Adaptive Control Patents (Class 701/68)
  • Patent number: 8942901
    Abstract: A hydraulic control system for a dual clutch transmission includes a plurality of solenoids and valves in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: GM Global Technology Operations, LLC
    Inventors: Philip C. Lundberg, Bret M. Olson, Brian W. Whitmarsh, Wayne B. Vogel
  • Publication number: 20150025763
    Abstract: A driving force transmission control system includes: an electric motor; a multi-disc clutch; a cam mechanism that converts rotation output from the electric motor into cam thrust force that is axial force in the axial direction of the multi-disc clutch; a pressure-conversion mechanism that converts reaction force against the cam thrust force into pressure of a fluid; a pressure sensor that detects the pressure; and a control unit that computes a command value of a current supplied to the electric motor. The control unit stores the pressure of the fluid during disengagement of the multi-disc clutch, and computes the current command value based on the pressure of the fluid to which the reaction force against the cam thrust force has been applied, and the stored pressure of the fluid.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Applicant: JTEKT CORPORATION
    Inventors: Takashi HOSOKAWA, Kunihiko SUZUKI
  • Patent number: 8938342
    Abstract: A vehicle includes torque sources, a transmission, and a controller programmed to execute a method. In executing the associated method, the controller determines whether continuous output torque is required through a torque exchange. When continuous output torque is required, the controller synchronizes and fills the oncoming clutch, estimates capacity of the oncoming clutch, and expands a short-term torque capacity of the oncoming clutch during the torque exchange, doing so in response to a control objective having a threshold priority. Onset of the torque exchange delays until the short-term torque capacity is sufficient for receiving all torque load from the offgoing clutch without affecting output torque.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 20, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Pinaki Gupta, Lawrence A. Kaminsky, Sean W. McGrogan
  • Publication number: 20150019092
    Abstract: An inching control device reliably protects the clutch during inching operation while not interfering with workability during inching operation. The device includes an allowable heat generation rate acquiring means for acquiring the allowable heat generation rate for the clutch plate, an operation amount detecting means for detecting the amount of the operation of the inching operation member, a heat generation rate calculating means for calculating the heat generation rate of the clutch plate during inching from the amount of the operation of the inching operation member, and an oil pressure controlling means for controlling the clutch oil pressure so that the heat generation rate obtained by the heat generation rate calculating means during inching does not exceed the allowable heat generation rate.
    Type: Application
    Filed: December 21, 2012
    Publication date: January 15, 2015
    Inventor: Tetsuya Morimoto
  • Publication number: 20150006050
    Abstract: In a lock-up clutch control device, base hydraulic pressure calculation device calculates base hydraulic pressure Pb for engaging a lock-up clutch based on input torque from an engine, correction factor calculation device calculates correction factor ?, which is greater than 0 but less than 1, for correcting the base hydraulic pressure Pb based on an input rotational speed Ni of a transmission and a cylinder cut-off state of the engine. Commanded hydraulic pressure calculation device calculates a commanded hydraulic pressure Pc from the base hydraulic pressure Pb and the correction factor ? by means of: current value of commanded hydraulic pressure Pc?previous value of commanded hydraulic pressure Pc+(base hydraulic pressure Pb?previous value of commanded hydraulic pressure Pc)×?, and the commanded hydraulic pressure Pc is made to converge to the base hydraulic pressure Pb by repeating this a predetermined number of times.
