Adaptive Control Patents (Class 701/68)
  • Patent number: 8548705
    Abstract: A method for controlling an automated clutch, which comprises a hydraulic clutch actuating system having a hydrostatic actuator, the pressure of which is detected. The method includes using the pressure of the hydrostatic actuator to adapt the characteristic curve of the clutch.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: October 1, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Juergen Eich, Markus Baehr
  • Patent number: 8548703
    Abstract: A method to determine excessive clutch slippage in a transmission coupled to an engine and an electric machine adapted to selectively transmit power to an output member through selective application of torque-transfer clutches includes monitoring rotational velocities of the electric machine, engine and output member, monitoring a transmission operating range state, determining a clutch slip based upon monitored rotational velocities for one of the torque-transfer clutches intended to be synchronized based upon the transmission operating range state, and indicating a runaway slip event if the clutch slip is in excess of a threshold slip level through a threshold slip duration.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 1, 2013
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Jy-Jen F. Sah
  • Patent number: 8543304
    Abstract: A method operates a clutch release system of a vehicle having an electrically actuable clutch release unit including a sensor for detecting a position of a release piston, a control unit for controlling the release piston as a function of a detected position of a clutch actuating device, and a sensor for detecting the position of the clutch actuating device. A characteristic curve function describes a relationship between the position of the clutch actuating device and the position of the release piston. The function is taken into consideration during actuation of the clutch release system to obtain a consistent clutch release at a defined position of the clutch actuating device despite progressive wear of the clutch release system.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: September 24, 2013
    Assignee: Knorr-Bremse Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Eduard Hilberer
  • Patent number: 8538648
    Abstract: A method for operating a drive device for adjusting an automated clutch in a motor vehicle. The motor vehicle has a control device by which at least one control of the drive device and one capture of measurement data of a clutch travel sensor takes place for determining the setting of the automated clutch. The drive device has a drive motor with a drive connection to a displaceable element to be positioned. A travel range of the displaceable element is monitored and a referencing procedure is performed cyclically after a prescribed time and is followed by a plausibility check if referencing is permitted at the point in time.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: September 17, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Michael Schindler, Matthias Panzer
  • Patent number: 8538618
    Abstract: A clutch control device of a hybrid vehicle includes a clutch driven by a motor and connected with a drive shaft. A hydraulic unit controls the clutch by oil pressure. An oil temperature detecting unit detects temperature of the oil and a unit which detects vehicle velocity. A control unit which operates through the hydraulic unit switches between an engine driving mode in which the motor shaft and the engine shaft are engaged with each other and a motor driving mode in which the motor shaft and the engine shaft are released and the hybrid vehicle is driven by the motor.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventor: Yukihiro Nissato
  • Publication number: 20130238204
    Abstract: Methods and systems for controlling a vehicle powertrain that may be automatically stopped and started are presented. In one example, a method adjusts a position of a transmission clutch in response to battery current during engine cranking. The method may reduce clutch wear and improve vehicle launch from a stop.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Alex O'Connor Gibson, Matthew John Shelton, Roger Lyle Huffmaster
  • Patent number: 8532887
    Abstract: A switching apparatus is provided in a hydraulic control apparatus having a fluid transmission apparatus; a lockup clutch; a switching valve that controls engagement of the lockup clutch; and a control oil pressure generation apparatus that pressurizes oil and outputs a control oil pressure to control activation of the switching valve. The switching apparatus executes a control to warm the oil input into the control oil pressure generation apparatus if the temperature of the oil is below a predetermined temperature and prohibits execution of the control to warm the oil input into the control oil pressure generation apparatus if the temperature of the oil equals or exceeds the predetermined temperature.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: September 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuji Moriyama, Akira Murakami, Keisuke Ichige, Hiroyuki Nishizawa, Masanori Iritani, Hideyuki Suzuki
  • Patent number: 8532895
    Abstract: An assist device for a vehicle including a power train connected to drive wheels by a clutch, a bus, and a power-assist parking brake. The device includes sensors that transmit signals to the bus and a mechanism for learning-based estimation of a clutch curve on the basis of the signals, the curve connecting the position of the clutch pedal and a maximum torque range that can be transmitted by the corresponding clutch and a mechanism phasing the delivered signals to reduce an influence of noise on the sensors associated with the signals.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: September 10, 2013
    Assignee: Renault S.A.S.
