Model Or Learning Means (e.g., Neural Network) Patents (Class 701/59)
  • Publication number: 20140088844
    Abstract: A method for determining a shift sequence of a change of transmission ratio of a transmission device of a vehicle drive train is described. The shift sequence is determined depending on an operating state of the vehicle drive train existing upon the actual transmission ratio inserted in the transmission device. The operating state is characterized by various operating state quantities of the vehicle drive train, which represent input quantities of a model representing the vehicle drive train (B2).
    Type: Application
    Filed: March 13, 2012
    Publication date: March 27, 2014
    Applicant: ZF Friedrichshafen AG
    Inventors: Eckehard Münch, Uwe Heitz, Mauro Zanella, Manfred Sieger, Jörg Geis
  • Patent number: 8666618
    Abstract: A machine control system for use with a machine having a power source and a transmission is disclosed. The machine control system may have a clutch configured to connect an output of the power source with an input of the transmission. The machine control system may also have a sensors configured to generate signals indicative of machine operations, and a controller in communication with the clutch and the sensors. The controller may be configured to determine the current machine application based on the signals, and vary an actuating force of the clutch based on the type of machine application.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 4, 2014
    Assignee: Caterpillar Inc.
    Inventors: Hong-Chin Lin, Rami Nabil Nasrallah
  • Patent number: 8612100
    Abstract: In accordance with one embodiment a vehicle management and control system can comprise a main computer (200) that can be operatively connected to a plurality of vehicle systems and subsystems, a main operating system (202), a memory (which can be part of the computer), and a memory controller in the form of a master control framework (204). The vehicle management and control system controls the operation of the vehicle by managing all communication between vehicle systems and subsystems, making major decisions on behalf of, and issuing commands to relevant vehicle systems and subsystems based on the import and feedback information it receives from those systems and subsystems. Consequently, the burden of major decision making and inter-system communication is taken off each individual system and subsystem. This allows the construction of each vehicle system and subsystem to be greatly simplified, resulting in an overall reduction of vehicle complexity.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: December 17, 2013
    Inventor: Min Tat Goy
  • Patent number: 8612107
    Abstract: Method, control apparatus and powertrain system controller are provided for real-time, self-learning control based on individual operating style. The method calibrates powertrain system performance in a passenger vehicle in real-time based on individual operating style. The method includes powering the vehicle with the system and generating a sequence of system operating point transitions based on an operating style of an operator of the vehicle during the step of powering. The method further includes learning a set of optimum values of controllable system variables in real-time during the steps of powering and generating based on the sequence of system operating point transitions and predetermined performance criteria for the system. The method still further includes generating control signals based on the set of optimum values to control operation of the system.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: December 17, 2013
    Assignee: The Regents of the University of Michigan
    Inventor: Andreas A. Malikopoulos
  • Patent number: 8612077
    Abstract: A path-dependent control of a hybrid electric vehicle (HEV) includes segmenting an original route into segments. A virtual route based on the remaining portion of the original route is generated once the HEV reaches a current segment of the original route. The virtual route includes a first segment corresponding to the current segment of the original route and a last segment representing at least two other segments of the remaining portion of the original route. Battery SoC set-points for the segments of the virtual route are generated. The vehicle is controlled according to the battery SoC set-point for the first segment of the virtual route as the vehicle travels along the current segment of the original route.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: December 17, 2013
    Assignees: Massachusetts Institute of Technology, Ford Global Technologies, LLC
    Inventors: Anthony Mark Phillips, Georgia-Evangelia Katsargyri, Ming Lang Kuang, Ilya Vladimir Kolmanovsky, John Ottavio Michelini, Munther Abdullah Dahleh, Michael David Rinehart
  • Publication number: 20130332038
    Abstract: A method of controlling a transmission includes estimating an expected coefficient of friction of the clutch, estimating a value of an expected torque required to maintain a constant slip of the clutch for a current input torque applied to the transmission, and determining a value of an actual torque applied to the clutch to maintain the constant slip of the clutch at the current input torque. An actual coefficient of friction of the clutch is calculated by dividing the actual torque applied to the clutch by the expected torque applied to the clutch, and multiplying that quotient by the expected coefficient of friction of the clutch. A feed forward torque command is then adjusted based upon the actual coefficient of friction of the clutch to define a revised value of the feed forward torque command, which may then be used to control the clutch for various control operations.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Robert L. Williams, Steven P. Moorman, Matthew D. Whitton
