navigation satellite system (GNSS) guidance includes a vehicle-mounted GNSS antenna and receiver. A processor provides guidance and/or autosteering commands based on GNSS-defined pixels forming a grid representing an area to be treated, such as a field. Specific guidance and chemical application methods are provided based on the pixel-defined treatment areas and preprogrammed chemical application prescription maps, which can include variable chemical application rates and dynamic control of the individual nozzles of a sprayer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 6, 2014
    Assignee: AgJunction, LLC
    Inventors: John A. McClure, Dennis M. Collins
  • Patent number: 8660754
    Abstract: The invention provides a steering system for a vehicle, a ship etc. The steering system has a steering handle for the operator of the vehicle, a set of signal processors, a sensor which determines a position of the steered element of the vehicle, and a controller which moves the steered element. The steered element could e.g. be the front wheels of a car. The signal processors are adapted to determine an error between the desired position of the steered element and an actual position of the steered element. In order to make the steering system more fault tolerant, the error signal is amplified based on the speed by which the steering handle is moved, and an error in the sensor therefore becomes less critical. The invention further provides a steering method, a steering control unit and a vehicle provided with a steering system of the mentioned kind.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: February 25, 2014
    Assignee: Sauer-Danfoss Aps
    Inventors: John Kristensen, Preben Albrecht, Steve Crow, Kjeld Buus Jensen
  • Patent number: 8655551
    Abstract: A method and a device for the assisted parking of a motor vehicle into a parking space are provided. The method comprises the following method steps: approaching the parking space; measuring the parking space using sensors situated on the motor vehicle; calculating a setpoint parking path and indicating the setpoint parking path on a display; indicating the actual parking path on the display such that the actual parking path may be adapted to the setpoint parking path.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: February 18, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Christian Danz, Jan Egelhaaf, Wei-Chia Lee, Benjamin Steiner
  • Patent number: 8565978
    Abstract: A steering wheel movement sensing apparatus for an agricultural vehicle comprising a magnetic ring configured to fit around the steering column such that it turns in unison with the steering wheel. The minimum number of magnetic poles on the ring is not defined, but a ring having at least 36 poles enables the movement sensor to detect steering wheel movement of 10 degrees. At least two hall-effect sensors fixed in a stationary position adjacent to the magnetic ring generate signals of fluctuating value as the magnetic poles pass enabling wheel movement and the extent of wheel movement to be derived. By specifically adjusting the position of the hall-effect sensors in relation to each other, the resultant output signals can also be used to determine the direction of movement of the steering wheel. Outputs from the sensing apparatus can be used to disengage an automated vehicle guidance system upon detection of steering wheel movement and to provide input to a self-cancelling turn signal system.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 22, 2013
    Inventors: Scott A. Elkins, Ian A. R. McLaren, Peter J. Dix, Mark D. Klassen, Jerry L. Brinkley
  • Patent number: 8565975
    Abstract: A method and a device for controlling a driver assistance system using an LKS function of a vehicle, in which the LKS function is activated within predefinable boundary values and is deactivated outside these system boundaries. According to the invention, in response to the deactivation of the LKS function during cornering of the vehicle, the LKS function is transferred from a regulation to a control, in such a way that, during the cornering, the driver continues to be supported by a system torque in the transverse guidance of the vehicle at least over a certain stretch of path.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 22, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Lutz Buerkle, Tobias Rentschler, Thomas App
  • Patent number: 8565974
    Abstract: In view of the matter that an abnormality occurred in an operating portion of a control system comes out in an early stage as a result of the control, while it takes a time for an abnormality occurred in the generation of a controlling amount for controlling the operation of an operating portion to come out, in ceasing the control when an abnormality has occurred in the control system the controlling amount is decreased at a higher speed when the abnormality of the controlling amount was judged than a speed at which the operation of the operating device is decreased when the abnormality of the operating device was judged.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 22, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Advics Co., Ltd.
