During Cornering Or Turning Of Vehicle Patents (Class 701/72)
  • Patent number: 8738265
    Abstract: A system and a method for assisting a driver of a vehicle to turn the vehicle when driving during low-mu surface conditions. The vehicle has a steering system, a plurality of wheels and a brake system allowing individual braking of the respective wheels of the vehicle. The system comprises a controller arranged to detect if the vehicle accelerates after the brakes of the vehicle have been applied, and detect a driver command to turn the vehicle in either direction. If both detections are positive the controller is further arranged to release the brake force on a side of the vehicle opposite to the detected turning command direction.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 27, 2014
    Assignee: Volvo Car Corporation
    Inventor: Mats Jonassson
  • Publication number: 20140142831
    Abstract: In a braking force control system for a vehicle having a braking system capable of controlling braking force of each of right and left front wheels and right and left rear wheels independently of one another, when anti-skid control starts being performed on one of the front wheels while the vehicle is running on a road having different coefficients of friction on the left side and right side thereof, increase of the braking force of the other front wheel laterally opposite to the above-indicated one front wheel is suppressed, and increase of the braking force of at least one of the right and left rear wheels is suppressed.
    Type: Application
    Filed: July 13, 2012
    Publication date: May 22, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Satoshi Shimizu
  • Patent number: 8718890
    Abstract: A materials handling vehicle is provided comprising: a frame; wheels supported on the frame; a traction motor coupled to one of the wheels to effect rotation of the one wheel; a speed control element operable by an operator to define a speed control signal corresponding to a desired speed of the traction motor; a system associated with a steerable wheel to effect angular movement of the steerable wheel; and control apparatus coupled to the speed control element to receive the speed control signal, and coupled to the traction motor to generate a drive signal to the traction motor in response to the speed control signal to control the operation of the traction motor. The control apparatus may determine an acceleration value for the traction motor based on at least one of an angular position of the steerable wheel, a speed of the traction motor and a current position of the speed control element as defined by the speed control signal.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 6, 2014
    Assignee: Crown Equipment Corporation
    Inventors: George Robert Wetterer, James Francis Schloemer, Monty L. Crabill, Eric L. Jensen
  • Patent number: 8712662
    Abstract: The vehicle motion control device performs anti-lateral overturn control for increasing a brake force to be generated at a front inside wheel of a vehicle in order to cause skidding at the front inside wheel when a condition for increasing a brake force to be generated at an outside wheel is satisfied, wherein the condition is that the vehicle motion control device is in the anti-lateral overturn mode and the vehicle is turning.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: April 29, 2014
    Assignee: Advics Co., Ltd.
    Inventor: Toshihisa Kato
  • Patent number: 8712659
    Abstract: The invention relates to a method for preventing tip-over of a motor vehicle in the lateral direction, in which a finite number of predefined driving states is specified; in which a determination is made as to which of the predefined driving states the vehicle is in instantaneously, the predefined driving state thus determined being dependent on sensor signals and on that predefined driving state in which the vehicle was most recently; and as a function of the predefined driving state instantaneously present, at least one braking intervention is carried out in order to prevent the tip-over.
    Type: Grant
    Filed: July 4, 2005
    Date of Patent: April 29, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Martin Kieren, Gero Nenninger, Matthew Nimmo, Flavio Nardi, Wadim Napolskich, Andris Samsons
  • Patent number: 8700282
    Abstract: A method and apparatus for controlling a vehicle involves determining if the vehicle is swaying and if the vehicle is swaying, reducing a torque of an engine of the vehicle and/or applying independent braking forces to each wheel of the vehicle. A vehicle for controlling vehicle sway includes an engine, a plurality of wheels, a braking system configured to apply independent braking forces to each wheel, and a controller configured to control the engine and the braking system. The controller is configured to determine a correlation coefficient in accordance with any phase shift occurring between a yaw acceleration signal and a lateral acceleration signal. The correlation coefficient is compared to a threshold value to determine whether the vehicle is swaying. If the vehicle is swaying, the controller causes a torque of the engine to be reduced and/or braking forces to be applied independently to each wheel.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Advics Co., Ltd.