  • Patent number: 8548700
    Abstract: A control system for controlling an automatic transmission that is capable of establishing a given speed stage by engaging a given frictional element. The control system comprises an actual time lag measuring section that measures an actual time lag from the time when a speed change instruction for the given speed stage is issued to the time when a gear ratio of the automatic transmission starts to change for the purpose of establishing the given speed stage, a torque detecting section that detects a torque from an engine, a time lag map that provides a suitable time lag in accordance with the detected torque from the engine, a learning correction section that corrects, by learning control, an instruction value for the hydraulic pressure led to the frictional element in a manner to cause the actual time lag to have the same value as the suitable time lag; and a time lag map correcting section that corrects the suitable time lag in accordance with an operation condition of an associated motor vehicle.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 1, 2013
    Assignee: Jatco Ltd
    Inventors: Go Endo, Masami Suzuki
  • Publication number: 20130231832
    Abstract: The present invention utilizes the rotary kinetic power to drive the first transmission device (T101), and is individually installed with the output end transmission devices to the output end of the first transmission device (T101), so as to drive the loading wheel sets installed at the two sides of the common load body (L100), as well as installed with individually controlled output end clutch devices for controlling the driven wheel sets and the wheel shafts to perform engaging transmission or terminating transmission, and between the wheel shafts of the loading wheel sets at two lateral sides of the common load body (L100), a flexibility transmission device is installed, thereby through the flexibility transmission device performing the flexibility transmission with differential rotational speed from the engaging transmission side to the terminating transmission side.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 5, 2013
    Inventor: Tai-Her YANG
  • Publication number: 20130226418
    Abstract: The present invention utilizes the rotary kinetic power of a rotary kinetic power source to directly drive the epicyclic gear set, or to drive the epicyclic gear set through a transmission device, then a continuous variable transmission (CVT) is individually installed between two output shafts of the epicyclic gear set and the load driven thereby, so the wheel set of the driven load is enabled to randomly perform variation of the driving speed ratio and the driving torque, so as to drive the combined common load; between the output ends of the mentioned two continuous variable transmissions, a limited slip differential or a stabilize device composed of a dual shaft connecting device having slip coupling torque can be further installed according to actual needs.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 29, 2013
    Inventor: Tai-Her YANG
  • Publication number: 20130226417
    Abstract: Featured is are methods and systems for bedding-in an automatic transmission of a vehicle prior to delivery of the vehicle to an end customer. Such a bedding-in method is performed so as to reduce the occurrence of shifting problems or concerns occurring during the initial stages of ownership of the vehicle. More particularly, such a bedding-in method includes providing an automatic transmission having a controller that is configured to measure and learn about powertrain variation(s) and configured to adapt one or more operational parameters associated with shifting of the automatic transmission. Such a method also includes operating the vehicle according to a predetermined protocol before the vehicle reaches an end customer. Such a protocol being established so the transmission controller can learn about powertrain variations and adapt operation of the transmission to minimize effects on shifting of the transmission.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicants: Hyundai Motor Company, Hyundai America Technical Center, Inc., Kia Motors Corporation
    Inventors: Raymond J. Tessier, JR., Anthony Golletti, Thomas Kieffer
  • Patent number: 8515637
    Abstract: A machine control system may include an input receiving portion configured to receive torque inputs related to a hydrostatic transmission. The input receiving portion may also receive an operator request for actuating the hydrostatic transmission. The machine control system may also include a processor configured to determine a factor based at least in part on the torque inputs, for adjusting the operator request. The processor may also be configured to determine a command for actuating the hydrostatic transmission based on the adjusted operator request, such that a torque load to be exerted on a power source by the hydrostatic transmission is within a desired range. The machine control system may further include an output sending portion configured to send the command to the hydrostatic transmission.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 20, 2013
    Assignee: Caterpillar Inc.
