Antiskid, Antilock, Or Brake Slip Control Patents (Class 701/71)
  • Patent number: 10899323
    Abstract: Systems and methods are described for coordinating and controlling vehicles, for example heavy trucks, to follow closely to behind each other, or linking to form a platoon. In one aspect, on-board controllers in each vehicle interact with vehicle sensors to monitor and control, for example, gross vehicle weight, axle loads, and stopping distance. In some aspects, two vehicles can determine information associated with their gross weight and axle load, and apply that information to assist with determining a bounding box indicating which vehicle will take longer to stop. Based on which vehicle will take longer to stop, an order of vehicles in a potential platoon is determined.
    Type: Grant
    Filed: July 8, 2018
    Date of Patent: January 26, 2021
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien
  • Patent number: 10766468
    Abstract: A method of providing an additive offset of a longitudinal acceleration signal of a traveling motor vehicle. The signal being measured by an inertial sensor is ascertained. At least the longitudinal acceleration signal, a braking signal, and a drive signal are detected. A force balance of the longitudinal dynamic of the motor vehicle is analyzed. The signals are detected both during at least one acceleration process as well as during at least one braking process. The signals during the acceleration processes are detected and/or analyzed separately from the signals during the braking processes, and the additive offset is ascertained by comparing the signals detected during the acceleration processes or the values calculated therefrom with the signals detected during the braking processes or the values calculated therefrom. The invention further relates to an electronic controller.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 8, 2020
    Assignee: Continental Teves AG & Co. OHG
    Inventors: Chen Zhang, Julien Levrier
  • Patent number: 10730491
    Abstract: Systems and methods are disclosed herein for controlling aircraft brakes. A brake control system may comprise a controller, and a tangible, non-transitory memory configured to communicate with the controller. The tangible, non-transitory memory having instructions stored thereon that, in response to execution by the controller, cause the controller to perform operations comprising: determining a braking power discrepancy of a wheel (eP,i), comparing the braking power discrepancy of the wheel (eP,i) to a threshold discrepancy value, and modulating a braking pressure applied to the wheel based on the comparison of the braking power discrepancy of the wheel (eP,i) to the threshold discrepancy value.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: August 4, 2020
    Assignee: GOODRICH CORPORATION
    Inventors: Martin Krucinski, Richard A. Poisson
  • Patent number: 10518771
    Abstract: A method for operating a speed control system of a vehicle is provided. The method comprises detecting an occurrence of a slip event, of a step encounter event, or of both events at a leading wheel of the vehicle. The method also comprises predicting that the occurrence of the detected event(s) will occur at a following wheel of the vehicle. The method yet further comprises automatically controlling vehicle speed, vehicle acceleration, or both vehicle speed and acceleration in response to the detection, the prediction, or both the detection and prediction. A speed control system comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 31, 2019
    Assignee: Jaguar Land Rover Limited
    Inventors: Andrew Fairgrieve, Daniel Woolliscroft, James Kelly
  • Patent number: 10343531
    Abstract: A control device for a regenerative braking system having control electronics, the control electronics being designed, in consideration of at least one provided first variable with respect to a utilized coefficient of friction occurring in each case at the at least one wheel which may be regeneratively braked, to determine at least one preset variable with respect to at least one hydraulic minimum braking torque to be exerted on the at least one wheel which may be regeneratively braked, and, in consideration of at least the at least one determined preset variable, to determine the at least one setpoint variable.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: July 9, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Andreas Erban
  • Patent number: 10328914
    Abstract: A method for setting a slip threshold for a vehicle movement dynamics control device of a motor vehicle is provided. The method includes defining a slip threshold starting from which the vehicle movement dynamics control device is activated in order to reduce slip, and determining wheel-specific minimum slip values for the wheels of the motor vehicle, which slip values are derived from the respective wheel-specific slip signals. The method also includes detecting a geometric slip by correlating all the determined wheel-specific minimum slip values with one another, and evaluating the wheel-specific minimum slip values that are correlated with one another. The method also includes raising the slip threshold in the event of geometric slip being detected. The present disclosure also relates to a vehicle movement dynamics control device.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 25, 2019
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Henning Kerber, Manuel Kasten, Mario Roszyk, Dieter Burkhard
  • Patent number: 10179577
    Abstract: A method for controlling an emergency braking system of a motor vehicle having a stability control system when the stability control system is deactivated or placed in a reduced mode. The method includes the step of determining whether the stability control system is in a deactivated or reduced mode and keeping the automatic emergency braking system active even if the stability control system is deactivated or in a reduced mode. The system includes temporarily activating the stability control system if a hazardous situation exists requiring generation of an emergency braking command.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: January 15, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Stefan Kappes, Florian Schweter, Markus Jung
  • Patent number: 10160437
    Abstract: A control system for a vehicle includes a camera disposed at the vehicle and having a field of view rearward of the vehicle, and at least one non-imaging sensor disposed at the vehicle so as to sense a region at least rearward and partially sideward of the vehicle. During a reversing maneuver of the vehicle along a pathway, the control, responsive to processing of image data captured by the camera, determines edges of the pathway. During the reversing maneuver of the vehicle along the narrow pathway, the control, responsive to processing of data sensed by the non-imaging sensor, determines distances to objects present at or near the determined pathway and rearward and sideward of the vehicle. The control, responsive to determination of the pathway and determination of objects present along the pathway, is operable to steer the vehicle along the pathway to reverse the vehicle along the pathway.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 25, 2018
    Assignee: MAGNA ELECTRONICS INC.