    Type: Application
    Filed: December 17, 2012
    Publication date: January 1, 2015
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Fumio Egashira, Akio Muto
  • Patent number: 8924113
    Abstract: A method of operating a transmission with interlocking and friction shifting elements. In or to carry out a gearshift from a currently gear to a target gear, one shifting element is disengaged and another is engaged, and if to carry out a gearshift an interlocking shifting element has to be engaged, the interlocking shifting element is synchronized by partially closing a friction shifting element, with redundancy in the transmission, only if a current speed of the vehicle is lower than a limit value. To monitor for possible malfunction, actuation of the shifting elements and the driving speed are monitored and if, based on the actuation of the shifting elements, it is concluded that there is a redundancy in the transmission, a stored non-actual driving speed is compared with the limit value and if the stored driving speed is higher than the limit value, the redundancy in the transmission is eliminated.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 30, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Jorg Arnold, Rainer Denzler
  • Patent number: 8924107
    Abstract: A control device for an automatic transmission mounted on a vehicle to establish a plurality of shift speeds by engaging engagement elements that need to be engaged for each shift speed. The control device includes a target shift speed setting device, a during-travel neutral control device and a prediction control device. The prediction control device takes action when a predicted prechange time becomes equal to or less than a predetermined time while the automatic transmission is in the neutral state, the predicted prechange time being a time predicted on the basis of variations in vehicle speed and being a time before implementation of a change of the target shift speed that involves changing the particular engagement element from a disengaged state to an engaged state in order to maintain the neutral state.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 30, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Masatake Ichikawa, Yutaka Teraoka, Hiroyasu Amano
  • Patent number: 8924112
    Abstract: A start control device and a start control method of a vehicular power transmission system including a lock-up clutch and a start clutch are provided in which start-time lock-up slip control is performed, and neutral control is performed. When the start-time lock-up slip control is additionally executed during cancellation of the neutral control, the gradient of an output rotational speed of the hydraulic power transmission which is changed, through engagement of the start clutch, toward an input rotational speed of the automatic transmission at the time of completion of engagement of the start clutch is controlled, using at least one of a start clutch pressure that is increased so as to engage the start clutch, and a lock-up clutch pressure that is increased so as to bring the lock-up clutch into slip engagement.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Ayabe, Tomohiro Asami, Hidenori Saito
  • Patent number: 8918259
    Abstract: A splitting of drive torque between front and rear wheelsets includes an actuator to split the torque between the wheelsets, an electronic unit controlling switching of the actuator into a coupled or uncoupled mode, a mechanism electrically powering the electronic unit, and sensors. The electronic unit can make the system adopt: an active operation in which a control signal is generated and the temperature of the actuator is estimated; and a sleep mode in which the temperature of the actuator is not estimated; the switch to sleep mode being authorized: only when the engine is stopped, and if the actuator temperature is below or equal to a threshold or a maximum time period has elapsed.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 23, 2014
    Assignee: RENAULT s.a.s.
    Inventors: Pascal Febrer, Francois Foussard, Stephane Guegan, Alessandro Monti
  • Publication number: 20140365094
    Abstract: Methods and systems for providing vacuum to a vehicle are described. In one example, a method adjusts an application force of a transmission clutch in response to a request for additional vacuum.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Ralph Wayne Cunningham, Ross Dykstra Pursifull
  • Patent number: 8909447
    Abstract: A method of controlling shifts in a vehicle transmission, for example a utility vehicle, having a transmission or partial transmission designed as a dual-clutch transmission that shifts as a without traction force interruption. The transmission comprises a dual clutch having a first clutch and a second clutch that are functionally connected to a drive engine, and a transmission or partial transmission comprises a main transmission that shifts with traction force interruption and is connected to a drive-train downstream from the dual-clutch transmission. During shifts in the main transmission that is connected downstream from the dual-clutch transmission, the dual clutch is operated, by pre-loading the two clutches, as a transmission brake and/or an engine brake for adapting the speed of components to be shifted so as to enable short shifting times and ensure comfortable and reliable driving operation.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 9, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Florian Schneider, Roland Mair
  • Patent number: 8903583
    Abstract: The occurrence of shock and the occurrence of the feeling of losing speed can be prevented. When the clutch is engaged from the state in which the clutch is disengaged and a vehicle is being driven by only the power of an electric motor, an electric motor control unit controls the electric motor so that the torque of the electric motor is decreased at a rate determined according to the torque requested by the driver. During the period in which the torque of the electric motor is decreased at the above rate, a clutch control unit controls the engagement of the clutch so that the clutch is engaged after being set to a half-engaged clutch state in which part of the power is transmitted. The present invention is applicable to hybrid vehicles.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 2, 2014
    Assignee: Hino Motors, Ltd.
    Inventor: Tomohiko Araki
  • Publication number: 20140350811
    Abstract: A vehicle driving device includes: a clutch that is provided between a driving shaft of an engine and an input shaft of a manual transmission and that connects the driving shaft and the input shaft to each other or disconnects the driving shaft and the input shaft from each other; a detection unit that detects an obstacle that is an obstacle to traveling of a host vehicle; a collision possibility determination unit that determines a possibility of collision between the obstacle and the host vehicle based on obstacle detection information detected by the detection unit; and a collision avoidance unit that, when the collision possibility determination unit determines that there is a possibility of collision with the obstacle, performs a fuel cut of the engine even if a rotation speed of the engine is less than an idling rotation speed.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventor: Daisuke TAMARU
  • Patent number: 8897977
    Abstract: A transmission includes an electro-hydraulic controller that includes redundancy in the hydraulic circuit that permits single fault failures to be compensated for by changing the flow path of hydraulic fluid to bypass the single fault failure. The redundancy results in the ability of the transmission to maintain full operation in all modes.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 25, 2014
    Assignee: Allison Transmission, Inc.