    Inventors: Takahiro Kojo, Masato Suzumura, Yoshiaki Tsuchiya, Kenji Asano
  • Patent number: 8560176
    Abstract: The invention refers to a steering device and a method for controlling a steering device with steering power support means for a motor vehicle with at least one steerable road wheel.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 15, 2013
    Assignee: ThyssenKrupp Presta AG
    Inventors: Imre Benyo, Imre Szepessy, Dóra Szabolcs, Miklos Aranyi
  • Patent number: 8554418
    Abstract: An electric power steering apparatus includes a temperature sensor measuring a temperature at a starting of a vehicle, a motor position sensor detecting a relative steering angle of a motor, a cumulative transfer calculation unit calculating a cumulative transfer quantity of a rack bar by information detected in the motor position sensor, a counter calculating an elapsed time from a starting time of the vehicle, a friction coefficient determination unit determining a friction coefficient according to information inputted from the temperature sensor, the cumulative transfer quantity calculation unit, and the counter, respectively, by using a setting map of a friction coefficient, and a target current calculation unit calculating a compensation quantity for a friction by using the friction coefficient determined in the friction coefficient determination unit and determining a target current.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 8, 2013
    Assignee: Mando Corporation
    Inventor: Seong Joo Kim
  • Patent number: 8498796
    Abstract: A speed control method of a vehicle including the steps of obtaining a steering angle, a velocity error and a distance error. The velocity and the distance error being determined by mathematical combinations of a GPS position, a required path and speed set points. The steering angle, velocity errors and distance error are applied to fuzzy logic membership functions to produce an output that is applied to a velocity rule base. An output from the velocity rule base is defuzzified to produce a speed signal.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: July 30, 2013
    Assignee: Deere & Company
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid
  • Patent number: 8489283
    Abstract: A parallel parking assistant system integrated with a vehicle and method thereof are provided, the parking assistant system including a first sensor configured to determine a first distance, a second sensor configured to determine a second distance, and a controller configured to provide commands as a function of the first and second determined distances. The commands include a first command configured to command a steering system to be in a clockwise position while the vehicle is moving in a reverse direction for a first reversing distance, a second command configured to command the steering system to be in a substantially straight position while the vehicle is moving in a reverse direction for a second reversing distance, and a third command configured to command the steering system to be in a counter-clockwise position while the vehicle is a moving in a reverse direction for a third reversing distance.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: July 16, 2013
    Assignee: Delphi Technologies, Inc.
    Inventor: Glenn R. Widmann
  • Patent number: 8473158
    Abstract: A control system for controlling a steering system to maintain stability of the steering system is provided. The control system includes an operating conditions module that estimates at least one operating gain based on an operating condition of the steering system. A blend module estimates a blend value based on the at least one operating gain. A steering assist module generates a steering assist command based on the blend value.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: June 25, 2013
    Assignee: Steering Solutions IP Holding Corporation
    Inventors: Anand P. Naik, Michael K. Hales
  • Patent number: 8467937
    Abstract: A power steering assist system for a hand-steered pallet truck includes a joint assembly having a pivot joint, handle biasing mechanism, and a torque sensing arrangement. The pivot joint includes a pair of needle bearings and pivot pin disposed within a pivot block that provides a flexible connection between a handle and a tiller arm. The handle biasing mechanism includes a cantilevered beam spring and two cam rollers that resists an operator steering force applied to the handle and further, centers the handle with respect to the tiller arm after the force is released. The torque sensing arrangement includes a magnet and a non-contact magnetoresistive (MR) sensor that measures movement of the handle relative to the tiller arm which is used to determine operator steering intent, i.e., the amount of steering force applied to the handle. The MR sensor provides accurate torque measurements regardless of the angle of the tiller arm.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: June 18, 2013
    Assignee: The Raymond Corporation
    Inventors: Timothy T. Hanna, Richard M. Day, James M. McDonough
  • Patent number: 8457844
    Abstract: A parallel parking assistant system integrated with a vehicle and method thereof are provided, the parking assistant system including a first sensor configured to determine a first distance, a second sensor configured to determine a second distance, and a controller configured to provide commands as a function of the first and second determined distances. The commands include a first command configured to command a steering system to be in a clockwise position while the vehicle is moving in a reverse direction for a first reversing distance, a second command configured to command the steering system to be in a substantially straight position while the vehicle is moving in a reverse direction for a second reversing distance, and a third command configured to command the steering system to be in a counter-clockwise position while the vehicle is a moving in a reverse direction for a third reversing distance.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: June 4, 2013
    Assignee: Delphi Technologies, Inc.
    Inventor: Glenn R. Widmann
  • Publication number: 20130110353
    Abstract: It is an object of the present invention to provide a controller for a steering apparatus having easy operation of an adjustment of a tilting angle. The steering apparatus comprises a tilting mechanism adjusting a tilting angle of a steering wheel, and an electrical motor driving the tilting mechanism. The controller for the steering apparatus 1 detects the tilting angle based on a rotational angle of the screw shaft. The controller defines the predetermined supplying current according to the detected amount of the tilting angle as the supplying current to the electrical motor.