    Inventor: Anthony N. Rinaldo
  • Patent number: 10082436
    Abstract: Method for processing a measurement signal (x) from a pressure measurement cell in order to generate an output signal (y) with the aid of a filter unit (10), wherein the method involves generating the output signal (y) with the aid of the filter unit (10) by at least reducing, preferably eliminating, a noise signal contained in the measurement signal (x), continuously determining a difference between the measurement signal (x) and the output signal (y), and changing a characteristic of the filter unit (10) as soon as the difference becomes greater than a threshold value, wherein the changed characteristic of the filter unit (10) remains as long as the difference becomes smaller than the threshold value, and wherein the changing of the filter characteristic involves decreasing the reduction in the noise signal present in the measurement signal (x).
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: September 25, 2018
    Assignee: INFICON GMBH
    Inventor: Felix Mullis
  • Patent number: 9950701
    Abstract: What is described is a tire pressure sensor for use in a wheel of aircraft landing gear. The tire pressure sensor includes a position sensor configured to detect a movement of the wheel and generate a wheel movement signal based on the movement. The tire pressure sensor also includes a processor coupled to the position sensor. The processor is configured to receive the wheel movement signal, determine a wheel rotational speed of the wheel based on the wheel movement signal and generate a wheel rotational speed signal based on the wheel rotational speed.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: April 24, 2018
    Assignee: GOODRICH CORPORATION
    Inventors: Steven Keller, Paul L. Summers, Lane B. Robbins, Scott Streng
  • Patent number: 9890517
    Abstract: A hybrid wheel loader includes a control device (200) that estimates output power of an engine (1) and an electricity storage device (11) when the hybrid wheel loader is inferred on the basis of output values of detectors (62, 63) to be traveling towards an object of excavation in order to perform an excavating work, and then, if the output power is less than target power considered necessary for the excavating work, accelerates the engine (1) to a target revolution speed while increasing the electric power supplied from the electricity storage device to a traveling motor (9). Accordingly, power necessary for excavation can be drawn from the engine even when the engine revolution speed is low and there is a fear of power deficiency occurring at the time of the excavating work.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: February 13, 2018
    Assignee: KCM CORPORATION
    Inventors: Satoru Kaneko, Takashi Ikimi, Noritaka Itou, Satoshi Sekino
  • Patent number: 9604612
    Abstract: A brake hydraulic pressure control device for a vehicle in which operation of a hydraulic pressure adjustment unit that can carry out adjustment involving individually increasing/decreasing brake hydraulic pressures applied to wheel brakes for front and rear wheels is controlled for allowing differential pressure between brake hydraulic pressures of the left and right wheel brakes, wherein allowable differential pressure setting means is arranged for setting the allowable differential pressure corresponding to the coefficient of friction of a road surface, hydraulic pressure acquisition means acquires a lock hydraulic pressure, which is a hydraulic pressure when starting anti-lock brake control for the respective wheel brake, and when the lock hydraulic pressure of the wheel brakes for the front wheels acquired by the hydraulic pressure acquisition means is no greater than a predetermined value, application of the allowable differential pressure corresponding to the coefficient of friction of the road surface
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 28, 2017
    Assignees: Autoliv Nissin Brake Systems Japan Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Tomoaki Sekiya, Shigehiro Honda, Ryosuke Ueda
  • Patent number: 9604526
    Abstract: A method for controlling torque delivery in a vehicle powertrain using an enhanced limited operating strategy. The strategy is implemented when a powertrain controller fails to respond properly to a driver command for traction wheel torque whereby a modified wheel torque at vehicle traction wheels under driver control is made available.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: March 28, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Greg Edward Gauthier, John Proietty
  • Patent number: 9457626
    Abstract: A tire separation warning system and method that includes a sensor that senses pressure of a tire and a receiver that calculates the amount of change in tire radius from the pressure of the tire received from the sensor. In addition, the receive estimates tire separation risk. A display warns a driver of the tire separation risk, when the tire separation risk is transmitted from the receiver.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: October 4, 2016
    Assignee: Hyundai Motor Company
    Inventor: Jong Ho Lee
  • Patent number: 9365196