    Inventors: Akitaka Nishio, Kenji Asano, Hisashi Kajita
  • Patent number: 8676464
    Abstract: A vehicle control system configured to stabilize a behavior of a vehicle during turning by correcting a driving force or a braking force. The vehicle control system comprises a lateral acceleration detecting means detecting longitudinal acceleration acting in an axle direction of the vehicle Ve (step S102); and a driving/braking force correcting means determining a changing amount Fctrl and a changing rate DFctrl of the correction based on the lateral acceleration Gy in case the running vehicle Ve is turned.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: March 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Soichiro Shimura, Hitoshi Matsunaga, Kazuya Okumura
  • Patent number: 8670909
    Abstract: An automotive vehicle may include one or more controllers, a braking system and an electric machine. The one or more controllers may be configured to determine whether the vehicle is about to roll over. The braking system may be configured to apply a braking torque for a time period, under the command of the one or more controllers, to a front traction wheel to cause the front traction wheel to skid or slide relative to a road if the vehicle is about to roll over. The electric machine may be configured to generate a propulsion torque, under the command of the one or more controllers, during the time period.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: William Paul Perkins, Michael Edward Brewer
  • Patent number: 8670907
    Abstract: A first acceleration gear ratio is acquired for accelerating a host vehicle in a first acceleration zone following a first zone ahead of the host vehicle, and a second acceleration gear ratio is acquired for accelerating the host vehicle in a second acceleration zone following a second zone ahead of the first zone. A control is executed to set the gear ratio of the host vehicle to the first acceleration gear ratio in a first deceleration zone in order to decelerate the host vehicle before entering the first zone. A control is executed to set the gear ratio of the host vehicle to the second acceleration gear ratio when the host vehicle must decelerate with respect to the second zone while traveling in the first acceleration gear ratio.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 11, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yoshito Kondou, Takayuki Miyajima, Atsushi Takeuchi
  • Patent number: 8666626
    Abstract: A turning control device for a vehicle which generates a yaw moment in the body of a vehicle includes: a steering wheel turning amount detection device which detects a steering wheel turning amount of the vehicle; a vehicle speed detection device which detects a vehicle speed of the vehicle; a feedforward control amount calculation unit which calculates a feedforward control amount based on at least the steering wheel turning amount; a braking force control amount calculation unit which determines a braking force control amount based on the feedforward control amount; a braking control device which controls the braking force based on the braking force control amount; and a steering direction determination device which determines whether a steering direction is an incremental steering direction or a returning-steering direction. The feedforward control amount calculation unit includes a feedforward control amount correction unit which corrects the feedforward control amount.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tomoyuki Futamura, Takeshi Kojima, Kazutaka Ohmura
  • Patent number: 8666582
    Abstract: A vehicle steering feel improving apparatus is provided for a vehicle, wherein the vehicle is capable of running with a road wheel driven by a driving force from a power source. The vehicle steering feel improving apparatus includes a steering operation detecting means that detects a condition that steering operation is being performed to steer a steerable wheel of the vehicle. A driving force fluctuating means repeatedly fluctuates the driving force to the road wheel, while the steering operation detecting means is detecting the condition that steering operation is being performed.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 4, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yusuke Kageyama, Kazuhito Kato
  • Patent number: 8666628
    Abstract: A torque distribution control apparatus for a four-wheel drive vehicle includes a vehicle-speed detector configured to detect a vehicle speed of the vehicle. A wheel-speed detector is configured to detect wheel speeds of main driving wheels and sub-driving wheels of the vehicle. A sub-driving-wheel distribution-torque calculator is configured to calculate a sub-driving-wheel distribution torque in accordance with a rotation speed difference between the main driving wheels and the sub-driving wheels calculated based on an output from the wheel-speed detector. A torque limiter is configured to limit an upper limit of the sub-driving-wheel distribution torque. A controller is configured to control the sub-driving-wheel distribution torque to be transmitted to the right and left sub-driving wheels by right and left torque distribution clutches in accordance with a driving state of the vehicle.
    Type: Grant
    Filed: June 27, 2010
    Date of Patent: March 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masatoshi Noguchi, Nor Hairuddin, Yusuke Sakaguchi
  • Patent number: 8660750
    Abstract: A system for controlling a vehicle having a brake assembly for exerting braking force on at least one wheel on the basis of a number of control parameters is provided. The system has a vehicle stability control system configured to generate the control parameters as a function of a control quantity associated with the intensity of the braking force to be exerted on the wheels; and a vehicle handling enhancement system configured to calculate, in the presence of cornering acceleration of the vehicle, a reference vehicle yaw rate on the basis of at least the longitudinal velocity of the vehicle and the steer angle of the vehicle, and to adjust the control quantity to zero the difference between the actual yaw rate and the reference vehicle yaw rate.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 25, 2014
    Assignee: Fiat Group Automobiles S.p.A.