    Inventors: Christophe Desfriches, Alessandro Monti, Richard Pothin
  • Publication number: 20130231835
    Abstract: Clutch control values are determined via a method in a vehicle during a power-on upshift. Pressure to an offgoing clutch is decreased to a calibrated holding pressure after onset of the upshift. Proportional-integral-derivative (PID) logic of a controller is used to introduce a calibrated error into a pressure command to the offgoing clutch during fill of the oncoming clutch. This causes a calibrated slip to occur across the offgoing clutch, and a resultant threshold amount of flare to occur in turbine speed. The slip and flare are held using the PID logic. The pressure/torque relationship of the offgoing clutch is recorded. A fill level of the oncoming clutch is determined using a trajectory of an integrator term of the PID logic. A control value of the oncoming or the offgoing clutch is adjusted using at least one of the fill level, the recorded clutch pressure, and the recorded clutch torque.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Todd J. Thor
  • Publication number: 20130231834
    Abstract: A method for determining the return spring pressure of a clutch in a vehicle transmission includes using proportion-integral-derivative (PID) control logic of a controller to introduce a calibrated error into a pressure command of a holding clutch during a coast-down maneuver of the vehicle. The calibrated error causes a slip level to occur across the holding clutch. The method includes maintaining the slip level using the PID control logic and separately commanding engine torque at different threshold low values during the coast-down maneuver. The pressure/input torque relationship for the holding clutch is recorded for both threshold low levels as the controller continues to maintain the slip. The return spring pressure is calculated using the recorded pressure/input torque relationship. The holding clutch may be controlled a subsequent shift maneuver using the learned return spring pressure. A vehicle is also disclosed having a controller configured to execute steps of the method.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Todd J. Thor
  • Publication number: 20130231836
    Abstract: An apparatus, method and computer for actuating a disconnect clutch which is arranged between a first drive unit and a second drive unit of a hybrid drive and which can be actuated by means of a hydraulic actuating element in order to couple or decouple the first drive unit to or from the rest of a powertrain. This is accomplished by adapting a transmission hydraulic pressure level to a disconnect clutch hydraulic pressure level required for actuating the disconnect clutch by a pressure converter arranged between the actuating element and a hydraulic medium supply for a transmission.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Applicant: ZF Friedrichshafen AG
    Inventor: Olaf MOSELER
  • Patent number: 8515640
    Abstract: A device for determining, when driving a vehicle, a mapping of torque transmitted by a clutch of the automobile based on a position of a clutch control member. The device includes a mechanism updating the mapping based on position thresholds of the clutch control member. The updating modifies values of the thresholds based on minimum and maximum values of the positions of the control member stored in the mapping and on current values of the thresholds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: August 20, 2013
    Assignee: Renault S. A. S.
    Inventors: Alessandro Monti, Richard Pothin, Christophe Desfriches
  • Patent number: 8510004
    Abstract: An exemplary system includes at least one valve configured to control fluid flow in a dual-clutch transmission system. A solenoid is operably connected to the at least one valve and configured to move the valve to a plurality of positions. A primary processing unit is in communication with the solenoid and configured to determine an intended position of the valve. A controller is configured to receive the intended position of the valve from the primary processing unit and generate a primary control signal associated with the intended position of the valve. The solenoid is configured to move the valve to the intended position based on the primary control signal. A secondary processing unit is configured to receive information from the primary processing unit and prevent the primary control signal from controlling the solenoid if the primary processing unit is unable to control the solenoid.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 13, 2013
    Assignee: Eaton Corporation
    Inventors: Kerfegar Khurshed Katrak, Jeffrey Philip Hawarden, Steven Harvey Lapointe, Eric Allen Metheny, Todd William Fritz, John Kimmel Vandervoort
  • Patent number: 8510006
    Abstract: A method of adapting the rapid filling time of a clutch. During adaptation, the clutch is filled by at least two successive rapid filling pulses with increasing rapid filling times. For each rapid filling pulse a reaction, resulting from the filling pulse, is monitored. If a defined reaction, for one of the rapid filling pulses, is recognized for the first time whereas for the, or for each of the previous rapid filling pulse(s) the defined reaction was not observed, then as a function of the rapid filling time of that rapid filling pulse for which the defined reaction was recognized for the first time, carrying out the adaptation of the rapid filling time and, for each rapid filling pulse used for the adaptation, gradients of the clutch pressure produced as a result of the respective rapid filling pulse are evaluated to determine the defined reaction pressure.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 13, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Martin-Joachim Bader, Karl Locher, Olaf Moseler, Markus Terwart, Frank Veth