    Abstract: A method and device for operating a wheel slip control apparatus, including determining wheel speeds of wheels compensated with respect to wheel speed differences during a turn as input variables for the wheel slip control apparatus, with which a) a neutral steering, understeering or oversteering driving condition of the vehicle is determined from the driving behavior during a turn, b) depending on the determined condition of the vehicle, either the reference or actual yaw rate is used to calculate a turn radius related to a selected point on the vehicle, c) wheel-related turn radii for at least some wheels are determined from the turn radius related to the selected point, d) reference factors are determined from the wheel-related turn radii and a common reference turn radius for at least some wheels, and e) the compensated wheel speeds are each determined from the reference factors and measured wheel speeds for at least some wheels, and f) the compensated wheel speeds are used as input variables for a wheel
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: June 14, 2016
    Assignee: KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH
    Inventor: Martin Vorreiter
  • Patent number: 9277385
    Abstract: A method for requesting emergency assistance for a vehicle involved in an accident. The method includes the following: storing vehicle operating conditions prior to the accident in a storage device; detecting the accident; after the accident, deactivating charging of a smartphone being charged on a wireless charging pad; transmitting to the smartphone the vehicle operating conditions stored prior to the accident; transmitting the vehicle operating conditions from the smartphone to emergency authorities; and calling the emergency authorities using the smartphone and initiating handsfree communication with the emergency authorities.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 1, 2016
    Assignees: Denso International America, Inc., DENSO CORPORATION
    Inventor: Reiji Iwamoto
  • Patent number: 9221473
    Abstract: Disclosed is a travel velocity compensation apparatus for railway vehicles and a method thereof for compensating a travel velocity when there is generated a slide between a wheel and a railway, the apparatus including a velocity measurement unit measuring a travel velocity of a railway vehicle, a velocity estimation unit estimating the travel velocity using travel information of railway vehicle and rail information received from at least one sensor, a detection unit generating wheel slide information by determining whether wheels of the railway vehicle slide, using the travel velocity of the railway vehicle measured by the velocity measurement unit and the travel velocity estimated by the velocity estimation unit, and a selection unit selecting, as a travel velocity, any one of the travel velocity measured by the velocity measurement unit using the wheel slide information generated by the detection unit and the travel velocity estimated by the velocity estimation unit.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: December 29, 2015
    Assignee: LSIS Co., Ltd.
    Inventors: Jong Chul Jung, Yong Gee Cho
  • Patent number: 9221436
    Abstract: A brake controlling unit detects a brake actuation object based on images captured by a running environment recognizing unit and sets a target brake pre-pressure actuation distance based on a relative speed between the brake actuation object and a subject vehicle. When an actual distance between the subject vehicle and the brake actuation object reaches the target brake pre-pressure actuation distance, the brake controlling unit outputs to a brake driving unit a driving signal that generates a brake pre-pressure to make the brake clearance of a brake minimal.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 29, 2015
    Assignee: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventor: Yoshiyuki Shimizu
  • Patent number: 9156451
    Abstract: Systems and methods for a tire/runway friction property estimation method based on measured wheel speed, calculated acceleration, wheel reference and tire normal force estimation are disclosed. Based on the resulting estimations, a map and/or function of position for the friction properties may be formed and transmitted to external systems after an aircraft stop is completed.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: October 13, 2015
    Assignee: GOODRICH CORPORATION
    Inventors: Richard Paul Metzger, Jr., Richard Kolk
  • Patent number: 9156465
    Abstract: A method of operating a brake-assist-steering system of a vehicle comprises the steps of receiving a signal from a wheel position detector. A theoretical wheel speed for an inside non-steered wheel is computed. A brake operably associated with the inside non-steered wheel is actuated when an actual wheel speed of the inside non-steered wheel is greater than the theoretical wheel speed of the inside non-steered wheel.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 13, 2015
    Assignee: EATON CORPORATION
    Inventor: Steven John Zumbusch
  • Patent number: 9150204
    Abstract: A braking force control device can control braking forces of the respective wheels of a vehicle, suppresses an increase of the braking force of a first wheel that is a wheel having a relatively large slip amount in a pair of right/left wheels and increases the braking force of a second wheel that is a wheel having a relatively small slip amount. The braking force control device may suppress the increase of the braking force of the first wheel before the friction coefficient of a road surface to the first wheel reaches a peak and when the friction coefficient is in the vicinity of the peak. It is preferable to suppress the increase of the braking force of the first wheel by holding the braking force of the first wheel.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 6, 2015
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, ADVICS CO., LTD.