    Inventors: Sergio M. Savaresi, Matteo Corno, Sebastian Campo, Andrea Fortina, Nicola Natali
  • Patent number: 8634939
    Abstract: Methods are provided for controlling a vehicle speed during a downhill travel. Based on the estimated grade of the downhill travel and further based on an input received from the operator, different combinations of an engine braking torque and a regenerative braking torque are used to maintain the vehicle speed during the downhill travel. A battery rate of charging is also adjusted based on the duration or distance of the downhill travel, as indicated by the operator input.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: January 21, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Matthew Allen Warner, Mathew Alan Boesch, Fazal Urrahman Syed
  • Patent number: 8612109
    Abstract: In vehicular running apparatus and method, a yaw rate target deceleration calculated on a basis of a yaw rate and a preset lateral acceleration set value is compared with a navigation target deceleration calculated on a basis of a target vehicle speed calculated on a basis of a state of a curved road located in front of a running road on which the vehicle is running and the preset lateral acceleration to select a target deceleration from one of the yaw rate and navigation target decelerations which is lower than the other and a target vehicle speed command value is calculated on a basis of the selected target deceleration, the calculated vehicle speed command value being outputted to decelerating means of the vehicle.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 17, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masahide Nakamura, Koki Minegishi
  • Patent number: 8600607
    Abstract: The invention describes a method for allocating identifiers of wheel electronics of a tire pressure monitoring system to positions of wheels of a vehicle, the simultaneously occurring rotation speeds of the wheels, normalized on a consistently chosen rolling radius of the wheels differ during cornering because of the different positions of the wheels on the vehicle, so that the positions of the wheels can be sorted according to increasing speed of the wheels during cornering, the wheel electronics of each wheel comprising a pressure sensor, a motion sensor, a memory and a transmitter, which transmits signals to a receiver being connected to an evaluation device, which receives the transmitted identifiers and compares the distances which the corresponding wheels have traveled in a defined time span, sorts the identifiers according to the length of the distance traveled in the defined time span and allocates the identifiers to the wheel positions.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 3, 2013
    Assignee: Huf Huelsbeck & Fuerst GmbH & Co. KG
    Inventors: Ralf Kessler, Andreas Kraft, Markus Wagner, Juergen Schoenbeck, Peter Brand
  • Patent number: 8588997
    Abstract: A control circuit for operating the lights of a vehicle. In one embodiment, the rear lights of the vehicle are controlled by the control circuit. The control circuit illuminates two or more of the vehicle lights in a common pattern to indicate a specific vehicle operation. When the vehicle simultaneously performs two operations, the controller may transition the lights to illuminate in different patterns to clearly indicate the separate vehicle operations. The controller may further provide for adjusting the light intensity of one or more of the lights. The lights may be adjusted to have a similar intensity to prevent confusion when the different lights are used in combination to indicate a vehicle operation.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 19, 2013
    Assignee: Custom Dynamics LLC
    Inventors: David T. Pribula, Jonathan Mahtaban
  • Patent number: 8577588
    Abstract: A vehicle comprising a seat defining a driver seat portion and a passenger seat portion, an electronic stability system, adapted to receive inputs from a load sensor, a wheel rotation sensor and a lateral acceleration sensor, the electronic stability system adapted to provide outputs to at least one of the brake system for braking the vehicle, and the engine control unit to change the power output transmitted to the wheels by the engine, the electronic stability system using a first calibration to determine the outputs when the load sensor is in a non-loaded state and a second calibration to determine the outputs when the load sensor is in a loaded state.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Bombardier Recreational Products Inc.
    Inventor: Mario Dagenais
  • Publication number: 20130282253
    Abstract: It is an object of the present invention to control unstable behavior of a vehicle body that arises when braking during turning.