    Inventors: Randall T. Anderson, Corwin E. Storer
  • Patent number: 8515635
    Abstract: A method and system provides a Brake Transmission Shift Interlock Override mode in a vehicle including a shift-by-wire transmission. With power applied and ignition on, a driver will press and hold an override switch for a calibrated time. While the override switch is pressed, the driver presses a non-Park button for another calibrated time. The result will be that the vehicle is placed in the selected range wherein the transmission will not automatically shift to Park upon detecting a triggering event. The driver is able to shift the vehicle from Park, even if an electrical failure prevents the transmission from shifting out of Park. As such the vehicle can be driven until the failure is serviced.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 20, 2013
    Assignee: Ford Global Technology, LLC
    Inventors: Todd Curtis Spaulding, Brian J Deurloo, Mark Edward Zyskowski, Richard Reynolds Hathaway, Jeffrey James Turnavitch, Christopher Lee Danks, David Spuller, Charles C Poon, Matthew Luke Fyie
  • Patent number: 8510085
    Abstract: A method of constructing a digital model of a road, includes the steps of acquiring a first set of data relating to the geometry of the road via a differential global positioning system (DGPS), acquiring a second set of data relating to the geometry of the road via a hybridized inertial unit with a global positioning system (GPS), indexing the values of the first and second sets of data by determining their confidence level, discarding the values of the first and second sets of data below a predefined confidence level in order to obtain a first and second set of corrected data, and aggregating the data of the first and second sets of corrected data in order to obtain the digital model of the road. The applicable to the fields of road cartography for navigation and road management, for the creation of adaptive localized algorithms.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: August 13, 2013
    Assignee: Nodbox
    Inventors: Thierry Fargas, Dominique Clarac
  • Patent number: 8498790
    Abstract: The driving output of the electric oil pump during an engine automatic stop is learnt by gradually increasing the driving output of the electric oil pump after an engine automatic stop and discriminating a state immediately before engagement on the basis of the behavior of an input shaft rotation number and a turbine rotation number. Thereby, the working oil pressure supplied by the electric oil pump during an engine automatic stop immediately after an engine automatic stop can be made suitable even if a vehicle is in a stopped state without adding an oil pressure sensor and an oil pressure switch, and a vain increase in power consumption, a deterioration of acceleration responsiveness at the time of an engine restart, generation of shock, or a soaring of the number of engine rotations can be prevented.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: July 30, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Michitaka Fujiwara, Tsuneo Tanabe
  • Patent number: 8494730
    Abstract: A power transmitting apparatus includes a clutch that operates based on pressure of a fed fluid to adjust a mode of power transmission of an engine or/and a motor/generator on a power transmission route, a first driving pump that feeds the fluid to the clutch by being driven in accordance with rotation of the motor/generator, and a second driving pump that feeds the fluid to the clutch by being driven in accordance with electric power, wherein a first engagement unit and a second engagement unit can be caused to engage rapidly or slowly by selecting one of the first driving pump and the second driving pump as a source of the fluid, and when a drive request of the clutch is present and a rotation speed of the motor/generator is lower than a predetermined rotation speed, the first engagement unit and the second engagement unit are caused to engage rapidly by feeding the fluid from the second driving pump.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masato Yoshikawa
  • Publication number: 20130151093
    Abstract: A method and system of improving shift event performance in a vehicle with an automatic transmission. One or more accelerometers in the vehicle are used to sense one or more longitudinal acceleration values. The longitudinal acceleration values or values derived therefrom are compared with predetermined stored values. Shift event behavior is changed in response to differences between the one or more longitudinal acceleration values or values derived therefrom and the predetermined stored values.
    Type: Application
    Filed: November 28, 2012
    Publication date: June 13, 2013
    Inventors: Hussein Dourra, Mircea Gradu, Michael Hall
  • Patent number: 8463513
    Abstract: A transmission control apparatus for an automatic transmission to change a shift position automatically includes a cornering-state judging device, a modified shift-up table generator, and a gear-shift controller. The cornering-state judging device is configured to judge whether a vehicle has transitioned to a cornering state from a normal running state. The modified shift-up table generator is configured to generate a modified shift-up table when the vehicle is judged to have transitioned to the cornering state. The modified shift-up table makes a shift-up more difficult to occur than a reference shift-up table does. The gear-shift controller is configured to perform gear-shift control by using the reference shift-up table during the normal running state. The gear-shift controller is configured to suppress a gear shift by using the modified shift-up table instead of the reference shift-up table when the vehicle is judged to have transitioned to the cornering state.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 11, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Dai Arai, Hiroyuki Kojima, Yoshiaki Nedachi, Masataka Tanaka, Shigeru Tajima
  • Patent number: 8463025
    Abstract: A cell phone having distributed artificial intelligence services is provided. The cell phone includes a neural network for performing a first pass of object recognition on an image to identify objects of interest therein based on one or more criterion. The cell phone also includes a patch generator for deriving patches from the objects of interest. Each of the patches includes a portion of a respective one of the objects of interest. The cell phone additionally includes a transmitter for transmitting the patches to a server for further processing in place of an entirety of the image to reduce network traffic.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: June 11, 2013
    Assignee: NEC Laboratories America, Inc.