    Inventors: Satoshi Udaka, Noritaka Yamada, Hideyuki Aizawa, Akifumi Doura
  • Patent number: 9150109
    Abstract: A braking control device, includes a regenerative braking control part, a wheel speed differential detection part, and a regenerative restriction part. The regenerative braking control part is configured to carrying out regenerative braking on the drive wheels based on a deceleration request operation. The wheel speed differential detection part is configured to determine a wheel speed differential between the driven wheel speed and the regenerative braking wheel speed. The regenerative restriction part is configured to restrict the regenerative braking amount when the wheel speed differential exceeds a restriction initiation threshold value. The regenerative restriction part, during restriction of the regenerative braking amount, is configured to repeatedly carrying out a restriction in accordance with a large restriction phase in which a decrease in gradient of the regenerative braking amount is large and a restriction in accordance with a small restriction phase in which the decrease in gradient is small.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 6, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Keigo Ajiro
  • Patent number: 9128115
    Abstract: In accordance with the present inventive concept, there is provided a method for evaluating deceleration of a vehicle. The method comprises: measuring a deceleration of the vehicle during a first time interval, estimating a speed of the vehicle at a first time instant in a second time interval, which is different from the first time interval, based on the measured deceleration, measuring a speed of the vehicle at the first time instant, comparing the estimated speed to the measured speed, and generating a signal based on the comparison. There is also provided an apparatus for evaluating deceleration of a vehicle.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 8, 2015
    Assignee: DRIVEC AB
    Inventor: Johan Göthe
  • Patent number: 9102404
    Abstract: The invention relates to a method for controlling the deceleration on the ground of a vehicle. The method obtains, from the crew of the vehicle or from an outside operator, parameters relating to its current position and its current speed. Then it determines a reference position and speed of the vehicle, the reference position being a theoretical position to be reached by the vehicle. Finally it determines, from indicated parameters and from reference parameters, a deceleration command with a view to ending up at a target position at a preselected speed.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: August 11, 2015
    Assignee: AIRBUS OPERATIONS S.A.S.
    Inventors: Malika Essadouni, Xavier Dal Santo
  • Patent number: 9052713
    Abstract: A method for controlling a vehicle, including determining a speed curve on a coasting route, in order to let the vehicle on the coasting route coast from an actual speed to a setpoint speed, detecting an additional vehicle approaching the vehicle from behind on the coasting route, and raising the speed of the vehicle compared to the determined speed behavior on the coasting route, in order to produce a predetermined threshold distance from the additional vehicle.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: June 9, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Udo Schulz, Rainer Bartsch
  • Publication number: 20150149056
    Abstract: A vehicle brake system and a method of control. The vehicle brake system may include a friction brake and a secondary brake that may be applied to slow rotation of a vehicle wheel when a wheel slip condition is detected.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: ArvinMeritor Technology, LLC
    Inventors: Yixin Yao, John Ashley Peterson
  • Patent number: 9043150
    Abstract: Some embodiments provide a mapping application that provides routing information to third-party applications on a device. The mapping application receives route data that includes first and second locations. Based on the route data, the mapping application provides a set of routing applications that provide navigation information. The mapping application receives a selection of a routing application in the set of routing applications. The mapping application passes the route data to the selected routing application in order for the routing application to provide navigation information.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: May 26, 2015
    Assignee: APPLE INC.
