Having A Self-contained Position Computing Mechanism (e.g., Dead-reckoning, Etc.) Patents (Class 701/472)
  • Patent number: 9366764
    Abstract: A method is provided for estimating position using an integrated Global Navigation Satellite System (GNSS)/dead reckoning (DR) (GNSS/DR) navigation system in a vehicle. The method includes: determining a current environment of the vehicle from a plurality of environments based on at least one parameter; calculating a Kalman filter-related parameter based on the determined current environment, wherein the Kalman filter-related parameter corresponds to a representation of weight given to GNSS navigation and DR navigation relative to one another; and estimating a position of the vehicle based on the calculated Kalman filter-related parameter utilizing a Kalman filter.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: June 14, 2016
    Assignee: GENERAL MOTORS LLC
    Inventors: Debo Sun, Curtis L. Hay
  • Patent number: 9360497
    Abstract: Described are methods and systems for controlling sensor use on an electronic device, the electronic device having a first sensor defining at least one first sensor axis, the method comprising: detecting a first sensor reading; determining an orientation of the electronic device; and, disabling the detection of the first sensor reading in respect an identified first sensor axis when the first sensor reading in respect of the identified first sensor axis is substantially not expected to change for at least a predetermined amount of time.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 7, 2016
    Assignee: BlackBerry Limited
    Inventors: Robert George Oliver, Adam Louis Parco, Nathan Daniel Pozniak Buchanan
  • Patent number: 9335741
    Abstract: A running watch includes: a time measurement portion which measures a lapse of time; an operation button which indicates a measurement with respect to the time measurement portion; a display portion which displays a measurement result in the time measurement portion on a display screen; and a display color switching portion which switches a display color of the display screen corresponding to a measurement state of the time measurement portion.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: May 10, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Eiichiro Yamaguchi
  • Patent number: 9297659
    Abstract: A composite navigation system includes a first RFID apparatus, a GPS receiver, and a signal processing system. The first RFID apparatus includes an RFID chip and an antenna, a plurality of inclinometers, a plurality of linear accelerometers, and a plurality of angular accelerometers. The processing system includes a first RFID reader and a Kalman filter. The first RFID apparatus can communicate with the first RFID reader. The Kalman filter connects to the GPS receiver and the first RFID reader.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 29, 2016
    Assignee: CHUNG HUA UNIVERSITY
    Inventor: Jium Ming Lin
  • Patent number: 9291714
    Abstract: According to a first aspect, the invention relates to a method for checking the integrity of position information output by a satellite (GNSS) positioning device (1) including a bank (3) of Kalman filters each producing a navigation solution (dX0, dXi, dXn) from raw measurements of signals transmitted by the satellites, characterized in that the method comprises the steps of, for each filter in the bank: (i) correcting the navigation solution produced by the filter according to an estimate of the impact of a failure of a satellite on the navigation solution; (ii) calculating a cross-innovation reflecting the deviation between an observation corresponding to a raw measurement from a satellite not used by the filter and an a posteriori estimate of said observation from the navigation solution produced by the filter and corrected in accordance with step (i); and (iii) performing a statistical test of the cross-innovation in order to declare whether or not the satellite, the raw measurement of which is not used b
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 22, 2016
    Assignee: SAGEM DEFENSE SECURITE
    Inventor: Sebastien Vourc'h
  • Patent number: 9273966
    Abstract: A technique for calibrating sensor data used for dead reckoning positioning comprises the steps of simultaneously recording sensor data of at least one dead reckoning positioning sensor and position data of a position sensor during travel, comparing a first travel path derived from the position data with a second travel path derived from the sensor data, and calibrating the sensor data based on the comparison.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 1, 2016
    Assignee: ELEKTROBIT AUTOMOTIVE GmbH
    Inventor: Florian Bartels
  • Patent number: 9266624
    Abstract: Systems and methods for movement of objects are provided. One system includes a plurality of vehicles configured to support the object, wherein each of the vehicles includes omni-directional wheels and a height adjusting device. The system also includes a control system in communication with the plurality of vehicles, wherein the control system is configured to transmit a signal to the plurality of vehicles instructing the plurality of vehicles to move the object in a predetermined direction along the floor. Each of the plurality of vehicles is configured to adjust at least one of a direction of movement using the omni-directional wheels or a height at which the object is supported while moving the part in the predetermined direction using the height adjusting device.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 23, 2016
    Assignee: The Boeing Company
    Inventors: Dario Valenzuela, Eric Reid, Steven Best, Matthew Desjardien, Samuel Chew
  • Patent number: 9182236
    Abstract: A system for performing post processing of GNSS and INS measurement data and image data to provide highly accurate location information for a camera, an INS measurement unit or both performs first processing operations using the GNSS and INS measurement data, to determine position, velocity and attitude solutions. The system then analyzes the solutions to determine which measurement data provide sufficiently reliable solutions from which to determine the precise position, velocity and attitude of the camera, and thus, which measurement data do not provide sufficiently reliable solutions. The system and method then performs more time consuming and processing intensive processing operations using the measurement data and camera image data that are associated with solutions that are not sufficiently reliable.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: November 10, 2015
    Assignee: NovAtel Inc.