  • Patent number: 8504260
    Abstract: A method for activating a clutch of a vehicle drive train. A controller of an electronic control unit generates an electrical desired-value signal corresponding to a desired pressure with which the clutch is to be acted upon. The control unit receives from a sensor an electrical actual-value signal which is to correspond to an actual pressure with which the clutch is acted upon. The sensor measures the pressure at a measurement location which is connected via a transfer link to an action location at which the clutch is acted upon with a clutch pressure. The actual-value signal passes through a transfer element having a delay property before it is delivered to the controller.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 6, 2013
    Assignee: GETRAG Getriebe-und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Thorsten Stepper, Joerg Meissner, Ralf Trutschel
  • Patent number: 8504267
    Abstract: A control system includes a pressure control solenoid and a flow control solenoid having an input in fluid communication with the pressure control solenoid. A piston adjusts a position of a shift fork and includes a first area in fluid communication with the pressure control solenoid and a second area in fluid communication with the flow control solenoid. A fork sensor senses a position of a shift fork. A slip sensing module estimates slip acceleration between an input shaft and a gear. A flow determining module generates a flow command for the flow control solenoid. A sync control module determines a slip acceleration profile including an estimated slip acceleration, adjusts the estimated slip acceleration based on the measured slip acceleration, and generates a pressure command for the pressure control solenoid based on the adjusted slip acceleration.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 6, 2013
    Inventors: Christopher Jay Weingartz, Steven P. Moorman, Xuefeng Tim Tao, Chinar S. Ghike, Andreas Gustavsson
  • Publication number: 20130197769
    Abstract: A method of controlling shifts in a vehicle transmission, for example a utility vehicle, having a transmission or partial transmission designed as a dual-clutch transmission that shifts as a without traction force interruption. The transmission comprises a dual clutch having a first clutch and a second clutch that are functionally connected to a drive engine, and a transmission or partial transmission comprises a main transmission that shifts with traction force interruption and is connected to a drive-train downstream from the dual-clutch transmission. During shifts in the main transmission that is connected downstream from the dual-clutch transmission, the dual clutch is operated, by pre-loading the two clutches, as a transmission brake and/or an engine brake for adapting the speed of components to be shifted so as to enable short shifting times and ensure comfortable and reliable driving operation.
    Type: Application
    Filed: August 3, 2011
    Publication date: August 1, 2013
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Florian Schneider, Roland Mair
  • Publication number: 20130190998
    Abstract: An automotive electronic control system for a motor vehicle is provided. The automotive electronic control system is designed to cause the motor vehicle to enter a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on received quantities indicative of operative conditions of the motor vehicle, occurrence of a driver-performable action indicative of the will of the driver to enter a freewheel running condition with internal combustion engine off and occurrence at or within a given time from the occurrence of the driver-performable action and the maintaining for a given time of specific predetermined entry conditions. The automotive electronic control system is further designed to cause the motor vehicle to leave a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on the received quantities, occurrence of at least one of specific predetermined exit conditions.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 25, 2013
    Applicant: C.R.F. SOCIETA' CONSORTILE PER AZIONI
    Inventor: C.R.F. Societa' Consortile Per Azioni
  • Publication number: 20130190997
    Abstract: In order to further improve followability of an actual vehicle speed with respect to a commanded vehicle speed at a starting time point, the present invention is provided with a vehicle speed control part that, a predetermined time before the starting time point that is a time when the commanded vehicle speed rises from zero, sets a clutch position of a vehicle to an initial intermediate position where power is partially transmitted, and at and during a certain period of time after the starting time point, performs clutch feedback control that changes the clutch position depending on a deviation between the actual vehicle speed and the commanded vehicle speed so as to make the actual vehicle speed follow the commanded vehicle speed, wherein the vehicle speed control part sets the initial intermediate position depending on rising commanded acceleration that is a time rate of change at the time when a value of the commanded vehicle speed rises from zero.