    Type: Application
    Filed: October 5, 2011
    Publication date: October 24, 2013
    Applicant: BOSCH CORPORATION
    Inventors: Shunsaku Ono, Junya Iwatsuki, Takahiro Ogawa, Saiji Suzuta, Mitsuhiro Saito
  • Patent number: 8554414
    Abstract: A rollover suppression control apparatus and method are provided. The apparatus includes a rollover state value detection unit which detects a rollover state value indicating that a vehicle is under rollover tendency, a braking force applying unit which performs a rollover suppression control of applying braking force to a wheel of the vehicle to suppress the rollover thereof when the detected rollover state value is greater than the control threshold value, a understeer state detection unit which detects whether a traveling state of the vehicle is a understeer state or a non-understeer state, and a setting unit which sets a first control threshold value as the control threshold value when the traveling state is detected as the non-understeer state, and which sets a second control threshold value greater than the first control threshold value as the control threshold value when the traveling state is detected as the understeer state.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: October 8, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Hideaki Koto, Toshihisa Kato
  • Publication number: 20130261922
    Abstract: A vehicle brake controller is capable of executing limit control when a driver is performing a brake pedal operation during turning of a vehicle, to limit an increase in a braking force applied to an inner wheel that is a wheel positioned on the inner side of the turn. The vehicle brake controller is configured to start the limit control when a wheel state value that becomes greater as deceleration of the inner wheel becomes greater exceeds a start determination value that is set to a value greater than zero.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 3, 2013
    Applicant: ADVICS CO., LTD.
    Inventors: Yusuke TAKEYA, Takuya INOUE, Masato TERASAKA
  • Patent number: 8548706
    Abstract: A device operable to control a turning of a vehicle, includes: a motion controller operable to: control a first adjuster so as to increase a drive force applied to at least one of front wheels and rear wheels situated in an inner side of the turning, and control a second adjuster so as to increase the braking force applied to at least one of the front wheels and the rear wheels situated in an outer side of the turning; and control the first adjuster so as to increase the drive force applied to at least one of the front wheels and the rear wheels situated in an outer side of the turning, and control the second adjuster so as to increase the braking force applied to at least one of the front wheels and the rear wheels situated in an inner side of the turning.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 1, 2013
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Takami Miura, Kaoru Sawase, Takao Matsui, Yuichi Ushiroda, Naoki Takahashi, Keiji Suzuki
  • Patent number: 8548681
    Abstract: A power steering device is mounted on a vehicle and includes a torque applying unit and an applied friction torque changing unit. The torque applying unit sets an applied friction torque applied to a steering wheel based on a real steering angle and a target steering angle, and performs a control of applying the applied friction torque to the steering wheel. The applied friction torque changing unit changes the applied friction torque based on a load condition of the vehicle.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: October 1, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ikuo Kushiro, Kimiaki Ono
  • Publication number: 20130245908
    Abstract: A system and a method for assisting a driver of a vehicle to turn the vehicle when driving during low-mu surface conditions. The vehicle has a steering system, a plurality of wheels and a brake system allowing individual braking of the respective wheels of the vehicle. The system comprises a controller arranged to detect if the vehicle accelerates after the brakes of the vehicle have been applied, and detect a driver command to turn the vehicle in either direction. If both detections are positive the controller is further arranged to release the brake force on a side of the vehicle opposite to the detected turning command direction.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 19, 2013
    Applicant: VOLVO CAR CORPORATION
    Inventor: Mats Jonassson
  • Patent number: 8538654
    Abstract: Systems and methods disclosed herein may be useful for braking systems for use in, for example, an aircraft. A method is disclosed comprising determining, at a brake controller, an aircraft reference speed for an aircraft having a first wheel and a second wheel, identifying, at the brake controller, a state comprising the first wheel having a different rotational velocity than the second wheel, wherein the difference in rotational velocity sums to about zero, calculating, at the brake controller, a compensation factor for at least one of the first wheel and the second wheel, and adjusting, at the brake controller, a locked wheel trigger velocity in accordance with the compensation factor.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 17, 2013
    Assignee: Goodrich Corporation
    Inventor: Eric D. Cahill
  • Patent number: 8532904
    Abstract: A target vehicle speed of when a vehicle travels a predetermined forward section is acquired. An acceleration gear ratio for acceleration of the vehicle to reach a vehicle speed higher than the target vehicle speed after the travel of the predetermined section is acquired. The gear ratio of the vehicle is set to the acceleration gear ratio before the vehicle reaches the start point of the predetermined section. Before the vehicle reaches the start point of the predetermined section, the vehicle speed is lowered to the target vehicle speed.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 10, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Atsushi Takeuchi, Takayuki Miyajima, Fumiharu Ogawa, Yoshito Kondo
  • Patent number: 8532896
    Abstract: A method of and system for detecting absolute acceleration along various axes relative to a desired movement vector while moving relative to a gravity source includes steps of determining a vertical acceleration, perpendicular to the desired movement vector and substantially anti-parallel to a gravitational acceleration due to the gravity source; determining a longitudinal acceleration, parallel to the desired movement vector and to output at vertical acceleration signal and a longitudinal acceleration signal; determining an inclination of the desired movement vector relative to the gravitational acceleration; and processing the vertical acceleration signal, the longitudinal acceleration signal, and the inclination signal to produce an absolute vertical acceleration signal and an absolute longitudinal acceleration signal.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 10, 2013
    Assignee: Vision Works IP Corporation
    Inventors: Alfred S. Braunberger, Beau M. Braunberger
  • Patent number: 8521384
    Abstract: A turf maintenance vehicle all-wheel drive traction control system includes a primary wheel propelling the vehicle. A first motor rotates the primary wheel. A traction control system has a first portion communicating with the first motor to monitor either a first motor current demand or a rotational speed of the primary wheel or the first motor and generates a traction control value. A secondary wheel rotated by a second motor steers the vehicle in a vehicle non-slip condition. A traction control system second portion determines a secondary wheel steering angle value. A speed threshold limit stored in the traction control system compared to the traction control value generates a slippage occurrence message indicative of a primary wheel traction loss event. A second motor drive signal created by comparing the steering angle value and the slippage occurrence message energizes the second motor during the traction loss event.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: August 27, 2013
    Assignee: Textron Innovations Inc.