    Inventor: Gregory J. Roesler
  • Patent number: 9164512
    Abstract: To enable stable collision avoidance operation without the need to install an infrastructure or the like even in a dangerous area where running out is likely to occur.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 20, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Souichi Oobayashi, Hidenori Yabushita, Takashi Ogura
  • Patent number: 9158730
    Abstract: A method for controlling an information processing system that includes a client device including a plurality of sensors that acquire positional information of the client device and a server device that transmits data to the client device includes causing the server device to specify a positioning requirement corresponding to positional information of the client device based on association information associating a distance between the client device and a location in which the server device transmits the data to the client device located with each of the sensors, and causing the client device to select a sensor based on the positioning requirement specified by the server device among the sensors.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 13, 2015
    Assignee: FUJITSU LIMITED
    Inventor: Hironori Sakakihara
  • Patent number: 9146322
    Abstract: Hybrid system (1) comprising an elementary hybrid system (2) comprising an extended processing module CALC (100) determining a first protection radius of the hybrid system RHG1, associated with a position quantity G, using a first extended variance/covariance matrix MHYPE1 as a function of a predetermined first false alarm probability PFA1, of a predetermined non-integrity level PNI and of a predetermined first probability PP1 of occurrence of an undetected hardware failure of a satellite positioning receiver.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 29, 2015
    Assignee: THALES
    Inventor: Jacques Coatantiec
  • Patent number: 9140802
    Abstract: In the present disclosure, an error in the velocity and position computed from a three dimensional IMU measurement is reduced confined by computing an auxiliary speed in a drive direction of a vehicle from an angular velocity measurement and a lateral acceleration measurement. The auxiliary speed is then compared with the speed computed from the acceleration measurement. The auxiliary speed is provided as the speed of the vehicle mounted with the IMU when the absolute difference between the auxiliary speed and the speed computed from the acceleration measurement in the drive direction is above a threshold. The auxiliary speed is computed when the vehicle is detected to be in a curved motion. According to another aspect of the present disclosure, the bias errors are determined when the vehicle is in a steady state, at rest or in a straight line motion. The bias errors are used to obtain the accurate auxiliary measurement.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 22, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sachin Bhardwaj, Jaiganesh Balakrishnan, Sriram Murali
  • Patent number: 9134429
    Abstract: The invention relates to a positioning device (PD) arranged to determine a position using an absolute positioning system and a relative positioning system. The positioning device is arranged to work in a first mode, in which the position is determined using the absolute positioning system and possibly the relative positioning system, and in a second mode, in which the position is determined using the relative positioning system and possibly the absolute positioning system. In the first mode the absolute positioning system being weighted more heavily than in the second mode and the positioning device is arranged to switch from the first to the second mode. The positioning device (PD) has access to a digital map database (DMD, 3DMD) and the switch from the first to the second mode is decided based on at least the determined position in combination with information stored in the digital map database (DMD, 3DMD).
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: September 15, 2015
    Assignee: TOMTOM INTERNATIONAL B.V.