    Inventors: Iain Melvin, Koray Kavukcuoglu, Akshat Aranya, Bing Bai
  • Patent number: 8452515
    Abstract: A method for simulating a compressor of a gas turbine may generally include determining a predicted pressure ratio and a predicted mass flow of the compressor based on a model of the gas turbine, monitoring an actual pressure ratio and an actual mass flow of the compressor, determining difference values between at least one of the predicted pressure ratio and the actual pressure ratio and the predicted mass flow and the actual mass flow, modifying the difference values using an error correction system to generate a compressor flow modifier and using the compressor flow modifier to adjust the predicted pressure ratio and the predicted mass flow.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 28, 2013
    Assignee: General Electric Company
    Inventors: John Benjamin Drohan, Randy Scott Rosson
  • Publication number: 20130131939
    Abstract: Disclosed is a control technique that prevents a transmission automatically decelerates a vehicle when an ignition in the vehicle is turned off accidentally while the vehicle is moving and waits until the vehicle is completely stopped to automatically shift and lock the transmission of the vehicle in Park electronically.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 23, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Jin Sook Lee, Kyung Ha Kim, Min Sung Kim, Yeon Ho Kim
  • Publication number: 20130049941
    Abstract: A target pressure module determines a target pressure for controlling a solenoid of a transmission. An error module determines a pressure error based on a difference between the target pressure and a pressure measured using a pressure sensor. A pressure offset module determines a pressure offset using the target pressure and a mapping of pressure offsets indexed by target pressure. An offset learning module selectively determines a learned pressure offset and selectively updates the mapping based on the learned pressure offset. A pressure command module selectively generates a commanded pressure based on the target pressure, the pressure offset, and the pressure error. A solenoid control module controls actuation of the solenoid based on the commanded pressure.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Randall B. Dlugoss
  • Publication number: 20120323457
    Abstract: A control device for automatic transmission includes a flow control mechanism for introducing a part of hydraulic oil discharged from a mechanical oil pump into the mechanical oil pump when a differential pressure between an upstream side and a downstream side of a narrow part provided in a discharge passage in which hydraulic oil discharged from the mechanical oil pump flows becomes larger than a predetermined value. Air mixed into the hydraulic oil is compressed by increasing a line pressure as a differential rotation speed increases when oil temperature of the hydraulic oil is equal to or higher than a predetermined oil temperature and an engine torque is equal to or lower than a predetermined engine torque.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 20, 2012
    Inventors: Arata Nakamura, Masaki Watanabe, Kazuya Murota, Daisuke Kozuma, Toshinori Sasaki
  • Patent number: 8326475
    Abstract: A hybrid drive device includes a transfer torque estimation unit for estimating a transfer torque transferred by the lock-up clutch with the lock-up clutch slipping; and a target rotational speed determination unit for determining the target rotational speed of the rotary electric machine to be achieved in the rotational speed control on the basis of the transfer torque estimated by the transfer torque estimation unit, a target transmission device input torque of the transmission device determined on the basis of an operating state of a vehicle, and a turbine speed of the turbine runner, wherein the engine startup control device starts up the engine by controlling the rotational speed of the rotary electric machine to the target rotational speed determined by the target rotational speed determination unit.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 4, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Takashi Yoshida, Yomei Hakumura, Hideki Hisada, Yoshinori Ono
  • Publication number: 20120303230
    Abstract: A powertrain control module determines engine oil properties based on friction in an engine. The powertrain control module includes an engine combustion module that models engine torque based on engine speed and engine pumping losses due to intake and exhaust gasses. A transmission module models transmission torque applied to the engine based on transmission speed and gear. An accessory loads module models torque applied to the engine by accessory loads including at least one of a power steering pump, an air conditioning compressor, a water pump, and an alternator. An oil viscosity module determines engine oil viscosity based on a friction torque and predetermined engine data that coincides with reference oils. The friction torque is based on the engine torque, transmission torque, and accessory loads torque.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 29, 2012
    Applicant: CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
    Inventors: Ningsheng Qiao, Kevin Joseph Bush
  • Patent number: 8321172
    Abstract: A method for determining at least one air system variable in an air supply system of an internal combustion engine in successive, discrete calculation steps, a differential equation being provided with respect to the air system variable based on measured and/or modeled variables, which describe conditions in the air supply system, a difference equation being formed for the quantization of the differential equation according to an implicit method, and the difference equation being solved in each discrete calculation step, in order to obtain the air system variable.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 27, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Alexandre Wagner, Thomas Bleile, Slobodanka Lux, Christian Fleck
  • Patent number: 8321103