    Inventors: Scott Forstall, Marcel van Os, Bradford A. Moore, Brady A. Law
  • Patent number: 9037377
    Abstract: A vehicle includes a braking force application device that executes braking force holding control which holds braking force irrespective of braking operation by a driver during a stop on a slope; and a control limiting device that limits execution of the braking force holding control when a shift position is set in a neutral position.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 19, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mitsuaki Higa, Katsuhiko Yamaguchi
  • Patent number: 9020744
    Abstract: A method of controlling a three-wheeled vehicle comprises: determining a state of a load sensor associated with a portion of vehicle; selecting a first start mass when the load sensor is in a non-loaded state; selecting a second start mass when the load sensor is in a loaded state; determining at least one vehicle parameter during operation of the vehicle; determining a calculated mass based at least in part on the at least one vehicle parameter; determining an effective mass based at least in part on the calculated mass and a selected one of the first and second start masses; defining an output of an electronic stability system of the vehicle based at least in part on the effective mass; and controlling a stability of the vehicle using the output of the electronic stability system.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: April 28, 2015
    Assignee: Bombardier Recreational Products Inc.
    Inventor: Mario Dagenais
  • Publication number: 20150105990
    Abstract: A method of controlling vehicle stability includes the steps of obtaining a measured yaw rate from the vehicle, generating a predicted yaw rate based on the measured yaw rate, calculating a first error signal based on a difference between the measured yaw rate and a desired yaw rate, calculating a second error signal based on a difference between the predicted yaw rate and the desired yaw rate, and sending a selected one of the first and second error signals to a yaw controller to conduct stability control. The predicted yaw rate can be generated by sending the measured yaw rate through a lead filter.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 16, 2015
    Inventors: Christian T. Chimner, John A. Grogg
  • Patent number: 9002609
    Abstract: A vehicle brake control system includes a regenerative braking control component, a frictional braking control component, a calculating component and a controlling component. The regenerative braking control component controls a regenerative braking device to provide a regenerative braking torque. The frictional braking control component controls a frictional braking device to provide a frictional braking torque. The calculating component calculates a regenerative braking torque filter processing value based on a fluctuation frequency of the regenerative braking torque. The controlling component, during a first condition, operates a motorized power assist control device based on the regenerative braking torque filter processing value, instead of the regenerative braking torque, to moderate the frictional braking torque, such that the regenerative braking torque and the moderated frictional braking torque provide a target braking torque based on a braking operation.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: April 7, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kensuke Nakamura, Noriaki Fujiki, Keigo Ajiro
  • Patent number: 9002578
    Abstract: A vehicle control system configured to judge a vehicle behavior or a driving preference of a driver based on acceleration of the vehicle including at least longitudinal acceleration. An acceleration value used in the judgment is obtained on the basis of a weighted detection value of the actual longitudinal acceleration of the vehicle, and a weighted parameter which is varied by an operation to increase a driving force of the vehicle executed by the driver. A weight on the parameter is reduced in case a weight on the detection value of the longitudinal acceleration is increased, and the weight on the parameter is increased in case the weight on the detection value of the longitudinal acceleration is reduced.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shin Noumura, Kaiji Itabashi, Toshio Tanahashi, Keisuke Takeuchi, Yoshimitsu Agata, Tomohide Kawasaki
  • Patent number: 8996268
    Abstract: A method is provided for controlling a brake system of a motor vehicle having a brake device (40) with a hydraulic brake unit (41) and a recuperation brake unit (42). The method includes calculating (S1) a hydraulic brake force characteristic curve (B2) of the hydraulic brake unit (41) on the basis of at least one detected characteristic of the brake system, selecting (S2) a generator-based brake force characteristic curve (G1-G4) of the recuperation brake unit (42) on the basis of a predefined criterion and as a function of the calculated hydraulic brake force characteristic curve (B2), and controlling (S3) the hydraulic brake unit (41) and the recuperation brake unit (42) in accordance with a detected degree of actuation of the brake pedal (10), the calculated hydraulic brake force characteristic curves (B2), and the selected generator-based brake force characteristic curve (G1-G4).