    Inventor: Stephen T'Siobbel
  • Patent number: 9116233
    Abstract: A method, system, and computer program product to provide accurate positioning of a vehicle while conserving power is provided. The system includes a receiver configured to receive a positioning signal that determines a position of the vehicle and an auxiliary sensor configured to provide data to supplement the positioning signal so as to provide the position of the vehicle more accurately than with using solely the positioning signal. The system also includes an auxiliary controller coupled to the auxiliary sensor. The auxiliary controller is configured to generate a first signal to power-up the auxiliary sensor if the vehicle is proximate to entering an area that reduces accuracy of the positioning signal, and calibrate the auxiliary sensor prior to the vehicle entering the area; and generate a second signal to power-down the auxiliary sensor if the vehicle is proximate to exiting the area.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 25, 2015
    Assignee: Broadcom Corporation
    Inventors: Roberto Ernesto Zanutta, Frank van Diggelen, Steven Malkos
  • Patent number: 9103684
    Abstract: A system for odometer calibration for a motor vehicle is provided. The system can include a first source of speed data that provides first speed data during operation of the motor vehicle, and a second source of speed data that provides second speed data during a portion of the operation. The system can also include a vehicle speed control module that computes overall average speed data based on the first speed data and a duration of operation. The system includes a speed control module that determines an average first speed for the portion of the operation in which the second source of speed data provides the second speed, and computes an average second speed. The system can include an odometer correction control module that computes corrected odometer data based on the overall average speed data and a ratio of the average second speed to the average first speed.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 11, 2015
    Assignee: Laird Technologies, Inc.
    Inventor: Timothy John Wheatley
  • Patent number: 9097534
    Abstract: The present invention provides an improved architecture for integrating an inertial navigation system (INS) into a dynamic positioning (DP) system for a vessel. The architecture includes an INS unit and a DP system having a Kalman filter or other algorithm for combining data supplied by a plurality of position measuring equipment (PME) and the INS unit to derive an estimate of the position or speed of the vessel. A switch array and a switch array controller are also provided. These may optionally form a part of the DP system. The switch array is operable under the control of the switch array controller to supply data supplied by one or more of the plurality of position measuring equipment to the INS unit for the purposes of correcting drift. The selection of which of the one or more PME is/are to be combined with the INS unit is made automatically, in real time, to dynamically optimise the DP system.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: August 4, 2015
    Assignee: GE Energy Power Conversion Technology
    Inventors: Richard Ian Stephens, Andrew Graham Chamberlain, Francois Cretollier
  • Patent number: 9073637
    Abstract: A flying vehicle guiding system comprises a remotely controllable flying vehicle system, a surveying instrument able to measure distance, angle, and track, and a ground base station for controlling a flight of the flying vehicle system based on measuring results by the surveying instrument. The flying vehicle system has a retro-reflector. The surveying instrument has a non-prism surveying function for performing distance measurement and angle measurement without a retro-reflector, a prism surveying function for performing distance measurement and angle measurement with respect to the retro-reflector, and a tracking function for tracking the retro-reflector and for performing distance measurement and angle measurement. The surveying instrument performs non-prism measurement on a scheduled flight area.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: July 7, 2015
    Assignee: Kabushiki Kaisha TOPCON
    Inventors: Fumio Ohtomo, Kaoru Kumagai, Kazuki Osaragi, Hitoshi Otani
  • Patent number: 9071641
    Abstract: An information providing system includes a terminal and a server. The information providing system includes: an information database configured to record registration data in relation to position data; a position data acquiring section configured to acquire a position data of the terminal; a state acquiring section configured to acquire a state data indicative of a state of the terminal; and a region determining section configured to determine a specified retrieval region of the registration data based on the state data. An information extracting section is configured to extract the registration data in the specified retrieval region from the information database as browser data, and a display section is configured to display the browser data.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: June 30, 2015
    Assignee: BIGLOBE INC.