    Type: Application
    Filed: December 26, 2012
    Publication date: July 25, 2013
    Applicant: HORIBA, LTD.
    Inventor: HORIBA, LTD.
  • Patent number: 8494730
    Abstract: A power transmitting apparatus includes a clutch that operates based on pressure of a fed fluid to adjust a mode of power transmission of an engine or/and a motor/generator on a power transmission route, a first driving pump that feeds the fluid to the clutch by being driven in accordance with rotation of the motor/generator, and a second driving pump that feeds the fluid to the clutch by being driven in accordance with electric power, wherein a first engagement unit and a second engagement unit can be caused to engage rapidly or slowly by selecting one of the first driving pump and the second driving pump as a source of the fluid, and when a drive request of the clutch is present and a rotation speed of the motor/generator is lower than a predetermined rotation speed, the first engagement unit and the second engagement unit are caused to engage rapidly by feeding the fluid from the second driving pump.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masato Yoshikawa
  • Patent number: 8489298
    Abstract: A powertrain includes an engine, a transmission, and a torque converter located between the engine and the transmission. Subsequent to a rapid increase in engine torque commands, torque converter slip is controlled by monitoring a measured torque converter slip after the rapid increase in engine torque commands, determining a maximum measured torque converter slip value resulting from the rapid increase in engine torque commands based upon the measured torque converter slip, determining a target value to which to reduce the torque converter slip, determining a recovery profile to reduce the torque converter slip from the maximum measured torque converter slip to the target value, and utilizing the recovery profile to controllably reduce the torque controller slip. Determining the recovery profile includes commanding reducing slip through the profile at commanded torque converter slip values selected to prevent the torque converter slip from reaching zero.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: July 16, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Chunhao J. Lee, Farzad Samie
  • Patent number: 8483920
    Abstract: A shift control device for an automatic transmission having a plurality of frictional engaging elements adapted to be selectively engaged to perform shift control. The shift control device includes a computing unit for computing the temperature of at least one of the frictional engaging elements to be engaged in shifting, a comparing unit for comparing the temperature computed by the computing unit with a reference temperature, and an upshift delaying unit for delaying the timing of upshift using the frictional engaging element to be engaged by a predetermined time period when the temperature computed by the computing unit is higher than the reference temperature.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: July 9, 2013
    Assignee: Honda Motor Co., Ltd
    Inventor: Nobuyuki Watanabe
  • Patent number: 8478497
    Abstract: During a non-shift operation when a predetermined gear of an automatic transmission is kept, a hydraulic control unit increases an engagement hydraulic pressure to a friction engagement device associated with the gear formation by a predetermined hydraulic pressure with respect to a line hydraulic pressure. Therefore, in comparison with a case where a hydraulic pressure equivalent to the line hydraulic pressure is set as an engagement hydraulic pressure to the friction engagement device for obtaining a hydraulic pressure equivalent to the line hydraulic pressure, shift response (hydraulic pressure response) variations when shifting from a non-shift state (steady state) into a shift state are suppressed by the margin of the predetermined hydraulic pressure. In addition, in comparison with a case where the engagement hydraulic pressure to the friction engagement device is set to a maximum hydraulic pressure to reduce the response variations, power consumption of each linear solenoid valve is suppressed.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: July 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinji Kato, Hitoshi Matsunaga
  • Patent number: 8473172
    Abstract: Systems and methods for assisted direct start control are provided. An example method varies engine torque, forward clutch engagement pressure, and wheel brake pressure during a vehicle launch responsive to longitudinal vehicle grade to improve launch performance.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: June 25, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Roger Lyle Huffmaster
  • Publication number: 20130158824