    Abstract: In a transmission control system for a vehicle, in a torque return period at the time of up-shifting of a transmission, an engine torque and a clutch torque are increased in parallel. A target engine torque value and a target clutch torque value are set such that the clutch torque changes at a value higher than the engine torque. The target clutch torque value is set such that a difference between an amount of energy generated in a clutch and an amount of energy generated in an engine substantially coincides with an amount of energy required to reduce the rotation speed of the engine to a target rotation speed.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 27, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Masaya Sakaue
  • Patent number: 8301348
    Abstract: In vehicular control method and apparatus for a shift-by-wire device, a selected shift position is modified to at least one of a vehicular parking position, a neutral position, and a traveling position, the selected shift position is modified to the vehicular parking position when a power switch is switched to an OFF position, and the modification of the shift position to the vehicular parking position is inhibited when an operation pattern of an operation input section while the power switch is in the ON position is made coincident with the operation pattern prescribed as a cipher code which inhibits the shift position modification to the vehicular parking position, the operation patterns being constituted by a combination of operation patterns which would not be carried out in the operation section during an ordinary traveling.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: October 30, 2012
    Assignee: JATCO Ltd
    Inventors: Fumitaka Nagashima, Yoshiaki Ueda, Ryusuke Oshiro, Tomoyuki Suwabe
  • Patent number: 8296002
    Abstract: A control apparatus for controlling a vehicle, the vehicle provided with: a rotating electrical machine capable of inputting or outputting a torque with respect to an input shaft; and a transmission, which is disposed between the input shaft and an output shaft coupled with an axle, which is provided with a plurality of engaging apparatuses, which transmits a torque between the input shaft and the output shaft, and which can establish a plurality of gear stages having mutually different transmission gear ratios in accordance with engagement states of the plurality of engaging apparatuses, the transmission gear ratio being a ratio between a rotational speed of the input shaft and a rotational speed of the output shaft, the vehicle control apparatus provided with: a detecting device for detecting a braking operation amount of a driver; and an input shaft torque controlling device for controlling a torque of the input shaft such that in cases where the detected braking operation amount changes in a reducing dire
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata
  • Patent number: 8296023
    Abstract: An ECU executes a program including the steps of: learning a differential pressure of a lock-up clutch; determining whether or not learning has been completed when a vehicle is in a coasting state and a brake is applied; lowering the lock-up differential pressure such that the lock-up clutch can be disengaged immediately and prohibiting or suppressing control for increasing transmission gain when learning has been completed; and increasing a lower limit guard value for the lock-up differential pressure and performing control for increasing the transmission gain when learning has not been completed.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Sei Kojima, Satoshi Kamijo, Shinya Toyoda, Susumu Moritomo
  • Patent number: 8287431
    Abstract: When shifting an automatic transmission into a higher gear, it is determined that an inertia phase has started when an input rotation speed of the automatic transmission has started to decrease. Here, if throttle opening amount reduction control is being performed to reduce the output torque of the engine when it is determined that the inertia phase has started, it is highly likely that that determination is erroneous because that control causes the input rotation speed of the automatic transmission (i.e., the engine speed) to decrease. When it is highly likely that the determination that the inertia phase has started is erroneous in this way, learning of a hydraulic pressure command value is prohibited. As a result, erroneous learning of the hydraulic pressure command value can be prevented.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobufusa Kobayashi, Toshio Sugimura, Tomohiro Asami, Takaaki Tokura, Yoshio Hasegawa
  • Patent number: 8275527
    Abstract: A transmission modeling system includes an in-gear module that determines an in-gear acceleration when a vehicle is in gear. A shift module determines a shift acceleration based on a clutch torque when the vehicle is shifting between gears. A shaft acceleration determination module determines a shaft acceleration based on at least one of the in-gear acceleration and the shift acceleration.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: September 25, 2012
    Inventor: Kumaraswamy V. Hebbale
  • Patent number: 8271154
    Abstract: A method is proposed for controlling a hybrid drive in a rail vehicle in which an electronic route timetable (SPL) is predefined as route-section-related speeds by means of a train control device, route-section-related types of drive for the rail vehicle are predictively determined by means of the electronic route timetable (SPL) before the journey begins, a deviation of the actual position from a setpoint position of the rail vehicle which is obtained from the electronic route timetable (SPL) is determined while the rail vehicle is travelling, a time margin is calculated on the basis of the difference in position, and the current type of drive is retained or changed as a function of the time margin.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: September 18, 2012
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Ingo Lehmann, Holger Bottlang
  • Patent number: 8265848