    Inventor: Noriyuki Sakka
  • Patent number: 9061756
    Abstract: A method and apparatus for monitoring an aircraft. A current performance of the aircraft is identified during operation of the aircraft using a model of the aircraft and flight state data. A current capability of the aircraft is identified from the current performance of the aircraft. An operation is performed based on the current capability of the aircraft.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: June 23, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Jung Soon Jang, John Lyle Vian
  • Patent number: 9052391
    Abstract: A velocity estimation method and system is disclosed. The method may include receiving a location signal indicative of a location of the machine and estimating the velocity of the machine based on a change in the location of the machine over a period of time. The method may further include determining a loss of the location signal, detecting a traction device speed of the machine, and selectively estimating the velocity of the machine based on the traction device speed when the location signal is determined to be lost.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 9, 2015
    Assignee: Caterpillar Inc.
    Inventors: Paul Russell Friend, Drew Alan Fehr
  • Patent number: 9047668
    Abstract: A global position of an observed object is determined by obtaining a first global position of an observed object with at least one positioning device. A determination is made as to whether a set of stored visual characteristic information of at least one landmark matches a visual characteristic information set obtained from at least one captured image comprising a scene associated with the observed object. In response to the set of stored visual characteristic information matching the obtained visual characteristic information set, a second global position of the observed object is determined based on a set of stored location information associated with the at least one landmark and the first global position.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Norman Haas, Ying Li, Charles A. Otto, Sharathchandra Pankanti, Yuichi Fujiki, Hoang Trinh
  • Publication number: 20150142311
    Abstract: A method is provided for estimating position using an integrated Global Navigation Satellite System (GNSS)/dead reckoning (DR) (GNSS/DR) navigation system in a vehicle. The method includes: determining a current environment of the vehicle from a plurality of environments based on at least one parameter; calculating a Kalman filter-related parameter based on the determined current environment, wherein the Kalman filter-related parameter corresponds to a representation of weight given to GNSS navigation and DR navigation relative to one another; and estimating a position of the vehicle based on the calculated Kalman filter-related parameter utilizing a Kalman filter.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Applicant: General Motors LLC
    Inventors: Debo Sun, Curtis L. Hay
  • Patent number: 9014975
    Abstract: A system on a chip and a method for inertial navigation. The system includes a printed circuit board (PCB) on a single plane. The PCB includes a number of sensors configured to measure position, acceleration, angular rate, magnetic fields, pressure, and temperature measurements. The PCB also includes one or more processors in communications with the number of sensors configured to process the measurements to output a position, velocity, attitude, and acceleration.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 21, 2015
    Assignee: VectorNav Technologies, LLC
    Inventors: John Brashear, Jeff Cheek, Jeremy Davis, James Doebbler, Lasse Maeland
  • Patent number: 8996310
    Abstract: A navigation system repeatedly determines a GNSS heading for the vehicle based on GNSS data received from the GNSS receiver, and repeatedly determines an inertial heading for the vehicle based on data received from an inertial measurement unit. The navigation system repeatedly sets the inertial heading to a verified GNSS heading and then provides the set inertial heading as input to a recursive feedback algorithm. The recursive feedback algorithm receives additional inputs indicating the vehicle's angular displacement or acceleration and outputs an updated inertial heading. The navigation system compares the subsequently determined GNSS headings with the updated inertial heading. If the two headings are different, the navigation system sets the GNSS heading to the updated inertial or 180 degree reverse of the GNSS heading.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 31, 2015
    Assignee: Moog, Inc.
    Inventors: Qiyue Zhang, Darren S. Liccardo, Anthony Malerich
  • Patent number: 8996311
    Abstract: A navigation system for use with moving vehicles includes target points proximate to a rendezvous site located on a first moving vehicle. One or more transmitters associated with the target points broadcast time-tagged target point positioning information. A navigation unit on a second moving vehicle utilizes a camera with known properties to capture images that include the target points. The navigation unit processes the image that corresponds in time to the positioning information, to determine the relative position and orientation of the rendezvous site at the second vehicle. The navigation unit utilizes the relative position and orientation and an absolute position and orientation of the rendezvous site calculated from the target position information and calculates an absolute position and orientation corresponding to the second vehicle.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 31, 2015
    Assignee: NovAtel Inc.