    Abstract: A vehicle includes a clutch, pump, pressure control variable force solenoid (PVFS) valve in a branch supplying oil from the pump to the clutch through a flow control VFS (QVFS), and a controller. The controller calculates an area of a variable orifice of the QVFS valve at the start of a clutch shift, records the area as a maximum area, and calculates a maximum branch pressure as a function of the area. The controller limits pressure in the branch during the shift event to the calculated maximum branch pressure. The transmission may be a dual-clutch transmission (DCT) with the clutch being a DCT input clutch. A control system includes a host machine, temperature and pressure sensors, a computer-readable medium with instructions for limiting branch pressure as a function of the maximum area noted above and using sensor values from the sensors. A method of limiting branch pressure is also disclosed.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Crystal Nassouri, Steven P. Moorman
  • Publication number: 20130158825
    Abstract: A method of determining a touch-point of a friction clutch of a motor vehicle that is relevant for control purposes such that a current, actual touch-point of the friction clutch is determined adaptively, and such that the current touch-point is modified, with a correction value that depends on the elasticity of the friction clutch, in order to determine the control-relevant touch-point. The control device comprises elements for carrying out the method.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Applicant: ZF Friedrichshafen AG
    Inventor: ZF Friedrichshafen AG
  • Publication number: 20130151100
    Abstract: A compensation method of an actuator system for a clutch may compensate initial operating position of an actuator that may be changed due to abrasion so that may maintain stroke distance of a clutch stable. The compensation method includes determining a target pressure if operating requirement of a clutch is detected and operating an actuator according to the target pressure, determining whether operating movement of the actuator is strayed from a predetermined value if operating pressure of the actuator reaches the target pressure, determining error of initial operating position of the actuator if the operating movement of the actuator is strayed from the predetermined value and determining compensating ratio according to the detected position deviation of the error and compensates the initial operating position of the actuator by controlling a lead screw of the actuator according to the determined compensating ratio.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 13, 2013
    Applicants: Hyundai Motor Company, Motonic Corporation, Keyang Electric Machinery Co., Ltd.
    Inventors: Hyundai Motor Company, Keyang Electric Machinery Co., Ltd., Motonic Corporation
  • Patent number: 8463518
    Abstract: Implementation of a safety function that secures the value of the contact point, which is important for twin clutch systems, against wrong determination. It is part of a safety system that ensures functional safety for twin clutch systems.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Heiko Priller, Andreas Maxon, Juergen Eich
  • Patent number: 8463516
    Abstract: A process and device for controlling a motor vehicle with an initialization device (43) for startup and a clutch actuated by means of a clutch actuator set (45) between a drive unit and a gear with a control device (41) by means of which at least one control of the clutch actuator set (45) and an acquisition of measurement data of a sensor (47) takes place for the purpose of determining the position of the clutch, characterized in that to verify the state “clutch open” upon startup, a positioning of the clutch actuator set (45) that has been set and stored before or during shutdown is compared to a positioning that was acquired during a predetermined movement course of the clutch actuator set (45) after startup by means of a distance measurement, which takes place at least in a segment of that movement course, whereby the state “clutch open” is recognized, in particular, when the magnitude of the comparison is within a predetermined tolerance range.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: June 11, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Alexander Schweizer, Frank Stengel, Martin Fuss, Matthias Ehrlich, Behzad Nazari, Jens Martin, Joachim Hirt, Martin Zimmermann
  • Patent number: 8463514
    Abstract: A method and control system for an actuator of a clutch of a motor vehicle includes a main control unit determining a desired value for a torque to be transmitted in dependence on predetermined first parameters. A setting signal for the actuator corresponding to the desired value is generated by an additional control unit on the basis of the determined desired value. A desired value tolerance range for the determined desired value of the torque is determined by the main control unit in dependence on predetermined second parameters. The additional control unit determines an actual value of the torque transmissible by the clutch unit and generates a new setting signal for the actuator when the actual value is outside the desired value tolerance range.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 11, 2013
    Assignee: Magna Powertrain AG & Co KG
    Inventor: Johannes Quehenberger, Sr.