    Abstract: A method adaptively learns torque converter (TC) slip in a transmission having a hydrodynamic torque converter assembly by setting a baseline TC slip profile, determining an actual TC slip value at different temperatures, generating an adapted TC slip profile by adapting the baseline TC slip profile in response to the actual TC slip values, and controlling the amount of TC slip during a neutral idle (NI) state of the transmission using the adapted TC slip profile. A vehicle includes a torque converter and a controller. The controller calibrates the TC slip during a first transmission state, and controls the amount of TC slip during a second transmission state. The controller measures actual TC slip data points, and adapts a TC slip profile to more closely approximate a natural slip curve of the vehicle in response to the actual slip TC slip value data points.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: September 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Ronald F. Lochocki, Jr., Nicholas C. Jasko
  • Patent number: 8260484
    Abstract: To perform updating of maximum values and minimum values of measurement data with a simple procedure without incurring an increase in the computational load of an arithmetic processing element such as a microcomputer. When processing is started, a most recent maximum value stored in a nonvolatile storage element is written to a maximum value-use variable Xmax and a positive maximum value is written to a minimum value-use variable Xmin. Each time temperature data is acquired, a value of acquired data Xk and a most recent minimum value Xmin are compared and the smaller value is set as a new minimum value Xmin. Each time updating of this minimum value is repeated a predetermined number of times of processing Ns, the minimum value Xmin at that point in time and the maximum value Xmax are compared and the larger value is set as a new maximum value Xmax.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: September 4, 2012
    Assignee: Bosch Corporation
    Inventor: Hiroshi Yoshikawa
  • Patent number: 8255132
    Abstract: A control device is provided for a vehicle drive apparatus, which includes a differential mechanism and an electric motor provided in differential mechanism, which can be miniaturized in structure with improved fuel economy or enabling the suppression of occurrence in switching shocks. With a provision of a switching clutch C0 or a switching brake B0, a shifting mechanism 10 is placed in either a continuously variable shifting state or a step variable shifting state. This enables the vehicle drive apparatus to have combined advantages in a fuel economy improving effect with a transmission, enabled to electrically change a gear ratio, and a high transmitting efficiency with a gear type power transmitting device enabled to mechanically transmit drive power. During a shifting of an automatic shifting portion 20, engaging control variable control means 84 alters a method of learning an engaging pressure.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Yuji Inoue, Atsushi Kamada
  • Patent number: 8224534
    Abstract: The system and method automatically controls the position of at least one deck plate of a harvesting unit of a corn header so as to increase the width of a stalk receiving channel or reduce pinching forces between the plates when entering a stand of corn to facilitate alignment with the corn rows, and to change the position after a suitable time period or other condition or event, to narrow the channel width and/or increase pinching force, to reduce kernel loss while also monitoring forces exerted against the plates by the stalks and responsively adjusting the plate position for maintaining a desired force on the stalks or width.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: July 17, 2012
    Assignee: CNH America LLC
    Inventor: Trevor L. Kowalchuk
  • Patent number: 8195372
    Abstract: A braking control method that includes: (1) regularly updating a grip model representative of a relationship between a coefficient of friction and a wheel slip rate; (2) determining, with an iterative calculation process including a plurality of calculation cycles a variation of a braking setpoint in a given prediction horizon, the variation of the braking setpoint in the given prediction horizon being established using the regularly updated grip model and its characteristic shape and so that the variation of the braking setpoint in the given prediction horizon complies with the braking order and complies with a given calculation constraint which is function of the wheel slip rate; and (3) retaining as the generated braking setpoint a value of the braking setpoint in the given prediction horizon which corresponds to a first calculation cycle of the plurality of calculation cycles of the iterative calculation process.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: June 5, 2012
    Assignee: Messier-Bugatti-Dowty
    Inventors: Jean-Pierre Garcia, David Frank, Gérard Léon Gissinger, Michel Basset, Yann Chamaillard, Arnaud Jacquet
  • Patent number: 8190307
    Abstract: The control optimization method for helicopters carrying suspended loads during hover flight utilizes a controller based on time-delayed feedback of the load swing angles. The controller outputs include additional displacements, which are added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. Moreover, the implementation of this controller does not need rates of the swing angles. The parameters of the controllers are optimized using the method of particle swarms by minimizing an index that is a function of the history of the load swing. Simulation results show the effectiveness of the controller in suppressing the swing of the slung load while stabilizing the helicopter.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 29, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventor: Hanafy M. Omar
  • Patent number: 8182398
    Abstract: An ECU executes a program including the steps of: starting monitoring the turbine revolution speed and the output shaft revolution speed when a direct shift is started; performing complete disengagement control on a disengagement element; lowering control pressure of a disengagement element to preliminarily fixed control pressure; starting engagement control on an engagement element when a set time period Ts passes; performing complete disengagement control on the disengagement element when a set time period Ts passes; and starting the engagement control on an engagement element when turbine revolution speed NT is equal to or larger than (the synchronous revolution speed of a gear after a shift—a set value Ns).