    Inventors: Kristian Morin, Michael Bobye, Sandy Kennedy
  • Publication number: 20150088419
    Abstract: According to an aspect of the present disclosure, the relative attitude between an inertial measurement unit (IMU), present on a mobile device, and the frame of reference of the vehicle carrying mobile device is estimated. The estimated relative attitude is used to translate the IMU measurement to the vehicle frame of reference to determine the velocity and position of the vehicle. As a result, the vehicle position and velocity are determined accurately in the event of undocking and re-docking of the mobile device from a docking system in the vehicle. The relative attitude is estimated in terms of pitch, roll, and yaw angles.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 26, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Sachin Bhardwaj, Sriram Murali, Jaiganesh Balakrishnan, Jayawardan Janardhanan, Yogesh Shekar, Goutam Dutta
  • Patent number: 8965690
    Abstract: Even when inertial navigation is performed, whether or not the correction of a value detected by an external sensor is appropriate can be judged, so that a dramatically degraded positioning result is prevented from being outputted. A navigation device (100) comprises a GPS receiver (11), an acceleration sensor (12) for detecting at least two-axis accelerations in an X-axis direction that is the front-back direction of a moving body and a Y-axis direction that is the right-left direction of the moving body, and a at least one-axis angular velocity sensor (13) for detecting the angular velocity in an azimuth direction around a Z-axis orthogonal to the X-axis direction and the Y-axis direction.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: February 24, 2015
    Assignee: Furuno Electrics Co., Ltd.
    Inventor: Hiroyuki Toda
  • Patent number: 8965684
    Abstract: The present invention pertains to a mobile terminal having an autonomous navigation function, said mobile terminal comprising: a map application which performs map matching on the current position of the mobile terminal on a route to a destination; a measurement unit which detects the movement of the mobile terminal, and which provides sensor information representing the number of steps and travel direction; a position calculation unit which determines the current position of the mobile terminal; a travel direction correction unit which, when it has been estimated that a user is walking straight by determining whether the amount of change of the user's travel direction is within a prescribed range in a prescribed period, corrects the user's travel direction according to the orientation of the straight parts when the user is walking straight on the route; and a current position correction unit which, on the basis of the corrected travel direction and the starting time and starting point when walking straight,
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 24, 2015
    Assignee: NTT DOCOMO, INC.
    Inventor: Makoto Takahashi
  • Patent number: 8949011
    Abstract: A system for maneuvering an aircraft for operations in connection with a sea-going vessel, the vessel having a designated area for landings and sling-load operations. Each of the aircraft has a navigation unit (INU) comprising a GPS receiver and an inertial navigation unit. The INU's are updated by data from the GPS receivers and the data from the shipboard unit's GPS receiver and INU are transmitted to the aircraft. The aircraft performs RTK calculations to determine a vector to the shipboard GPS antennas and modifies the vector with data from the INU's.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: February 3, 2015
    Assignee: NovAtel Inc.
    Inventors: Tom Ford, Michael Boloye
  • Patent number: 8942923
    Abstract: Method of determining navigation parameters for a carrier by a hybridization device comprising a Kalman filter (3) formulating a hybrid navigation solution on the basis of inertial measurements calculated by a virtual platform (2) and of raw measurements of signals emitted by a constellation of satellites delivered by a satellite positioning system (GNSS), characterized in that it comprises, the steps of: —determination, for each satellite, of at least one likelihood ratio (Ir, Ir?) between a hypothesis regarding a fault of a given nature of the satellite and a hypothesis regarding an absence of fault of the satellite, —declaration, of a fault of a given nature on a satellite as a function of the likelihood ratio (Ir, Ir?) associated with this fault and of a threshold value, —estimation of the impact of the declared fault on the hybrid navigation solution, and ?correction of the hybrid navigation solution as a function of the estimation of the impact of the declared fault.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: January 27, 2015
    Assignee: Sagem Defense Securite
    Inventors: Didier Riedinger, Houcine Chafouk
  • Publication number: 20150019129
    Abstract: A device is described herein for determining azimuth comprising a MEMS inertial measurement unit (IMU), a GPS system comprising a GPS antenna and receiver, and a processor configured to receive data from said IMU and from said GPS system, said processor being configured to process said IMU data and said GPS data to derive a true north reference based on said IMU data and said GPS data. A method for determining azimuth is also described herein.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: John Keith SHEARD, Nicholas FAULKNER
  • Patent number: 8935093
    Abstract: The present invention provides apparatus and methods for improving satellite navigation by assessing the dynamic state of a platform for a satellite navigation receiver and using this data to improve navigation models and satellite tracking algorithms. The dynamic state of the receiver platform may be assessed using only accelerometer data, and does not require inertial navigation system integration. The accelerometers may not need to be very accurate and may not need to be aligned and/or accurately calibrated.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: January 13, 2015
    Assignee: CSR Technology Holdings Inc.