    Inventors: Charles F. Long, Darren J. Weber, John William Edward Fuller, Stephen Murray
  • Patent number: 8897980
    Abstract: A method of estimating transmission torque of a dry clutch, may include a) slowly releasing a dry clutch until a slip of the dry clutch occurs, b) acquiring and storing stroke of an actuator and torque of an engine at a starting time point at which the slip of the dry clutch occurs at step a), and c) determining the stroke of the actuator and the transmission torque of the dry clutch at the starting time point at which the slip of the dry clutch occurs, by using the stroke of the actuator and the torque of the engine stored at step b).
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 25, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Young Min Yoon, Seung Sam Baek, Sung Hyun Cho, Ho Young Lee, Joung Chul Kim
  • Patent number: 8897981
    Abstract: Method for determining an adjustment parameter in a hydraulic actuator arrangement for a motor vehicle drivetrain. The actuator arrangement has a pump and a hydraulic cylinder. A pressure port of the pump is connected to a port of the hydraulic cylinder. The adjustment parameter is a function of the volume of the fluid that must be delivered by the pump in order to realize a predetermined operating point of the actuator arrangement. The operating point is defined by a value pair of an operating point rotational speed value of the pump and an operating point control value of the pump. The method has the steps: regulating the pump to the operating point rotational speed value such that the pump delivers a fluid volume flow rate corresponding to the operating point rotational speed value; and integrating the fluid volume flow rate over the time until a termination operating state of the actuator arrangement, in which the control value of the pump is less than or equal to the operating point control value.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: November 25, 2014
    Assignee: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Jörg Meissner, Hans-Peter Moosmann
  • Patent number: 8897979
    Abstract: A method of determining temperatures for a dry dual clutch mechanism includes one or more steps, such as determining a first heat input from a first clutch and determining a second heat input from a second clutch. The second clutch is separated from the first clutch by a center plate. The method also includes determining a housing air temperature of housing air within a bell housing case of the dry dual clutch mechanism. A thermal model is applied with the determined first heat input and second heat input. The thermal model includes temperature states for at least the first clutch, the second clutch, and the center plate. From the thermal model, the method determines at least a first clutch temperature and a second clutch temperature. The method includes executing a control action with the determined first clutch temperature and second clutch temperature.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kumaraswamy V. Hebbale, Farzad Samie
  • Publication number: 20140343774
    Abstract: A control system and method are provided for a motor vehicle having an electronic control unit, by which the drive torque of a drive unit can be variably distributed, as required, to at least two axles. A drive-oriented control can be specified for the purpose of a primarily single-axle drive. By way of a comparison unit, preferably on the basis of a circle of forces, a driving-dynamic desired parameter demanded particularly on a basis of the driver's intention is compared with a driving-dynamic potential parameter. A change from the drive-oriented control to a driving-dynamics-oriented control for the purpose of a primarily multi-axle drive takes place only when a defined threshold value, for example, 70%, is exceeded relative to the driving-dynamic potential parameter, for example, a limit range of the circle of forces.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Christian WIMMER, Dirk ODENTHAL, Michael SAILER
  • Publication number: 20140336891
    Abstract: An arresting apparatus for arresting a rotational motion of two components relative to each other is provided. The arresting apparatus includes a first arresting means having a longitudinal axis and at least one first engaging element, and a second arresting means having an opening and at least one second engaging element. In a first mode of operation, the first arresting means extends through a first section of the opening of the second arresting means such that it is freely rotatable and the first engaging element and the second engaging element are distanced from each other. In a second mode of operation, the first arresting means is misaligned and extends through a second section of the opening of the second arresting means such that the first engaging element and the second engaging element engage and arrest the first arresting means relative to the second arresting means.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Inventor: Mark HEINTJES
  • Patent number: 8886429
    Abstract: An oil pressure control device includes: line pressure adjusting means for adjusting the line pressure; line pressure switching means for switching, in two stages, the line pressure adjusted by the line pressure adjusting means; a linear solenoid valve that adjusts a required oil pressure for engaging frictional engagement elements with one another by engagement force, which is required thereby, by adjusting a pressure of hydraulic oil with the line pressure; and control means for controlling a value of a current supplied to the linear solenoid valve. The control means performs control to differentiate the value of the current, which is supplied to the linear solenoid valve in order to adjust (obtain) the same required oil pressure, in response to the line pressure switched by the line pressure switching means.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 11, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Satoshi Motozawa, Hideyuki Yamanaka