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: May 22, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiji Fukushiro, Keisuke Ota, Koji Oshima
  • Patent number: 8185283
    Abstract: First target torque of an engine is set based on a driver's operation, a vehicle behavior, and a request for shifting gears of an automatic transmission. The engine is controlled such that the difference between the first target torque and the actual output torque of the engine is reduced. Detection torque is calculated from an operation state of the engine. In consideration of dead time in control of the engine, calculation torque is calculated from the first target torque. In addition, first lookahead torque with the dead time in the engine being removed is calculated by feedback-correcting the first target torque according to an error e between the detection torque and the calculation torque.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: May 22, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Toshiya Oishi, Shogo Matsumoto
  • Patent number: 8180539
    Abstract: A location range setting apparatus includes: a location information acquiring unit for acquiring location information indicating the location of a mobile object; a road information acquiring unit for acquiring road segment information indicating a specific segment of a road; a segment determining unit for associating the location information with corresponding road segment information; a storage unit for storing a plurality of pieces of location information and road segment information respectively as learned data; a clustering unit for clustering the plurality of pieces of road segment information included in the learned data into at least a first cluster or a second cluster; and a location range setting unit for determining first and second ranges for the location of the mobile object from the road segment information included in the first and second clusters, respectively.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: May 15, 2012
    Assignee: Denso Corporation
    Inventors: Yasufumi Kojima, Hiroshi Takeda, Kosuke Hara
  • Patent number: 8175782
    Abstract: A computer-implemented system and method for estimating properties of objects represented in digital images, comprising the steps of (a) encoding input data from a sensor in a neural map comprising neurons having numerical activation values, wherein the activation values in the neural maps have continuous time dynamics defined by an update scheme; (b) creating, adapting and deleting weights of the neural map in unsupervised, incremental manner; (c) transmitting data from an input map to an output map, based on the values of the weights; wherein each weight between the input map (IM) and a neural output map (OM) has a unique source and destination neuron; and wherein data transmission is directed; and (d) detecting correlations between the input map (IM).
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 8, 2012
    Assignee: Honda Research Institute Europe GmbH
    Inventors: Alexander Gepperth, Jan Nikolaus Fritsch
  • Patent number: 8170761
    Abstract: In a pressure control system having a solenoid-operated fluid valve that has an output hydraulic pressure which varies in accordance with a solenoid input signal, a dynamic learning block is configured to adjust the initial, default values for control points stored in a pressure-current (P-I) data table based on observed (measured) operating points that reflect the solenoid's actual transfer characteristic. A feed forward control block is configured to generate the solenoid input signal having a level based on the adjusted control points in the data table, which improves the accuracy of the solenoid input signal. An adjustment method uses a plurality of circular buffers each configured to store observed operating points falling within a respective range, and provides a mechanism to allow adjustment of the control points based on only partial data.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: May 1, 2012
    Assignee: Delphi Technologies, Inc.