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: March 31, 2015
    Assignee: Dr. Ing. h.c.F. Porsche Aktiengesellschaft
    Inventors: Thomas Garbe, Bjoern-Hendrik Reinhard
  • Patent number: 8989979
    Abstract: A four-wheel-drive vehicle includes a clutch that is able to allow and interrupt transmission of driving force to a propeller shaft, and a traction control unit that controls at least one of the driving force generated by an engine and braking force applied to right and left front wheels to suppress a slip of the right and left front wheels. When the drive mode is switched from a two-wheel-drive mode to a four-wheel-drive mode, if the relative rotational speed between a first rotary member and a second rotary member constituting a clutch is equal to or higher than a predetermined value, an ECU outputs a control command signal for suppressing the slip of the right and left front wheels to the traction control unit.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: March 24, 2015
    Assignee: JTEKT Corporation
    Inventors: Kenta Taniguchi, Akira Kodama, Tomoaki Kato, Masaki Mita
  • Patent number: 8983749
    Abstract: A road friction coefficient estimation system and method uses tire load estimation sensors attached to a vehicle's tires. Tire load and slip angle for each tire are estimated from sensor data. From vehicle CAN bus sensors, vehicle acceleration and yaw rate operational parameters are obtained and a dynamic observer model calculates lateral and longitudinal force estimates on each of the tires. An individual wheel force estimation is calculated on each tire from the lateral and longitudinal force estimates for each tire. From the dynamic slip angle estimation on each tire and the individual wheel force estimation on each of the tires, a model-based friction estimation is made.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: March 17, 2015
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kanwar Bharat Singh
  • Patent number: 8983747
    Abstract: In a brake control method of a power wheelchair, the power wheelchair includes an electronic gradienter, a brake sensor, a brake apparatus, and a brake controller. The electronic gradienter detects stability data of the power wheelchair to obtain a gradient angle and a gradient direction of the power wheelchair. When the gradient angle does not exceed a safety angle range, the brake controller controls the brake apparatus to brake the power wheelchair, and the brake sensor detects braking data of the power wheelchair. The method calculates a braking strength value for braking each wheel of the power wheelchair according to the gradient angle and the gradient direction of the power wheelchair when the brake operation on the power wheelchair is improper. The brake controller adjusts the brake apparatus to brake the power wheelchair according to the braking strength value of each of the wheels.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 17, 2015
    Assignee: Zhongshan Innocloud Intellectual Property Services Co., Ltd.
    Inventors: Hou-Hsien Lee, Chang-Jung Lee, Chih-Ping Lo
  • Publication number: 20150073677
    Abstract: A device and a method for determining an absolute angular position of a wheel of a vehicle. A wheel unit is mounted on the wheel side and configured to determine data which permit a reference limb of the wheel, and to wirelessly transmit the acquired data. A receiver unit is mounted on the vehicle side and receives the data of the wheel unit. A reference limb-determining device determines the reference limb of the wheel on the basis of the received data. A measuring device generates, in each case, one signal when the wheel rotates by a previously determined angle, and a counting device counts the signals generated by the measuring device. An angle-determining device determines an absolute angular position of the wheel on the basis of the signals counted by the counting device, and on the basis of the specific reference limb.
    Type: Application
    Filed: March 11, 2013
    Publication date: March 12, 2015
    Inventors: Matthias Kretschmann, Holger Faisst, Takeaki Yajima
  • Patent number: 8977467
    Abstract: A control unit for brake-slip-controlled operation of the brake device in a state in which braking torque is transferred from the rear to the front wheels by the coupling arrangement, at least one rotational speed sensor in a drive train of the vehicle for inputting into the control unit rotational speed signals representing the rotational behavior of the coupled front wheels and rear wheels, at least one acceleration sensor for inputting into the control unit acceleration signals representing the vehicle longitudinal acceleration, and/or a vehicle GPS device for inputting into the control unit position signals representing positions of the vehicle, the control unit determining at least one first variable, which is characteristic of a vehicle reference speed and/or a vehicle reference acceleration, based on the acceleration and/or position signals, and so as to determine a second variable, which is characteristic of the rotational behavior of the coupled front and rear wheels, based on the rotational speed si
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 10, 2015
    Assignee: Knorr-Bremse Systeme Fuer Nutzfahrzeuge GmbH
    Inventors: Michael Herges, Andreas Wimmer
  • Patent number: 8977466
    Abstract: Embodiments disclose a vehicle brake fluid pressure controller. The controller includes: a normally-open proportional solenoid valve provided in a hydraulic passage extending from a hydraulic pressure source to a wheel brake; a normally-closed solenoid valve provided in a hydraulic passage extending from the wheel brake to the hydraulic pressure source; an antilock brake control module configured to perform an antilock brake control for suppressing the locking of a wheel by performing a pressure increase control, a pressure decrease control and a pressure holding control for a hydraulic pressure of the wheel brake, using the normally-open proportional solenoid valve and the normally-closed solenoid valve.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 10, 2015
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Tomoaki Sekiya
  • Patent number: 8977463
    Abstract: A vehicle brake controller is capable of executing limit control for limiting increase in braking force applied to front wheels by using a deceleration of a vehicle. The vehicle brake controller is configured to start the limit control when the deceleration of the vehicle becomes greater than or equal to a start determination value before a start determination time period elapses after a deceleration starting point in time, at which the deceleration of the vehicle is started by application of braking force at least to the front wheels. The vehicle brake controller is configured to end the limit control if the deceleration of the vehicle is less than an end determination value, which is greater than the start determination value, at a point in time when an end determination time period, which is longer than the start determination time period, has elapsed from the deceleration starting point in time.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 10, 2015
    Assignee: Advics Co., Ltd.