    Inventor: Mangesh Chansarkar
  • Patent number: 8924240
    Abstract: A system for monitoring operator and motor vehicle behavior, including at least one mobile device; application software resident on the mobile device, wherein the application software is operative to gather and record information relevant to both the behavior of a motor vehicle and the behavior of an operator of the motor vehicle, and wherein the application software is activated or deactivated based on certain predetermined trigger events; and at least one information processor in communication with and/or resident on the mobile device, wherein the information processor is operative to process and characterize the information gathered by the application software and communicate the processed and characterized information to a user of the system.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: December 30, 2014
    Inventors: Shailendra Depura, Bhavna Shailendra Depura, Jamna Lal Depura, Kanta Depura, Shalini Memani
  • Patent number: 8914234
    Abstract: Embodiments of the invention provide methods of calibrating a blending filter based on extended Kalman filter (EKF), which optimally integrates the IMU navigation data with all other satellite measurements (tightly-coupled integration filter). In one embodiment a coordinate transformation matrix using a latest position fix is created. The state variables (for user velocity) are transformed to a local navigation coordinate. The state variables of said integration filter is estimated. A blended calibrated position fix is the output of the method.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 16, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: June Chul Roh
  • Publication number: 20140358433
    Abstract: The present invention relates to an auto locating system for finding the location of a viewpoint comprising: (a) at least one sensor for acquiring samples of the skyline view of said viewpoint; (b) at least one memory device, for storing Digital Terrain Map (DTM) related data; (c) at least one processor for processing said samples of said skyline view from said at least one sensor and for comparing the data derived from said samples with the data calculated from said DTM data for finding the location of said viewpoint; and (d) at least one output for outputting the location of said viewpoint.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Inventor: Ronen Padowicz
  • Patent number: 8903653
    Abstract: As system for locating a network node may be implemented as a static network device for determining location of a mobile node. The system includes a transceiver for receiving a device identifier over a public network from the mobile node, the device identifier based on a user-configurable parameter and a non-user-configurable parameter of the mobile node, and a processor coupled to the transceiver and to memory containing executable code. When executed, the code effects method steps for: accessing, in response to the transceiver receiving the device identifier, a database of authorized device identifiers corresponding to known mobile nodes, establishing, in response to the device identifier matching one of the authorized device identifiers, a secure private network with the mobile node, and communicating with two additional static network devices, the three static network devices implementing triangulation to determine a location of the mobile node.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 2, 2014
    Assignee: Uniloc Luxembourg S.A.
    Inventor: Craig Stephen Etchegoyen
  • Patent number: 8898002
    Abstract: Systems and methods for obtaining geographical location data from multiple sources and aggregating the geographical location data are disclosed. A particular embodiment includes: receiving geo-location data from a plurality of geo-location data collectors, at least one of the plurality of geo-location data collectors being in data communication with an in-vehicle geo-location data source, at least one of the plurality of geo-location data collectors being in data communication with a geo-location data source in a mobile device; collecting reliability data corresponding to one or more of a plurality of geo-location data sources corresponding to the plurality of geo-location data collectors; collecting map data including information related to geographical features associated with the geo-location data; and aggregating, by use of a data processor, the geo-location data from the plurality of geo-location data collectors based on the reliability data and the map data to produce a resulting geo-location fix.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 25, 2014
    Assignee: CloudCar, Inc.