    Inventors: Jeremy J. Kraenzlein, Quan Zheng
  • Patent number: 8160781
    Abstract: A vehicular control system which includes a user parameter input module, an external parameter input module, a plurality of objective functions, a policy setting module, and a policy node. The user parameter input module Inputs a user parameter. The external parameter input module inputs an external parameter resulting from an outside environment. The objective functions are set for each control characteristic, respectively, so as to calculate an internal parameter of each control target from the user parameter and the external parameter. The policy setting module sets policies indicating a control index of the user for the objective functions respectively. The policy node weights the objective functions on the basis of the policies, adjusts the internal parameter in accordance with the policy so that the internal parameter is optimized among the objective functions, and issues a command to a control node corresponding to the internal parameter.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: April 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Ken Naono, Masaaki Shimizu, Fumio Arakawa, Nobuyasu Kanekawa, Kohei Sakurai, Masatoshi Hoshino, Kentaro Yoshimura
  • Patent number: 8160795
    Abstract: A drive power control apparatus for a vehicle includes a controller that adjusts the drive power for driving a vehicle to compensate for a parameter that affects the running state of the vehicle. When the vehicle enters a region where the acceleration of the vehicle needs to be changed based on the running environment or when the vehicle is traveling in the region in which the acceleration of the vehicle needs to be changed based on the running environment, the controller makes the amount by which the drive power is adjusted less than the amount by which the drive power is adjusted when the vehicle is traveling in a region other than the region in which the acceleration of the vehicle needs to be changed based on the running environment.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: April 17, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihiro Iwatsuki, Shinya Iizuka
  • Patent number: 8150585
    Abstract: A control system including a friction engagement element, a solenoid valve, an engagement pressure control valve and an electronic control unit, wherein a learning correction amount is divided into an initial learning amount that has no dependence upon an engagement pressure command value and a time-dependent deterioration amount that has dependence upon the engagement pressure command value, and wherein a time-dependent deterioration correction amount is determined according to the engagement pressure command value and a degree of progress of time-dependent deterioration that is indicated by a difference between a learning region correction amount and an initial learning amount which are obtained by a learning control in a learning region that is a limited input torque region, and a final engagement pressure command value is calculated as the learning correction amount by adding the initial learning amount at the time of correction to the time-dependent deterioration correction amount.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: April 3, 2012
    Assignee: JATCO Ltd
    Inventors: Takashige Hinami, Osamu Sato
  • Patent number: 8090511
    Abstract: A parameter having an accelerator pedal position and a drive force as components is set according to information representing driver's operations such as the accelerator pedal position and a stroke amount of a brake pedal. Similarly to the information representing the driver's operation, a parameter having the accelerator pedal position and the drive force as the components is set according to information representing running environment of a vehicle such as a gradient of a road surface, a curvature of the road surface, a friction coefficient ? of the road surface, a type of a road and a length of traffic jam. One parameter ?(OUT) is set by mediating a parameter ?(1) obtained from the information representing the driver's operation and a parameter ?(2) obtained from the information representing the running environment of the vehicle. The gear corresponding to the parameter ?(OUT) is set.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 3, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Seiji Kuwahara
  • Patent number: 8086329
    Abstract: The present invention is related to a method of controlling a device having a calibration process. The calibration process has a partial calibration routine and a calibration routine. A detector within the control system is capable of receiving one or more input signals and determining whether a partial calibration or calibration should occur. The first step in the process involves starting the control method where the detector receives input signals or generates it own data within the detector. The detector also determines whether a partial calibration routine or a calibration routine will take place based upon the value of the input signals received. A partial calibration routine will be performed if the input signals to the detector do not favor a calibration.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: December 27, 2011
    Assignee: BorgWarner Inc.
    Inventors: Robert D. Keefover, Joseph Labataille
  • Patent number: 8080964
    Abstract: A method for collecting operational parameters of a motor may include controlling the energization of a phase winding of the motor to establish an operating point, monitoring operational parameters of the motor that characterize a relationship between the energization control applied to the motor's phase winding and the motor's response to this control, and collecting information of the operational parameters for the operating point that characterizes the relationship between the applied energization control and the motor's response. The collected information characterizing the relationship between the applied energization control and the motor's response may be employed by a neural network to estimate the regions of operation of the motor. And a system for controlling the operation of motor may employ this information, the neural network, or both to regulate the energization of a motor's phase winding during a phase cycle.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: December 20, 2011
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Christopher Allen Hudson, Nimal Lobo, Krishnan Ramu
  • Patent number: 8078429
    Abstract: The present invention discloses a plant diagnostic system for diagnosing a problem with the plant. The plant diagnostic system can include an agent-based plant diagnostic network that has an adaptive global agent located in a central facility, a plant expert agent located at the plant and a plurality of subsystem resident agents. Each of the subsystem resident agents can be assigned to a subsystem of the plant. A diagnosis agent can also be included, the diagnosis agent operable to be instructed by the adaptive global agent, transmitted to the plant expert agent, be received by the plant expert agent, transmitted by the plant expert agent back to the adaptive global agent and be received by the adaptive global agent.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Liu Qiao