  • Patent number: 8457850
    Abstract: When an inertia phase of an upshift of the transmission is started during a lockup clutch engagement operation, a following command oil pressure to be used during a following lockup clutch engagement operation is learned on the basis of a slip rotation speed, which is a rotation speed difference between an input side rotation speed of the torque converter and an output side rotation speed of the torque converter, at or after a start point of the inertia phase.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 4, 2013
    Assignee: Jatco Ltd
    Inventors: Yukiyoshi Inuta, Hideki Oshita, Morimasa Yamawaki, Kazuo Tomioka, Masayuki Mannen, Tatsuya Hayashi
  • Patent number: 8449433
    Abstract: A clutch device, which has at least one clutch, which can assume an open operating state and a closed operating state, in which a torque can be transmitted by the clutch, an actuator device for activating the clutch, and a sensor device, which has a motion sensor. In order to simplify the actuation strategy of the clutch device, the sensor device has an additional sensor, which detects whether the actuator device is in or near an actuator end position in which the clutch is in the open operating state thereof.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Bjoern Stehle
  • Patent number: 8452497
    Abstract: A method of controlling a shifting operation in an automatic transmission of a commercial vehicle. A targeted gear and an associated target rotational speed are determined, via a transmission control, depending on predetermined parameters, and the shifting operation is executed upon reaching a determined shifting rotational speed. A shift interlock is activated, at least temporarily, during a downshifting operation when, upon reaching the shifting rotational speed, the determined target rotational speed lies below a predetermined rotational speed limit.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: May 28, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Ulrich Reith, Werner Wolfgang, Bertram Wengert, Maik Wurthner
  • Patent number: 8447476
    Abstract: A lubricating oil supply control device controls a lubricating oil supply amount to a transmission in a construction machine including a torque converter with a lock-up clutch. The lubricating oil supply control device includes a clutch state determining section, a lubricating oil amount detecting section and a lock-up clutch controlling section. The clutch state determining section determines whether or not the lock-up clutch is being coupled. The lubricating oil amount detecting section detects whether or not the lubricating oil supply amount to the transmission is short of a preliminarily set supply amount. The lock-up clutch controlling section decouples the lock-up clutch when the lock-up clutch is being coupled and the lubricating oil supply amount is short of the preliminarily set supply amount.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: May 21, 2013
    Assignee: Komatsu Ltd.
    Inventors: Eiji Yamaguchi, Masaaki Kuma, Yasutaka Kuse, Miki Kuse, Reiko Kuse
  • Patent number: 8447483
    Abstract: A working machine and a method for operating the same are provided. The working machine is provided with: a power source and a plurality of driving wheels; a working hydraulic system including at least one hydraulic pump powered by the power source for moving an implement on the working machine and/or for steering the working machine; a transmission line arranged between the power source and the driving wheels for transmitting torque from the power source to the driving wheels; and a transmission unit arranged in the transmission line for reducing the mechanical interaction between the power source and the driving wheels. The method includes: detecting at least one operational parameter indicative of a working condition of the working machine; determining if the characteristic of the transmission unit should be altered on the basis of a magnitude of the detected operational parameter; altering the characteristic of the transmission unit if it is determined to be required.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: May 21, 2013
    Assignee: Volvo Construction Equipment AB
    Inventor: Reno Filla
  • Patent number: 8442734
    Abstract: A control assist method for a vehicle including a power train connected to drive wheels by a clutch. The method updates a clutch curve which connects a position of a clutch pedal and a maximum torque that can be transmitted by the corresponding clutch, as a function of reliability thereof, the reliability being lower when the vehicle is first used and increasing with use of the vehicle.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: May 14, 2013
    Assignee: Renault S.A.S.
    Inventors: Christophe Desfriches, Alessandro Monti, Richard Pothin
  • Publication number: 20130116903
    Abstract: A method of operating a vehicle powertrain, includes: sensing a vehicle speed; selecting a plurality of control strategies; activating one of the plurality of control strategies, the control strategy including: (i) operating the vehicle in a stationary start-stop mode when the vehicle speed is below a first threshold; and (ii) operating the vehicle in a rolling stationary start-stop mode when the vehicle speed is above the first threshold but below a second threshold.