    Inventors: Takuya Inoue, Yusuke Takeya, Masato Terasaka
  • Patent number: 8977465
    Abstract: Disclosed herein is a vehicle braking system and control method. The vehicle braking control method includes detecting velocities of respective wheels provided at a vehicle, calculating a vehicle velocity based on the velocities of the respective wheels, calculating slip amounts of the respective wheels by comparing the vehicle velocity and the velocities of the respective wheels, calculating change rates of the slip amounts of the respective wheels, obtaining regenerative braking force corresponding to one of the slip amounts and the slip change rates of the respective wheels, and controlling regenerative braking using the obtained regenerative braking force.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 10, 2015
    Assignee: Mando Corporation
    Inventor: Sang Mook Kim
  • Patent number: 8972144
    Abstract: A method for controlling an antislip-regulated friction brake system of a rail vehicle or rail vehicle train having a number of braked axles which subjects at least two selected axles to a braking pressure exceeding the braking pressure required for braking; measures at least one variable representing the maximum transmittable frictional force in each case between the wheels of the selected axles and the rail; prepares a list associating the selected axles with the respectively transmittable brake friction force; identifies at least one brake-slipping axle from the selected axles in which a brake slip exceeding a predetermined extent occurs; calculates lost braking work; identifies from the list at least one axle in which brake-slipping does not occur or occurs to a permissible extent; and applies the brakes on at least one axle.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 3, 2015
    Assignee: Knorr-Bremse Systeme fur Schienenfahrzeuge GmbH
    Inventors: Marc-Oliver Herden, Matthaeus Englbrecht, Andreas Trinkberger
  • Patent number: 8965655
    Abstract: A method and device for operating a brake-slip regulating arrangement of a vehicle brake system in various operating modes, in accordance with driving conditions, including: activating, in an on-road operating mode, the arrangement on at least one rear axle and one front axle, even in the off-road operating mode, the arrangement continues to operate on at least one rear axle of the vehicle until the brake slip on at least one wheel of a front axle is less than or equal to a specified brake-slip limit; if the specified brake-slip limit is exceeded by the brake slip on the at least one wheel of the front axle, putting the arrangement out of operation on the rear axle and is not put into operation again until the brake slip on the at least one wheel of the front axle is again less than or equal to the specified brake-slip limit.