  • Patent number: 8886419
    Abstract: An automatic transmission apparatus includes a clutch including a drive side rotator to which torque of an engine is transmitted and a driven side rotator, a multi-gear transmission mechanism including a dog clutch, at least one actuator to drive the clutch and the transmission mechanism, a torque changing device to change the torque of the engine, a gear shifting command output device to output a gear shifting command, and a transmission control system to control the at least one actuator and the torque changing device. The transmission control system includes a shock reduction control unit to execute control to, upon receiving the gear shifting command from the gear shifting command output device, reduce the engine torque by controlling the torque changing device and thereafter to start to disengage the clutch by controlling the at least one actuator.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 11, 2014
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Takuya Murayama
  • Publication number: 20140330495
    Abstract: The invention relates to a motor vehicle drive train including a hydrodynamic retarder that comprises a revolving bladed impeller and a stationary or counter-rotating bladed turbine which jointly form a working chamber that can be filled with a working medium to switch on the retarder. The hydrodynamic retarder can be mechanically disengaged from the drive train by a disconnect clutch. The invention is characterized in that a fill level monitoring device detects the current fill level of the working medium in the working chamber, while a disconnect clutch-blocking device is effectively connected in a communicating or mechanical manner to the fill level monitoring device and prevents the disconnect clutch from engaging in accordance with the detected fill level.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 6, 2014
    Inventors: Achim Menne, Tilman Huth, Dieter Laukemann, Werner Koch, Werner Klement, Martin Becke
  • Patent number: 8880306
    Abstract: A vehicle includes a friction clutch located between an engine and a driving wheel; a clutch actuator arranged to disengage and engage the friction clutch; a clutch actuator control section arranged and programmed to control the clutch actuator; a slip detection section arranged to detect a slip of the driving wheel; and an engine control section arranged and programmed to decrease an output of the engine when the slip of the driving wheel is detected by the slip detection section. When the friction clutch is in a half clutch state and the slip of the driving wheel is detected, the clutch actuator control section is arranged and programmed to control the clutch actuator so as to maintain a pushing force of the friction clutch at a fixed or substantially fixed level.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 4, 2014
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Kengo Minami
  • Patent number: 8880312
    Abstract: A clutch assembly is provided for an electric 4-wheel drive system. The clutch assembly selectively blocks power delivered from a drive element of a motor to a driven element of a rear wheel and includes a one-way clutch movably installed between the drive element and the driven element, a fork member movably installed in a clutch housing and brought into sliding contact with the external circumference of the one-way clutch, and an actuator installed in the clutch housing and configured to provide forward working force and backward working force to the fork member.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: November 4, 2014
    Assignee: Hyundai Motor Company
    Inventor: Ji-Yoel Joeng
  • Publication number: 20140324308
    Abstract: A transmission clutch control method includes defining a transfer function relating clutch torque to a control signal under transmission operating conditions; determining a target clutch torque for current operating conditions; determining the target control signal from the transfer function to produce target torque at the clutch; correcting clutch torque on the basis of a difference between the target clutch torque and the actual torque at the clutch by adjusting the control signal; calculating actual clutch torque with reference to transmission input torque and transmission output torque; computing a clutch torque error as a difference between calculated clutch torque and the target clutch torque; and repetitively adjusting the transfer function on the basis of the clutch torque error.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Gregory M. Pietron, Diana Yanakiev, Yuji Fujii, Joseph F. Kucharski, Nimrod Kapas
  • Publication number: 20140324309
    Abstract: A method and a system for calibrating an estimated clutch characteristic curve of a dual-clutch vehicle transmission are provided. The method includes mechanically interconnecting a first input shaft with a second input shaft, whereby a transmission output shaft is disengaged; controlling, according to a first alternative, a regulating parameter of a first clutch regulator such that a first friction clutch is engaged with a first torque transmission capability, that a second friction clutch (initially is disengaged, and subsequently engaged; or according to a second alternative, that the second friction clutch is initially engaged, a regulating parameter of the first clutch regulator such that the first friction clutch is engaged with a first torque transmission capability, and that the second friction clutch subsequently disengaged; calculating a torque transmission capability of the second friction clutch; and adjusting an estimated clutch characteristic curve of the second friction clutch.