    Inventors: Sean C. O'Connor, Gregory Merriweather, Harry L. Derby, V, Martin M. Carlson, Kenneth R. Wilson
  • Patent number: 8521362
    Abstract: Stabilizer control devices, methods, and programs obtain information indicating lateral acceleration operating on the vehicle and obtain information indicating a curve section existing in a traveling direction of the vehicle. The devices, methods, and programs control roll stiffness by a stabilizer mounted on the vehicle based on the obtained lateral acceleration information by setting a lateral acceleration threshold at a first value in the curve section and a second value in a section other than the curve section respectively, the first value being smaller than the second value. The devices, methods, and programs control the roll stiffness when the lateral acceleration is equal to or larger than the lateral acceleration.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 27, 2013
    Assignees: Aisin AW Co., Ltd., Aisin Seiki Kabushiki Kaisha
    Inventors: Takayuki Miyajima, Seiji Hidaka, Hirofumi Nitta
  • Patent number: 8515625
    Abstract: An electronic control unit is provided with a preparatory brake pressure controlling unit that, when steering operation in an opposite direction is detected after the steering operation of a steering wheel in one direction, applies a preparatory brake pressure to a wheel, which becomes an outer wheel in turning next along with the steering operation in the opposite direction, and the preparatory brake pressure controlling means is configured to inhibit application control of the preparatory brake pressure when returning operation of the steering wheel to a steering center is detected while the steering operations in the one direction and in the opposite direction are repeated.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 20, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Ryochi Watanabe
  • Patent number: 8504243
    Abstract: An electronic control unit determines that a vehicle is traveling in a straight line if a state in which the steering torque is less than a predetermined steering torque and an amount of change in the steering angle is less than a predetermined steering angle continues for a predetermined period of time when the vehicle speed is greater than a predetermined vehicle speed. Also, if the steering angle of the steering wheel is not 0, while the vehicle is traveling in a straight line, the electronic control unit calculates the steering amount of rear wheels that matches the steering amount of front wheels, using the steering angle of the steering wheel. Then the electronic control unit steers the rear wheels by driving an electric motor until a controlled neutral steering position of the rear wheels that corresponds to the steering amount matches an absolute neutral steering position.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 6, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromitsu Kageyama
  • Publication number: 20130184955
    Abstract: A vehicle brake hydraulic pressure control apparatus includes a hydraulic pressure adjusting unit, a split road determining section, a differential pressure control section, and a hydraulic pressure adjusting and driving section. The hydraulic pressure adjusting unit individually adjusts brake fluid pressures acting on wheel brakes for wheels. The split road determining section determines whether road surfaces which the wheels are in contact with constitute a split road. In a state where the split road determining section determines during execution of antilock braking control that the road surfaces constitute the split road, the differential pressure control section determines command pressures for the wheel brakes so that differential pressures between the brake fluid pressures of the right and left wheel brakes are equal to or less than a permissible differential pressure.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 18, 2013
    Applicant: NISSIN KOGYO CO., LTD.
    Inventor: Nissin Kogyo Co., Ltd.