    Type: Application
    Filed: October 27, 2012
    Publication date: May 9, 2013
    Inventors: Ingo Lenz, Chris Connelly, Chris Edward Pedlar, Rainer Busch, Urs Christen, Baekhyun ("Harry") Cho
  • Patent number: 8437932
    Abstract: Various embodiments of methods, apparatus and systems that calibrate main modulation of an elector-hydraulic control system are presented. Some embodiments calibrate regulator control signals that cause a main regulator valve to develop a main line pressure based upon status of a clutch trim valve that develops a clutch feed pressure for a clutch of a transmission.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: May 7, 2013
    Assignee: Allison Transmission, Inc.
    Inventor: Charles F. Long
  • Patent number: 8437933
    Abstract: A hybrid electric vehicle has a first mode in which slippage of a clutch between an electric motor and a driving wheel is allowed and controlled by rotational speed control of the electric motor and a second mode in which the slippage of the clutch is allowed and controlled by rotational speed control of an engine. When the vehicle is stationary in the first mode, a controller reduces a control setpoint of hydraulic pressure of the clutch from an initial point. The controller identifies a reference point of the control setpoint with which actual output torque of the electric motor is substantially constant with respect to the reduction of the control setpoint. Then, the controller increases the control setpoint to a precharge point, and reduces the control setpoint to a corrected point that is lower than or substantially equal to the initial point and higher than the reference point.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: May 7, 2013
    Assignee: Jatco Ltd
    Inventors: Hiromichi Akebono, Hideharu Yamamoto, Kota Miura, Hisashi Saito
  • Patent number: 8433489
    Abstract: A transmission control system includes an up-shifting operation device, a clutch actuator, a shift actuator and a CPU. The CPU controls the clutch actuator to start a disconnection operation of a clutch at a time point when movement of an operation lever of the up-shifting operation device is started. Moreover, the CPU controls the clutch actuator to complete the disconnection operation of the clutch at a time point when the movement of the operation lever is finished. Then, the CPU shifts a gear position of a transmission by controlling the shift actuator.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 30, 2013
    Assignee: Yamaha Hatsusoki Kabushiki Kaisha
    Inventor: Katsuhiro Arai
  • Publication number: 20130103275
    Abstract: A coasting control device for reducing uneasiness experienced by a driver when pressing a clutch pedal during coasting control. The device includes a clutch control unit that, when the clutch pedal is pressed during coasting control, controls an actuator to cause an amount of hydraulic oil that depends on the amount of depression of the clutch pedal to be ejected from a clutch-free operating cylinder.
    Type: Application
    Filed: July 1, 2011
    Publication date: April 25, 2013
    Applicants: TRANSTRON INC., ISUZU MOTORS LIMITED
    Inventors: Nobuyuki Iwao, Yasushi Yamamoto, Kazuhiko Kobayashi, Hiroyuki Arai, Kouhei Takama
  • Patent number: 8428843
    Abstract: A vehicle includes a vehicle monitoring system for estimating vehicle motion states, a spatial monitoring system, an adaptive cruise control system for vehicle speed and acceleration control, a steering controller for vehicle lateral motion control, a roadway estimator, and an autonomic control system. Commanded vehicle operation is adjusted to achieve a preferred travel path based upon a predicted travel path and an estimated roadway. The preferred travel path is adapted responsive to the estimated roadway.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 23, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jin-Woo Lee, Bakhtiar Brian Litkouhi
  • Publication number: 20130096793
    Abstract: A continuously variable transmission (CVT) is provided for use on a recreational or utility vehicle. The CVT is electronically controlled by at least one control unit of the vehicle. The CVT includes a primary clutch having a first sheave and a second sheave moveable relative to the first sheave. An actuator controls movement of the second sheave.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 18, 2013
    Applicant: POLARIS INDUSTRIES INC.
    Inventor: Polaris Industries Inc.