    Type: Application
    Filed: December 20, 2010
    Publication date: October 30, 2014
    Applicant: VOLVO LASTVAGNAR AB
    Inventors: Fredrik Karpenman, Behrooz Razaznejad, Henrik Ryberg, Sami Aho, Fredrik Sjöqvist
  • Patent number: 8874290
    Abstract: It is provided a control device for a vehicle power transmission device having a stepped automatic transmission making up a portion of a power transmission path between an engine and a drive wheel, the control device setting a shift point of the automatic transmission in accordance with a request drive force of a driver and a vehicle speed, the control device setting a shift point of the automatic transmission in accordance with a rotation speed of the engine and a vehicle speed instead of the request drive force, if a vehicle is in a predetermined fuel consumption priority running state.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: October 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata
  • Patent number: 8874339
    Abstract: A method of estimating transmission torque of a vehicle dry clutch may suitably estimate a variation in the characteristics of transmission torque relative to the actuator stroke of a dry clutch even during the driving of a vehicle, so that the dry clutch is more suitably controlled. In the method of estimating transmission torque of a dry clutch, a clutch is released so that a slip of the clutch occurs. If the slip of the clutch has occurred, the slip of the clutch is uniformly maintained. If the slip of the clutch is uniformly maintained, a relationship between a stroke of an actuator of the clutch and transmission torque of the clutch is determined from a relationship between the stroke of the actuator and torque of an engine in the uniformly maintained slip state.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 28, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Young Min Yoon, So Young Lee, Sung Hyun Cho, Ho Young Lee, Joung Chul Kim, Seung Sam Baek
  • Patent number: 8874340
    Abstract: A method of controlling an automated friction clutch arranged as a starting and shifting clutch in a vehicle between an engine driveshaft and an input shaft of a transmission. The clutch can be engaged passively by a contact pressure spring and disengaged and engaged by a pneumatic control cylinder. The air inlet and outlet valves are opened in a sustained-pulse operating mode, over a duration ?tV calculated as the quotient of air mass difference ?mK between the nominal mass mK—soll present in the pressure chamber of the control cylinder when the control piston is in its nominal position xK—soll and the actual air mass mK—ist present when the control piston is in its actual position xK—ist (?mK=mK—soll?mK—ist) and air mass flow mv passing through the control valve concerned, which depends on the existing pressure situation and the flow characteristics of the open inlet or air outlet valve (?tV=?mK/mv).
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: October 28, 2014
    Assignee: ZF Friedrichshafen AG
    Inventor: Rene Salewski
  • Publication number: 20140309895
    Abstract: A method, apparatus and system for controlling transmission clutch and/or variator system pressures is provided. A transmission control unit and a pressure control device including an electro-hydraulic valve and a pressure switch cooperate to provide self-calibrating clutch and/or variator pressure control systems.
    Type: Application
    Filed: May 28, 2014
    Publication date: October 16, 2014
    Inventors: Thomas H. Wilson, Charles F. Long, Travis A. Brown, Darren J. Weber
  • Publication number: 20140309899
    Abstract: A control system for a transmission of a vehicle includes a first angular rotation module, a second angular rotation module, and a slip module. The first angular rotation module determines a first angular rotation of a first component of the transmission during a predetermined period based on a first signal generated by a first sensor. The second angular rotation module determines a second angular rotation of a second component of the vehicle during the predetermined period based on a second signal generated by a second sensor. The slip module selectively indicates that a clutch of the transmission is slipping based on the first angular rotation and the second angular rotation.