  • Patent number: 8489287
    Abstract: A vehicle rollover prevention safety driving system, comprising: at least an image sensor, used to fetch road images in front of said vehicle; an image processor, connected to said image sensor, and is used to identify a drive lane in road images, and calculate a drive lane curvature, an inclination angle of said road, and relative positions of said vehicle and a lane marking; a vehicle conditions sensing module, used to sense dynamic information of a vehicle turning angle, a vehicle inclination angle, and a vehicle speed; a microprocessor, connected to said image processor and said vehicle conditions sensing module, and it calculates a rollover prediction point and a rollover threshold speed, and it issues a corresponding warning signal or a control signal; and an accelerator and brake controller, connected to said microprocessor, and it controls deceleration of said vehicle according to said control signal.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: July 16, 2013
    Assignee: Automotive Research & Test Center
    Inventors: Tsung-Hua Hsu, Chun-Hsiung Chen, Tzu-Chien Hsu, Yi-Feng Su, Hsueh-Lung Liao
  • Patent number: 8483924
    Abstract: A vehicle control device capable of obtaining the sufficient effect of vehicle control is provided. A vehicle control device 1 outputs a control signal to a vehicle on the basis of the height of the center of gravity based on the behavior of the vehicle at the time of rolling or pitching or the correlation value correlated with the height of the center of gravity, and the control signal is calculated on the basis of acceleration of the vehicle in which a rolling angle or a pitch angle is reflected. The operation device calculates the height of the center of gravity or the vehicle weight on the basis of acceleration of the vehicle in which the rolling angle or the pitch angle is reflected and calculates a control signal on the basis of the height of the center of gravity or the vehicle weight.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: July 9, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yutaka Obuchi
  • Patent number: 8473160
    Abstract: A steering operation force detection device for a steering wheel including a steering wheel rim having a right-side rim section and a left-side rim section. The device includes load cells that detect six component forces of the steering operation force acting on the right-side rim section and the left-side rim section consisting of forces in three axial directions and moments about three axes. The device includes a steering angle detection sensor that detects a steering angle of the steering wheel, and an inertial force component correcting unit that derives an inertial force component acting on the right-side rim section and the left-side rim section due to rotation of the steering wheel, based on an amount of displacement of the steering angle detected by the steering angle detection sensor, and that corrects the component force detected by the load cells to eliminate an effect of the derived inertial force component.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 25, 2013
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventor: Akira Kuramori
  • Patent number: 8467941
    Abstract: An apparatus and method for transporting a payload over a surface is provided. A vehicle supports a payload with a support partially enclosed by an enclosure. Two laterally disposed ground-contacting elements are coupled to at least one of the enclosure or support. A motorized drive is coupled to the ground-contacting elements. A controller coupled to the drive governs the operation of the drive at least in response to the position of the center of gravity of the vehicle to dynamically control balancing of the vehicle.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 18, 2013
    Assignee: Segway, Inc.
    Inventors: J. Douglas Field, Michael T. Gansler, John D. Heinzmann, Jon M. Stevens
  • Patent number: 8463498
    Abstract: A method for controlling the side slip angle of a rear-wheel drive vehicle when turning; the control method provides for the steps of: detecting the position of an accelerator control which is displaced along a predetermined stroke; using a first initial part of the stroke of the accelerator control for directly controlling the generation of the drive torque so that the generated drive torque depends on the position of the accelerator control; and using a second final part of the stroke of the accelerator control to directly control a side slip angle of the vehicle when turning so that the side slip angle depends on the position of the accelerator control.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: June 11, 2013
    Assignee: Ferrari S.p.A.
    Inventors: Amedeo Visconti, Martino Cavanna
  • Patent number: 8452511
    Abstract: A motorized wheelchair includes left and right drive wheels, left and right motors, rate-of-turn sensor, first and second speed sensors, and controller arranged to combine signals from the sensors in a manner that detects drift. Alternatively, the motorized wheelchair includes left and right drive wheels, left and right motors, first and second rate-of-turn sensors, and controller arranged to combine signals from the sensors in a manner that compensates for voltage offset errors. In another arrangement, the motorized wheelchair includes left and right drive wheels, left and right motors, first and second rate-of-turn sensors, input device, and controller arranged to combine signals from the sensors and input device in a manner that controls the motors using an integrated turn rate error. Several methods for controlling each wheelchair configuration are also provided. These methods process signals associated with desired, expected, or actual turn rate to determine if the wheelchair is off course.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: May 28, 2013
    Assignee: Invacare Corporation
    Inventors: Thomas Strothmann, Joseph B. Richey
  • Patent number: 8442736
    Abstract: A system for controlling a vehicle having a brake assembly for exerting braking force on at least one wheel on the basis of a number of control parameters is provided. The system has a safety system configured to generate the control parameters as a function of a control quantity associated with the braking force to be exerted on the at least one wheel; and a vehicle handling enhancement system configured to: calculate a reference vehicle yaw acceleration on the basis of at least the longitudinal speed of the vehicle and the steer angle of the vehicle; and adjust the control quantity to zero the difference between the actual yaw acceleration and the reference vehicle yaw acceleration.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 14, 2013
    Assignee: Fiat Group Automobiles S.p.A.