    Inventors: Peter Barrett, Zarko Draganic
  • Publication number: 20140343842
    Abstract: One or more embodiments of techniques or systems for creating a road marking classification template and vehicle localization using road markings are provided herein. A road marking classification template database includes templates of training images taken from different navigation environments. A training image with a road marking can be rectified and enhanced. Corners can be calculated for the road marking using the rectified or enhanced image. Locations can be determined for the corners and stored as part of a template. Similarly, a runtime image can also be rectified, enhanced, boosted, etc. Additionally, corners can be calculated for the runtime image and matched against corners of templates from the template database. A location or a pose of a vehicle can be determined using the match. In this way, vehicle localization is provided such that drift or other issues associated with GPS, such as occlusion, are mitigated, for example.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Ananth Ranganathan, Tao Wu
  • Publication number: 20140336930
    Abstract: An electronic device comprises a circuit substrate, and a moulded interconnect device incorporating integral legs to mount the interconnect device upon the substrate, the legs spacing at least part of the interconnect device from the substrate, at least one of the legs carrying a conducting track to provide an electrical interconnection between the interconnect device and the substrate.
    Type: Application
    Filed: November 29, 2012
    Publication date: November 13, 2014
    Applicant: ATLANTIC INERTIAL SYSTEMS LIMITED
    Inventor: Henry Thomas
  • Patent number: 8880342
    Abstract: A moving body position detection system including an unit acquiring dead reckoning navigation information including a moving body direction; a unit identifying a moving body position based on the dead reckoning navigation information on the moving body; a unit predicting a predicted arrived position of the moving body after a predetermined interval from the position of the moving body based on the dead reckoning navigation information on the moving body; a unit calculating a difference direction angle between a direction from the position of the moving body to the predicted position and the direction of the moving body; a unit correcting the difference direction angle if it is equal to or larger than a threshold; and a unit updating the moving body position based on the difference direction angle.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 4, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yohei Ando, Takuma Yagi
  • Patent number: 8860352
    Abstract: A method controls an operation of an actuator. A first control signal is determined to change a position of a moving element of the actuator according to a trajectory of the moving element. A second control signal is determined to compensate for a first component of an error of the operation due to uncertainty of a model of the actuator. A third control signal is determined to compensate for a second component of the error of the operation due to an external disturbance on the actuator. The operation of the actuator is controlled based on a combination of the first control signal, the second control signal, and the third control signal.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Mouhacine Benosman, Gokhan Atinc
  • Patent number: 8862396
    Abstract: A positioning device including a movement measuring unit for measuring a relative positional change and a passing position calculation control unit for continuing measurement of the positional change of the movement measuring unit during movement, being given position data of any first point at the first point on a moving route excluding a start point, and determining position data of a point which has been passed before arrival at the first point on the basis of the given position data of the first point and data of the positional change continuously measured by the movement measuring unit.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: October 14, 2014
    Assignee: Casio Computer Co., Ltd.
    Inventor: Masao Sambongi
  • Publication number: 20140288824
    Abstract: Described are a system, method and apparatus for computing a navigation solution. In a particular implementation, a direction of travel (DOT) indicator or vector may be applied to augment computation of the navigation solution. The DOT indicator or vector may be selectively applied in the computation of the navigation solution based, at least in part, on an assessment of reliability of the DOT indicator or vector.
    Type: Application
    Filed: November 15, 2013
    Publication date: September 25, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Tero H. Huttunen, Joseph Czompo
  • Publication number: 20140288733
    Abstract: Systems and methods for reducing error detection latency in LPV approaches are provided. In certain embodiments, a method for navigational guidance includes calibrating inertial measurements acquired from an inertial navigation system with satellite-based augmentation system position measurements acquired from a satellite-based augmentation system to create corrected inertial navigation system positions. The method also includes determining whether the satellite-based augmentation system experienced a fault when the inertial measurements were calibrated with the satellite-based augmentation system position measurements. Further, when the satellite-based augmentation system did not experience a fault, the method includes monitoring the satellite-based augmentation system navigation position measurements based on the corrected inertial navigation system positions.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 25, 2014
    Applicant: Honeywell International Inc.