    Type: Application
    Filed: October 16, 2012
    Publication date: May 2, 2013
    Applicant: JTEKT CORPORATION
    Inventor: JTEKT CORPORATION
  • Patent number: 8423245
    Abstract: An electric power steering control apparatus can reduce steering torque even in a steering holding state or a slight steering state without providing an unpleasant feeling to a driver. The apparatus includes a torque sensor for detecting steering torque generated by the driver for a vehicle, a motor for generating assist torque to assist the steering torque, a rotational speed detector for detecting the rotational speed of the motor, a torque controller for calculating an assist torque current corresponding to the assist torque based on the steering torque, and a damping control section for calculating a damping current to be added to the assist torque current to suppress vibrations generated in a steering system of the vehicle. The damping controller reduces a damping control gain to calculate the damping current when the rotational speed of the motor is equal to or less than a predetermined speed.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazushi Kimura, Takayuki Yamamoto, Ryuuji Okamura
  • Patent number: 8386129
    Abstract: A raster-based system for GNSS guidance includes a vehicle-mounted GNSS antenna and receiver. A processor provides guidance and/or autosteering commands based on GNSS-defined pixels forming a grid representing an area to be treated, such as a field. Specific guidance and chemical application methods are provided based on the pixel-defined treatment areas and preprogrammed chemical application prescription maps, which can include variable chemical application rates and dynamic control of the individual nozzles of a sprayer.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: February 26, 2013
    Assignee: Hemipshere GPS, LLC
    Inventors: Dennis M. Collins, John A. McClure
  • Patent number: 8359138
    Abstract: A method and system for assisting the steering of steered wheels of a vehicle, in which a phase lead is applied between a steering wheel and a steering rack element to reduce response time of the vehicle to an action performed by the driver on the steering wheel.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: January 22, 2013
    Assignee: Renault S.A.S.
    Inventors: Olivier Fauqueux, Jannick Auvinet
  • Patent number: 8352145
    Abstract: A traction control device includes: rotation speed detectors provided to wheels; a control-start determiner that determines whether or not to control a braking mechanism and a differential adjusting mechanism based on rotation speeds; a braking mechanism controller that controls the braking mechanism based on a result of the determination of the control-start determiner; and a differential adjusting mechanism controller that controls the differential adjusting mechanism based on the result of the determination of the control-start determiner, in which the control-start determiner includes: a right-left-wheel rotation speed difference calculating section; a front-rear-wheel rotation speed difference calculating section; and a control-start determining section that determines whether or not to start controlling at least one of the braking mechanism and the differential adjusting mechanism when one of rotation speed differences reaches or exceeds a predetermined threshold.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 8, 2013
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Kazuhiro Hatake, Yuya Kusumoto
  • Publication number: 20120271517
    Abstract: A steering control method including the steps of obtaining a heading error, obtaining a velocity value, obtaining a distance error, applying the heading error and defuzzifying an output from a steering rule base. The velocity value and the distance error are applied along with the heading error to fuzzy logic membership functions to produce an output that is applied to a steering rule base. An output from the steering rule base is defuzzified to produce a steering signal.
    Type: Application
    Filed: April 28, 2012
    Publication date: October 25, 2012
    Applicant: DEERE & COMPANY
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid
  • Patent number: 8296089
    Abstract: A positioning system (1) provided with an actuator (2) having a wave gear device (4) is driven and controlled by a semi-closed loop control for controlling the load position of a load device (5) based on the motor position of a motor shaft (31) of a motor (3). In a method for compensating for an angular transmission error by compensating for a motor shaft synchronous component ?Sync that occurs in synchrony with the motor position and is a relative rotation-synchronous component that includes an angular transmission error component of the wave gear device (4), the positioning system (1) is represented as a two-inertia model, and the motor shaft synchronous component ?Sync is represented as an oscillation source for producing a twisting action between the two inertia bodies in the two-inertia model.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: October 23, 2012
    Assignees: Harmonic Drive Systems Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Kozo Sasaki, Yoshifumi Okitsu, Toshio Yajima, Makoto Iwasaki
  • Patent number: 8290665
    Abstract: A method for driver support in a vehicle in which a driver assistance system monitors a driving situation of the vehicle. Support takes place after a confirmation or after the absence of an abort instruction, a dialogue about the extent of support the driver wishes being conducted between the driver and the driver assistance system.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: October 16, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Lars Placke, Lars Biester
  • Patent number: 8224527