    Inventors: Salvatore Casella, Francesco Canuto, Nicola Natali, Andrea Fortina
  • Patent number: 8437914
    Abstract: A system and method are disclosed for controlling a vehicle during a turn in which a braking torque is applied to an inside wheel of the vehicle when understeer is detected and to an outside wheel when oversteer is detected. Electrical energy commanded to an electric motor coupled to a first axle of the vehicle is increased in response to application of the braking torque to compensate for the applied braking torque.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 7, 2013
    Assignee: Ford Global Technologies
    Inventors: Hai Yu, Jianbo Lu, Ming Lang Kuang, Ryan Abraham McGee, Joseph Youqing Xiang
  • Patent number: 8437907
    Abstract: In a method for determining a roadway state (STATE) of a roadway on which a vehicle (10) is travelling which has at least one wheel (14) and an acceleration sensor (24) which is assigned to the wheel (14), in order to determine a vertical component of an acceleration of the wheel (14), a characteristic value which is representative of the roadway state (STATE) is determined as a function of a measured signal (AC_VERT) of the acceleration sensor (18).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 7, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Ning Bian, Celine Gamulescu, Andreas Mayer, Thomas Schweiger
  • Publication number: 20130103279
    Abstract: One embodiment provides a vehicle brake hydraulic controller including: an antilock braking controlling module configured to perform an antilock braking control in which a brake hydraulic pressure applied to wheel brakes is reduced under the condition that a slip-related amount has reached a pressure reduction threshold value; and a turning judging module configured to judge whether a vehicle is turning based on a steering angle, wherein, when the antilock braking control is performed and in the case that the turning judging module judges that the vehicle is turning, the antilock braking controlling module performs a turning pressure reduction control so as to: change the pressure reduction threshold values to be more easily reached by the slip-related amount than at the time of straight running; and change the pressure reduction amounts to be larger than that at the time of straight running.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 25, 2013
    Applicant: NISSIN KOGYO CO., LTD.
    Inventor: NISSIN KOGYO CO., LTD.
  • Patent number: 8428841
    Abstract: A vehicle motion control device is provided. The vehicle motion control device includes a steering angle deviation calculating unit which calculates a steering angle deviation of the vehicle, a frictional coefficient calculating unit which calculates each of road surface frictional coefficients for a traveling road surface of four wheels; and a pressure increasing and reducing controlling unit which performs a split control including applying a pressure increasing limitation of a pressure increasing control in an anti-skid control to a front wheel at a side of the traveling road surface having higher road surface frictional coefficient between the right and left wheels based on an absolute value of the steering angle deviation such that a pressure increasing gradient in the pressure increasing control is smaller as the absolute value is larger.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 23, 2013
    Assignee: Advics Co., Ltd.