    Type: Application
    Filed: July 3, 2013
    Publication date: October 16, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Dongxu Li, Timothy R. Stockdale, David C. Webert
  • Patent number: 8862353
    Abstract: The invention relates to a process for detecting tuning measures through which the actual output power of an internal combustion engine of a motor vehicle is increased relative to design output power value, whereby, to detect the tuning measures, deviations of actual output power value from a nominal output power value are evaluated, the latter being provided by a control device. The invention is distinguished in that measures are initiated to protect a clutch device from overload as soon as torque to be transmitted by the clutch device exceeds a critical value.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: October 14, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Michael Reuschel
  • Patent number: 8862344
    Abstract: A clutch actuator and to a method for the control thereof. The actuator actuates a multi-disk clutch, and to do so has actuator modules. The number of which corresponds to the number of the friction clutches. The modules have separate control units and electric motors, which are controlled by the control units and act on the friction clutches by a disengaging mechanism. In order to counter block the partial drive trains disposed downstream of the friction clutches, particularly automatically closed friction clutches during a malfunction of an actuator module, the actuator modules are connected among each other to a data line, which allows monitoring of the actuator modules and counter-measures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 14, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Martin Zimmermann, Matthias Gramann, Juergen Gerhart, Martin Rapp, Wolfgang Hill, Michael Menzel, Wai-Wai Buchet
  • Patent number: 8862354
    Abstract: A method for determining initial or starting temperatures for a dry dual clutch mechanism at vehicle start-up includes as determining a time lapse from shut-down to start-up. The method determines a housing air start temperature of the housing air within a bell housing case of the dry dual clutch mechanism at vehicle start-up, reads a first clutch stop temperature of a first clutch at vehicle shut-down, reads a housing air stop temperature of the housing air at vehicle shut-down, and determines a heat transfer coefficient between the first clutch and the housing air. The method includes determining a first clutch start temperature from, at least: the heat transfer coefficient between the first clutch and the housing air; a temperature differential between the first clutch stop temperature and the housing air stop temperature; and the housing air start temperature.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kumaraswamy V. Hebbale, Farzad Samie
  • Publication number: 20140297144
    Abstract: A microcomputer of a driving force distribution control device detects a maximum current value among values of an upper current acquired during a predetermined period, and determines that an overcurrent abnormality has occurred in the driving force distribution control device when the maximum current value is equal to or larger than an abnormal current threshold value and a time, for which the maximum current value is equal to or larger than the abnormal current threshold value, is equal to or larger than an abnormality detection time. Then, the microcomputer performs off control to turn off a relay, and notifies a driver of occurrence of the overcurrent abnormality using a notification unit.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 2, 2014
    Applicant: JTEKT Corporation
    Inventor: Hisaaki Wakao
  • Patent number: 8849533
    Abstract: A method of searching for the touch point of a clutch includes a gear release determination step of determining whether the gear of a non-drive shaft has been released after a change of speed, a clutch operation step of, if the gear has been released, engaging a clutch connected to the non-drive shaft up to a current touch point, and a learning step of determining and learning the propriety of the current touch point depending on changes in the speed of the non-drive shaft after the clutch operation step.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 30, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Young Min Yoon, Sung Hyun Cho, Joung Chul Kim, Seung Sam Baek
  • Patent number: 8843289
    Abstract: At least a method is provided learning a characteristic filling volume of a hydraulic clutch. The method includes, but is not limited to applying a pressure pulse to the hydraulic clutch when the clutch is in a disengaged state and determining an inflection event at an input or at an output of a torque path in which the hydraulic clutch is situated. A characteristic filling volume of the hydraulic clutch is derived from the determined inflection event. Furthermore, a method is provided for learning a characteristic return spring pressure of the hydraulic clutch, for engaging the hydraulic clutch and corresponding devices for carrying out these methods.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 23, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Morgan Postic, Marc Rambert, Eric Dalais, Emmanuel Hoff, Nathaniel Wilke
  • Patent number: 8843284