    Inventors: Gang He, Ivan Sandy Wyatt
  • Patent number: 8843314
    Abstract: A method is provided for determining an Estimated Horizontal Position Error (EHPE) with respect to a navigation system onboard a telematics-equipped vehicle by utilizing a Global Navigation Satellite System (GNSS) navigation system in combination with a dead reckoning (DR) navigation system. The method includes: receiving GNSS positioning information from the GNSS navigation system; receiving DR positioning information from the DR navigation system; applying, by a telematics unit, a Kalman filter to the GNSS positioning information and the DR positioning information; calculating, by the telematics unit, the EHPE corresponding to the navigation system onboard the telematics-equipped vehicle based on the GNSS positioning information, the DR positioning information, and the Kalman filter.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 23, 2014
    Assignee: General Motors LLC
    Inventors: Debo Sun, Curtis L. Hay
  • Patent number: 8838374
    Abstract: A method is provided for calibrating past position estimates from a positioning system that provides real-time position estimates of a mobile object. The method first stores the real-time position estimates, which as time goes by become past position estimates and naturally form a first past trajectory depicting the past movement of the mobile object. Subsequently, a calibrated past trajectory is determined, which includes calibrated past position estimates that correspond to the same time instances as the past positions in the first past trajectory. When real-time positions have low qualities, this method calibrates them at a later time by using (higher-quality) real-time positions both before and after them. Errors in the past positions are then corrected based on the calibrated past trajectory. When used with event detectors that indicate inventory transactions, this method can correct position errors associated with inventory events so as to improve the performance of inventory tracking.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 16, 2014
    Assignee: Mi-Jack Products, Inc.
    Inventors: Han-Shue Tan, Jihua Huang
  • Patent number: 8831869
    Abstract: A method for providing messages indicating potential hazardous road conditions using a wireless communications network. Vehicles using the network include sensors that are able to detect various potentially hazardous road conditions, such as rain, fog, icy road conditions, traffic congestion, etc. A plurality of vehicles that detect a specific road condition provide a confidence value that the condition exists. The confidence value is then aggregated by the vehicles with the confidence value of the detected condition from the other vehicles to provide an aggregated result that identifies the probability that the detected road condition is occurring. The aggregated result is then transmitted to other vehicles approaching the road condition, possibly in a multi-hop manner. Alternately, the confidence value from all of the vehicles that detect the condition can be transmitted to approaching vehicles who will provide the aggregated result identifying the potential that the condition exists.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Fan Bai, Donald K. Grimm
  • Patent number: 8825397
    Abstract: A vehicle navigation system includes a GNSS position engine (GPE) that uses GNSS satellite measurements to compute a first position and velocity of a vehicle and a first quality metric associated with the position and velocity. The system also includes a dead reckoning engine (DRE) that operates parallel with the GPE that computes a second position and velocity and a second quality metric associated with the dead reckoning. The GPE is configured to use the second position and velocity to detect a set of outliers in an incoming GNSS measurement; use the second position and velocity as an initial estimate of its position and velocity for a particular time instant, which is then refined by GNSS measurements received at that particular time instant; and to replace the first position and velocity with the second position and velocity.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Kasargod, Sandeep Rao, Karthik Ramasubramanian, Tarkesh Pande, Sriram Murali
  • Publication number: 20140222333
    Abstract: A travel mode determination device is described comprising: an inertial sensor (or a plurality of inertial sensors); a first filter configured to filter a first frequency band of the inertial sensor (for example in an electrical car (for example in motion), or on a bicycle (for example in motion); a second filter configured to filter a second frequency band of the inertial sensor; a comparator configured to compare a power spectral density of the first filter with a power spectral density of the second filter; and a travel mode determination circuit configured to determine a travel mode of the travel mode determination device based on the comparator.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 7, 2014
    Inventor: Christophe Mertens
  • Patent number: 8798908
    Abstract: A method for supporting location services in a mobile radio communications system, in which method a mobile station receives from at least one network element involved in location services, for the implementation of a position measurement procedure, at least one information element indicating if the method type required for that position measurement procedure is a “Conventional GPS” method type where the mobile station behaves as a conventional satellite positioning system receiver.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: August 5, 2014
    Assignee: Alcatel Lucent
    Inventor: Stanislas Bourdeaut