    Type: Grant
    Filed: February 19, 2011
    Date of Patent: February 24, 2015
    Assignee: Knorr-Bremse Systeme fuer Nutzfahrzeuge GmbH
    Inventors: Gerhard Wieder, Adnan Mustapha
  • Patent number: 8965609
    Abstract: An electric vehicle is presented. The electric vehicle may include a front motor for driving a front wheel; a rear motor for driving a rear wheel; a target torque determiner for determining a target torque of the front motor and a target torque of the rear motor, based on at least a displacement amount of an accelerator operation member operated by a driver; and a motor controller for controlling the front motor and the rear motor to cause the front motor to output the target torque and the rear motor to output the target torque.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 24, 2015
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Izumi Takagi
  • Patent number: 8958968
    Abstract: A traction control device for a motorcycle eliminates a need for a waiting time for detecting an amount of change in a vehicle state and a subsequent prediction time, and can execute quick traction control. The traction control device includes an engine driving force control unit, for calculating a real slip ratio of the motorcycle, setting a target slip ratio according to a driving state of the motorcycle, and controlling a driving force of an engine so that the real slip ratio becomes the target slip ratio. The traction control device also includes a throttle grip opening degree sensor for detecting an opening degree of a throttle grip; and a bank angle sensor for detecting a bank angle of the motorcycle. The engine driving force control unit calculates the target slip ratio on a basis of the throttle opening degree and the bank angle of the motorcycle.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Fuyuki Kobayashi, Yoichiro Fukao, Yohei Maruyama, Tatsuya Ito
  • Patent number: 8954249
    Abstract: A braking force control apparatus for a vehicle estimates the friction coefficient ? of a road surface as the state of the road surface on which the vehicle travels, and determines an ideal braking force ?W by making use of the estimated road surface friction coefficient ?. When ? is equal to or greater than a predetermined friction coefficient ?0, the braking force control apparatus operates an in-wheel motor in a regeneration state to generate a motor braking torque Tmr, and causes a friction brake mechanism to generate a frictional braking force Bf computed by subtracting Tmr from ?W. When ? is less than ?0, the braking force control apparatus operates the in-wheel motor in a power running state to generate a motor driving torque Tmc, and causes the friction brake mechanism to generate a Bf computed by adding Tmc to ?W.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masatoshi Nakatsu, Fumito Kurata
  • Patent number: 8954214
    Abstract: A motor assembly comprises an electric power train that is adapted to be connected to a power source and is also adapted to impart a torque to a wheel when the motor assembly is operating. The assembly further comprises a power determination means adapted to determine the amount of power supplied from the power source to the electric power train when the motor assembly is operating. In addition, the assembly comprises a rotational speed determination means adapted to determine a rotational speed of the wheel when the motor assembly is operating. Moreover, the assembly comprises a torque determination means adapted to determine a command torque value indicative of a requested torque to the wheel.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Volvo Car Corporation
    Inventors: Hans Pehrson, Sture Wingard
  • Publication number: 20150039166
    Abstract: In order to achieve a vehicle wheel (10) slip relative to a roadway (12) while braking the vehicle, said slip being as advantageous as possible, the rotational speed (w) of the wheel (10) can be actively reduced by an ABS by means of a braking intervention and passively allowed to accelerate again via the roadway (12) when the brake is released. The slip of the wheel (10) oscillates by an optimal slip value during the ABS regulating process. The aim of the invention is to improve an anti-lock braking system for a vehicle. In the method according to the invention, at least one wheel (10) of the vehicle is supplied with a braking torque (Mb) in order to temporarily reduce a travel speed (v) of the vehicle relative to a rolling surface (12), said braking torque acting against a rotating direction (14) of the wheel (10).
    Type: Application
    Filed: August 16, 2012
    Publication date: February 5, 2015
    Inventors: Dominik Bergmann, Ludger Fiege, Gunter Freitag, Matthias Gerlich, Stefan Grieser-Schmitz, Eugen Lanze, Ries Robinson
  • Patent number: 8948994
    Abstract: The invention relates to an aircraft braking system having brakes with electromechanical braking actuators (103) adapted to press selectively against associated stacks of disks in order to generate a braking torque on associated wheels of the aircraft; at least one control module (130) receiving braking setpoints and responding by generating a braking command (121); and at least one power module (120) responding to the braking command by delivering AC power to the motors of actuators connected to the power module so that the motors develop a braking force corresponding to the braking setpoints. According to the invention, the control module includes a digital processor stage (131) and an analog processor unit (135).
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 3, 2015
    Assignee: Messier-Bugatti-Dowty
    Inventor: David Frank
  • Patent number: 8942907
    Abstract: A method for avoiding reducing scoring of the brake disc or the brake drum of a vehicle driven under rainy conditions calculates a product of three parameters, and activates an automatic braking operation for the vehicle, regularly, whenever the product exceeds the pre-determined threshold level. The first parameter is a rain intensity based parameter, a measure of the current raining intensity. The second parameter is a brake-activation-free driving time parameter, representing the time elapsed since the braking system of the vehicle was activated last. The third parameter is a speed parameter, which represents a current speed of the vehicle. As the automatic braking operation is carried out, the particles of dust, water, snow and de-icing substances, adhered to the brake disc of the vehicle, and causing scoring of the brake disc, are quickly removed, thus, reducing disc scoring.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: January 27, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Ian Moore, Thomas Svensson