    Abstract: A method for controlling a manual transmission of a vehicle includes providing a manual transmission comprising a shift fork actuator and a shifter assembly comprising a shift lever, a shift knob disposed on the shifter lever, a shift lever position sensor and a shifter tactile sensor. The tactile sensor may be used to determine when pressure is applied to the shift knob of the shifter assembly and, when pressure is applied to the shift knob, vehicle operating parameters are monitored. A predicted gear selection is determined based on the monitored vehicle operating parameters. An operator gear selection is then determined based on the shift lever position sensor when the shift lever is moved. The operator gear selection is compared to the predicted gear selection and, when the predicted gear selection is the same as the operator gear selection, the manual transmission is shifted to the predicted gear selection.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: September 23, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael John Wolterman
  • Publication number: 20140277977
    Abstract: A method of executing a double transition shift in a transmission includes determining via a controller that one of four clutches involved in the shift has a clutch slip direction relative to input member rotation direction in one of the current gear and the commanded gear and an opposite clutch torque direction relative to input member torque direction in the other of the current gear and the commanded gear. The controller then calculates clutch torques for at least some of the offgoing clutches and at least some of the oncoming clutches, and controls torque at the offgoing clutches and the oncoming clutches during the shift according to the calculated clutch torques to ensure that the clutch with the opposite slip and torque directions does not provide reaction torque during the shift unless clutch slip across said one of the four clutches is zero or in the clutch torque direction.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Vijay A. Neelakantan, Nathaniel E. Wilke
  • Publication number: 20140277978
    Abstract: A method and a device for calibrating a wet clutch is provided. The clutch comprises a pump, a piston, a proportional valve, a controller, and a pressure sensor. The method comprises the steps of closing the clutch by sending a pressure profile with fill parameters from the controller to the proportional valve, recording a pressure signal of the hydraulic fluid, comparing the pressure profile with the pressure signal, determining whether at least one defined feature is in the pressure signal that is indicative of errors in the fill parameters, and if said feature is determined in the pressure signal, modification of the pressure profile by changing at least one of the fill parameters.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventor: Mark R.J. Versteyhe
  • Patent number: 8838366
    Abstract: A hybrid drive apparatus includes an input member that is drivingly connected to a rotary electric machine and drivingly connected via an input clutch to an internal combustion engine, an output member that is drivingly connected to the input member and transmits rotation of the input member to wheels, and a control device that controls the rotary electric machine. The control device is capable of performing valve opening/closing phase control that advances or retards opening/closing phases of valve elements provided in the internal combustion engine via a valve opening/closing phase adjusting mechanism and, with the internal combustion engine in a stopped state before starting a vehicle, advances the opening/closing phases of the valve elements to bring the opening/closing phases of the valve elements into an advanced phase state relative to predetermined reference phases, thus starting the vehicle with torque of the rotary electric machine in the advanced phase state.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: September 16, 2014
    Assignees: Aisin Aw Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Daiki Suyama, Toshihiko Kamiya
  • Patent number: 8838352
    Abstract: A method and a vehicle transmission for selecting a starting gear in a vehicle are provided, the method including steps of measuring a starting gear selection parameter, and selecting a starting gear for the next coming vehicle take-off in dependence of the measured starting gear selection parameter, wherein the starting gear selection parameter is the number of vehicle take offs per time unit. Additionally the parameter can be acceleration in movement of an accelerator pedal being depressed by a driver, accelerator pedal position and clutch wear. Benefits are increased clutch endurance for a vehicle that during at least a period has to perform frequent take-offs and at the same time enhancing take-off comfort for a vehicle that during at least a period goes long-distance.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: September 16, 2014
    Assignee: Volvo Lastvagnar AB
    Inventors: Anders Eriksson, Johan Bjernetun
  • Publication number: 20140257657
    Abstract: A system for controlling a power train of a motor vehicle, the power train configured to deliver an engine torque to a hydraulic torque converter. The control system includes a mechanism determining a temperature gradient of oil of the hydraulic torque converter, a mechanism estimating a curve of force of resistance to forward travel of the motor vehicle depending on a practical mass of the motor vehicle based on the temperature gradient, and a controller controlling the engine torque depending on the estimation.
    Type: Application
    Filed: September 18, 2012
    Publication date: September 11, 2014
    Applicant: RENAULT s.a.s.