  • Patent number: 8423213
    Abstract: A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a phase determining mechanism that determines the end of the torque phase in a shift operation, and a rotary electrical machine control mechanism that controls the torque of the rotary electrical machine using a variation of input torque. The vehicle control device is also configured with an engagement control mechanism that provides feedback controlling supplied oil pressure to an engagement side element as an engagement element on a side to be engaged after switching of shift speeds so that the rotation speed change rate of the input member becomes the target rotation speed change rate.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 16, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kohei Tsuda, Yomei Hakumura, Masahiro Asai, Yoichi Tajima, Tomokazu Ito
  • Patent number: 8417426
    Abstract: A tractor has a control system configured for disengaging the clutch a first time, selecting a first transmission ratio of the change speed gearbox, engaging the clutch a first time to drive the PTO shaft determining the speed of the PTO shaft, disengaging the clutch a second time when the PTO shaft attains a predetermined first speed, selecting a second transmission ratio of the change speed gearbox and engaging the clutch a second time to drive the PTO shaft up to a desired second speed.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 9, 2013
    Assignee: CNH America LLC
    Inventor: Antoon Vermeulen
  • Patent number: 8414450
    Abstract: A hybrid vehicle in which a clutch is disposed between an engine and a motor/generator is controlled to suppress frequent engagement/disengagement of the clutch in a case of a coasting drive while dragging the engine. A clutch control apparatus controls the clutch and selects any one of the following drive modes: 1) an EV drive mode where the vehicle travels by only driving force of the motor/generator with the clutch disengaged; 2) an HEV drive mode where the vehicle travels by driving force of the engine and/or the motor/generator with the clutch engaged; and 3) an engine brake drive mode in which the vehicle coasts or travels by the driving force of the motor/generator while dragging the engine where the clutch is engaged, and the fuel supply is stopped when a charge of the battery is greater than or equal to a threshold value.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 9, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Muetoshi Ueno, Masakazu Saito
  • Patent number: 8412430
    Abstract: A multiple clutch transmission control apparatus performs gear changing smoothly by improving clutch torque control precision, without reducing the speed of gear changing, in a vehicle or the like including a multiple clutch transmission. With this control apparatus, a control unit switches the transmission gear from the previous gear to the next gear by changing the torque transfer path by controlling the first clutch and the second clutch in a clutch changeover period. In the clutch changeover period, the control unit changes the torque transfer path by raising the clutch torque capacity of whichever of the first clutch and the second clutch is the next-gear-side clutch to reach a target value, and then lowering the clutch torque capacity of the previous-gear-side clutch.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: April 2, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Katsuhiro Arai
  • Patent number: 8412429
    Abstract: A vehicle 1 has a torque coupling 8, which is located in a driving power transmission system for transmitting the torque of an engine 2 to front and rear wheels 13f, 13r. The torque coupling 8 changes the torque distribution by adjusting the frictional engaging force of an electromagnetic clutch 16. The vehicle 1 also has a 4WD ECU 21 (CPU), which controls the operation of the torque coupling 8 based on the driving state. The 4WD ECU 21 (CPU) estimates a transfer case oil temperature Tptu. When the transfer case oil temperature Tptu is higher than or equal to a first predetermined transfer case oil temperature KTptu1, the 4WD ECU 21 executes overheat prevention control.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 2, 2013
    Assignee: JTEKT Corporation
    Inventors: Masaki Mita, Ryohei Shigeta, Tomoaki Kato
  • Publication number: 20130075220
    Abstract: A clutch water pump may include a pulley, a brake pad attached on an interior surface of the clutch compartment of the pulley, a clutch disk disposed corresponding to the brake pad in the clutch compartment, a hub rotatably mounted into the penetrating hole and coupled to the clutch disk through a plurality of spring pins, the plurality of spring pins connecting slidably the clutch disk to the hub, a magnetic actuator fixed to the hub and disposed to the clutch disk to selectively move the clutch disk toward or away from the brake pad, and a main shaft, one end of which is fixed to the center of the hub and the other end of which is fixed to an impeller. Furthermore, a method of controlling the clutch water pump according to the engine rotation speed, the coolant temperature, and a condition of the coolant temperature sensor is provided.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 28, 2013
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventors: Hyundai Motor Company, Kia Motors Corporation
  • Patent number: 8406974
    Abstract: The present disclosure relates to methods of detecting misalignment in a transmission synchronizer and methods of alignment. Detection of misalignment is accomplished via monitoring a performance characteristic of a power source configured to provide an engagement force to the synchronizer. Where misalignment is detected a predetermined torque is applied to the input or output side of the synchronizer to rotationally align synchronizer components.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 26, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Shawn Adam Holland, Jeffrey James Tumavitch, Steve Craig Meisner, Bradley Dean Riedle