    Abstract: Embodiments of the invention provide a computer program product embodied on a computer readable storage medium. The computer program product is encoded with instructions configured to control a controller to perform a process. The process includes setting a target steering angle for the vehicle based on a steering amount of the vehicle, setting a target torque difference between right and left steered wheels based on the target steering angle, and setting a target driving/braking force for the vehicle based on an acceleration amount and a braking amount of the vehicle. The process also includes setting each target torque for the right and left steered wheels based on the target torque difference and the target driving/braking force and controlling driving of the steered-wheel motors based on the target torque. The kingpin point is positioned closer to the vehicle on an inside portion of an inside sidewall of a steered wheel.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: July 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koichi Shinmura, Sadachika Tsuzuki
  • Patent number: 8223060
    Abstract: A plurality of electric control units are connected to perform data-communication through a communication line. Each electric control unit comprises a recording means for recording data and a communication means, to control an operation of an object to be controlled. One of the plurality of electric control units determines whether it is possible to record data in the recording means, and records the data in the recording means when it determines that it is possible to record the data in the recording means. The “one of the plurality of electric control units” transmits the data to other electric control unit when it determines that it is not possible to record the data in the recording means. The “other electric control unit” receives the transmitted data and records it in own recording means.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 17, 2012
    Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Akira Kanazawa, Tatsuji Matsumoto
  • Patent number: 8219284
    Abstract: The present invention provides a steering control apparatus that controls steering of a vehicle of a steer-by-wire type, and includes steered-wheel motors that apply separate torques to right and left steered wheels respectively, a rod member that couples the right and left steered wheels so that the steered wheels can be steered, and a steering controller that controls driving of the steered-wheel motors. In each steered wheel, a center of the contact face thereof and a kingpin point thereof are offset in a lateral direction of the vehicle, and the steering controller controls driving of the steered-wheel motors so as to generate a torque difference between the right and left steered wheels, and provides a steering effort in accordance with this torque difference for each of the right and left steered wheels via the rod member, thereby to steer the vehicle.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koichi Shinmura, Sadachika Tsuzuki
  • Publication number: 20120158247
    Abstract: A steering control method including the steps of obtaining a heading error, obtaining a velocity value, obtaining a distance error, applying the heading error and defuzzifying an output from a steering rule base. The velocity value and the distance error are applied along with the heading error to fuzzy logic membership functions to produce an output that is applied to a steering rule base. An output from the steering rule base is defuzzified to produce a steering signal.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid
  • Patent number: 8195368
    Abstract: The present invention is typically embodied to exert active control of two same-shipboard cranes performing joint lifting of a payload. Sensory signals indicative of ship motion, and of luff angle and hoist line length of both cranes, are transmitted to a computer. The sensory signals are processed by the computer using a ship motion cancellation algorithm, which solves for values of the respective luff angles and hoist line lengths of both cranes, such values achieving static equilibrium (e.g., zero motion horizontally, vertically, and rotationally in the same vertical geometric plane) of the suspended payload. Inverse kinematic control signals in accordance with the mathematical (e.g., minimum norm) solutions are transmitted by the computer to respective luff angle actuators and hoist line length actuators of both cranes so that the suspended payload tends toward steadiness. Inventive control thus acts on a continual basis to significantly reduce pendulation during the two-crane lifting operation.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 5, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Frank A. Leban, Gordon G. Parker
  • Patent number: 8195345
    Abstract: The method for generating an integrated guidance law for aerodynamic missiles uses a strength Pareto evolutionary algorithm (SPEA)-based approach for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception. The distribution of membership functions and the associated rules are obtained by solving a nonlinear constrained multi-objective optimization problem in which final time, energy consumption, and miss distance are treated as competing objectives. A Tabu search is utilized to build a library of initial feasible solutions for the multi-objective optimization algorithm. Additionally, a hierarchical clustering technique is utilized to provide the decision maker with a representative and manageable Pareto-optimal set without destroying the characteristics of the trade-off front. A fuzzy-based system is employed to extract the best compromise solution over the trade-off curve.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 5, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Hanafy M. Omar, Mohammad A. Abido
  • Patent number: 8195364
    Abstract: A steering control method including the steps of obtaining a heading error, obtaining a velocity value, obtaining a distance error, applying the heading error and defuzzifying an output from a steering rule base. The velocity value and the distance error are applied along with the heading error to fuzzy logic membership functions to produce an output that is applied to a steering rule base. An output from the steering rule base is defuzzified to produce a steering signal.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: June 5, 2012
    Assignee: Deere & Company
    Inventors: William Robert Norris, Bernard Edwin Romig, John Franklin Reid