    Inventor: Francois Plante
  • Patent number: 8831844
    Abstract: A method of learning the return spring pressure of a clutch in a vehicle having an engine and an automatic transmission includes selecting a clutch for analysis from a plurality of clutches of the transmission when the vehicle coasts for a predetermined duration. The method includes ramping down clutch pressure to the selected clutch until engine speed reaches idle and measuring the clutch pressure for the selected clutch after engine speed has remained at idle for a calibrated duration. An actual return spring pressure may be calculated as a function of the preliminary return spring pressure. The actual return spring pressure may be used thereafter to control a subsequent shift event of the transmission. A vehicle includes an engine, transmission, and controller configured to detect a predetermined coasting condition, and to execute code using a processor to thereby execute the above method. A system includes the transmission and controller.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Todd J. Thor
  • Publication number: 20140249728
    Abstract: A system, computer-implemented method, and computer program product are provided for a monotonic coupling assembly engagement. A coupling assembly actuation force output is increased to a coupling assembly associated with a rotary power source and a piece of driven equipment. A determination is made whether a power source process variable associated with the rotary power source drops below a pause threshold. A current coupling assembly actuation force output is maintained to the coupling assembly in response to a determination that the power source process variable drops below the pause threshold. A determination is made whether the power source process variable rises above a resume threshold. The coupling assembly actuation force output is increased to the coupling assembly in response to a determination that the power source process variable rises above the resume threshold.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: WPT POWER CORPORATION
    Inventors: Bryan D. SCHAFFNER, John G. BOLAND
  • Patent number: 8825325
    Abstract: A control method for closing a clutch in an automatic manual transmission during a gear shifting to pass from a current gear to a successive gear; the automatic manual transmission has a gearbox provided with at least one primary shaft and at least one secondary shaft connected to driving wheels, and at least one clutch interposed between the primary shaft of the gearbox and a drive shaft of an engine; the control method includes, during the closing of the clutch, when the rotation speed of an engine side of the clutch is close to the rotation speed of a gearbox side of the clutch, the steps of: determining a speed difference between the rotation speed of the engine side of the clutch and the rotation speed of the gearbox side of the clutch; determining an acceleration target according to the speed difference; and determining a target torque to be transmitted through the clutch according to the acceleration target.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: September 2, 2014
    Assignee: Ferrari S.p.A.
    Inventors: Francesco Marcigliano, Davide Montosi
  • Patent number: 8825323
    Abstract: A machine control system for use with a machine having a power source and a transmission is disclosed. The machine control system may have a clutch configured to connect an output of the power source with an input of the transmission. The machine control system may also have a sensor configured to generate a signal indicative of a speed of the power source, and a controller in communication with the clutch and the sensor. The controller may be configured to vary an actuating force of the clutch based on the signal.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: September 2, 2014
    Assignee: Caterpillar Inc.
    Inventors: Hong-Chin Lin, Michael A. Spielman, Jr., Paul Douglas Hagen
  • Patent number: 8825324
    Abstract: A four-wheel-drive vehicle includes: a drive source which generates torque forming a driving force of the vehicle; a driving force transmission system which transmits the torque of the drive source to main driven wheels and auxiliary driven wheels; and a dog clutch provided in the driving force transmission system and capable of transmitting the torque to an auxiliary driven wheel side by engagement of a recess portion and a protruding portion. The vehicle further includes: a determination unit which determines whether a friction coefficient of a road surface is lower than a predetermined value based on an index value relating to the friction coefficient of the road surface; and a control unit which generates a control signal which causes engagement of the dog clutch before the vehicle starts when the determination unit determines that the friction coefficient of the road surface is lower than the predetermined value.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 2, 2014
    Assignee: JTEKT Corporation
    Inventors: Masahiro Horaguchi, Akihiro Ohno, Masaki Mita
  • Publication number: 20140236442
    Abstract: A method, a device and a computer program for control of a motor vehicle's propulsion. When a clutch torque (Req T) is demanded by a driver activating of an accelerator pedal, the degree of closure (G) of the vehicle's clutch actuator is controlled by feedback on the basis of a monitored engine torque. There is at least one further consumer (290) of engine power in addition to propulsion. The method includes detecting (s410) activation of the at least one further consumer and, when such activation is detected, changing (s420) the feedback control to open control, whereby the degree of closure (G) of the vehicle's clutch actuator is based on a predetermined relationship between the degree of closure (G) and the clutch torque (Req T).
    Type: Application
    Filed: August 29, 2012
    Publication date: August 21, 2014
    Inventors: Karl Redbrandt, Andreas Laghamn, Fredrik Petersson, Mikael Wågberg
  • Patent number: 8812205
    Abstract: A shift control apparatus controlling a stepped transmission. The apparatus is configured with a gear ratio setting unit, and a shift speed change determining unit. A shift speed change predicting unit predicts in advance a change of shift speed by the shift speed change determining unit based on the set gear ratio, a rate of change in the set gear ratio, and an engagement preparation time which is a time needed for engagement preparation of the friction engagement element. A shift control unit controls a hydraulic actuator so that engagement preparation of a friction engagement element to be engaged is performed when a change of shift speed is predicted, and controls the hydraulic actuator so that a hydraulic pressure needed for engaging the friction engagement element is supplied to a hydraulic servo when a change of shift speed is determined by the shift speed change determining unit.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: August 19, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kohei Tsuda, Yoichi Tajima, Tomokazu Ito