    Inventors: Ken Kudo, Masato Terasaka, Takuo Kitano
  • Publication number: 20130096766
    Abstract: Disclosed herein are a vehicle control apparatus and a vehicle control method. The vehicle control apparatus includes a yaw-rate sensor to detect a yaw-rate of a vehicle, a steering-angle sensor to detect a steering angle of the vehicle, and a Micro Controller Unit (MCU) to calculate a yaw-rate based on the steering-angle, to calculate a target braking pressure of a wheel based on a difference between the actual yaw-rate detected via the yaw-rate sensor and the calculated yaw-rate, and to adjust a braking pressure of the wheel based on the calculated target braking pressure.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 18, 2013
    Applicant: MANDO CORPORATION
    Inventor: Man Bok PARK
  • Patent number: 8412431
    Abstract: A materials handling vehicle is provided comprising: a frame; wheels supported on the frame; a traction motor coupled to one of the wheels to effect rotation of the one wheel; a speed control element operable by an operator to define a speed control signal corresponding to a desired speed of the traction motor; a system associated with a steerable wheel to effect angular movement of the steerable wheel; and control apparatus coupled to the speed control element to receive the speed control signal, and coupled to the traction motor to generate a drive signal to the traction motor in response to the speed control signal to control the operation of the traction motor. The control apparatus may determine an acceleration value for the traction motor based on at least one of an angular position of the steerable wheel, a speed of the traction motor and a current position of the speed control element as defined by the speed control signal.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: April 2, 2013
    Assignee: Crown Equipment Corporation
    Inventors: George Robert Wetterer, James Francis Schloemer, Monty L. Crabill, Eric L. Jensen
  • Publication number: 20130080015
    Abstract: A motorized wheelchair includes left and right drive wheels, left and right motors, rate-of-turn sensor, first and second speed sensors, and controller arranged to combine signals from the sensors in a manner that detects drift. Alternatively, the motorized wheelchair includes left and right drive wheels, left and right motors, first and second rate-of-turn sensors, and controller arranged to combine signals from the sensors in a manner that compensates for voltage offset errors. In another arrangement, the motorized wheelchair includes left and right drive wheels, left and right motors, first and second rate-of-turn sensors, input device, and controller arranged to combine signals from the sensors and input device in a manner that controls the motors using an integrated turn rate error. Several methods for controlling each wheelchair configuration are also provided. These methods process signals associated with desired, expected, or actual turn rate to determine if the wheelchair is off course.
    Type: Application
    Filed: November 19, 2012
    Publication date: March 28, 2013
    Inventors: Thomas Strothmann, Joseph B. Richey
  • Publication number: 20130060441
    Abstract: Systems and methods disclosed herein may be useful for braking systems for use in, for example, an aircraft. A method is disclosed comprising determining, at a brake controller, an aircraft reference speed for an aircraft having a first wheel and a second wheel, identifying, at the brake controller, a state comprising the first wheel having a different rotational velocity than the second wheel, wherein the difference in rotational velocity sums to about zero, calculating, at the brake controller, a compensation factor for at least one of the first wheel and the second wheel, and adjusting, at the brake controller, a locked wheel trigger velocity in accordance with the compensation factor.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: GOODRICH CORPORATION
    Inventor: Eric D. Cahill
  • Patent number: 8374761
    Abstract: A driving force distribution control device for a four wheel drive vehicle having a mechanism that distributes the torque of an engine, which is transmitted to a main drive wheel, to a secondary drive wheel determines a first torque to be distributed to the secondary drive wheel on the basis of the engine torque, and corrects the determined first torque on the basis of a yaw rate deviation between a target yaw rate and an actual yaw rate of the vehicle. When an absolute value of the yaw rate deviation is equal to or greater than a predetermined value, the mechanism is controlled on the basis of the corrected torque.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: February 12, 2013
    Assignees: Nissan Motor Co., Ltd., Hitachi, Ltd.
    Inventors: Yoshiyuki Fukuda, Tomoaki Fujibayashi, Hideyuki Arai
  • Patent number: 8370025
    Abstract: A target value for yaw angle velocity gain is computed according to a map expressing a relationship between steering wheel angle and yaw angle velocity gain predetermined such that a direction as seen from a driver of a target destination point for vehicle travel at a predetermined time after a forward gaze and a direction as seen from the driver are caused to match each other, and a steering gear ratio is controlled accordingly. A target value for a steering wheel torque corresponding to the detected steering wheel angle and the acquired yaw angular velocity is set, based on a relationship between yaw angular velocity and resistance-feel level predetermined such that the resistance feel level for a driver monotonically increases with increasing yaw angular velocity. Control is then preformed so as to realize the steering wheel torque target value.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 5, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Eiichi Ono, Yuji Muragishi, Daisuke Yamada, Shinsuke Sato
  • Patent number: 8364365
    Abstract: The method for controlling a safety system (102-108) of a vehicle (10) determines a reference velocity from a first front wheel sensor (20A) and a second front wheel speed signal from a second front wheel sensor (20B). An axle speed sensor (20C) may be used to determine an axle speed signal. A first rear speed signal and a second rear speed signal are determined from the reference velocity, a slip effect and a yaw signal. The yaw signal may be determined from a yaw rate sensor (28). Safety system (102-108) may be controlled in response to the first rear wheel speed signal and the second rear wheel speed signal.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: January 29, 2013
    Assignee: Ford Global Technologies
    Inventors: Michael Brewer, Todd Brown, Thomas Salmon