Abstract: A flatness-measuring device for a hot-rolled strip within a hot-rolling mill includes an entry-side deflection roller and an exit-side deflection roller. A central deflection roller is arranged between the entry-side deflection roller and the exit-side deflection roller. The central deflection roller is used as a flatness-measuring roller. To prevent the hot-rolled strip from departing laterally during a flatness measurement, the flatness-measuring device has a sensing apparatus for sensing an actual position of the hot-rolled strip. An adjusting apparatus is connected to the sensing apparatus and to at least one of the deflection rollers. The flatness-measuring device is designed to vary an angle between a longitudinal central axis of the deflection roller respectively connected to the adjusting apparatus and a longitudinal axis of the flatness-measuring device based on a deviation of the actual position of the hot-rolled strip from a predefined target position.
Type:
Grant
Filed:
August 12, 2021
Date of Patent:
March 4, 2025
Assignee:
SMS group GmBH
Inventors:
Frank Gorgels, Olaf Norman Jepsen, Patrick Siemann, Andreas Kastner
Abstract: A system for on-line property prediction for hot rolled coils in a hot strip mill of a steel plant, including a unit for capturing the chemistry from the steel making stage and providing the data on rolling schedule. Field devices are provided at the instrumentation level for measuring process parameters during hot rolling. A programmable logic controller is used for acquiring data of measured parameters from the field devices and feeding the data to a processor. Means is provided for conversion of the measured data from time domain to space domain using segment tracking. A computation module processes the converted space domain data for predicting mechanical properties along the length and through the thickness of the strip being rolled. A display unit displays the predicted properties. The data obtained can be stored in a data warehouse for future use. A unit provided in the system can collect the predicted properties and feed the same to the scheduling unit.
Abstract: A lubricant supply apparatus for endless hot rolling equipment includes a width-detecting sensor for detecting widths of steel sheets continuously supplied toward a roller, a controller connected to the width-detecting sensor, a lubricant pump connected to and controlled by the controller to supply a lubricant to a lubricant line, solenoid valves disposed on sub lines formed by dividing the lubricant line and controlled by the controller to supply or cut off the lubricant, a water pump connected to and controlled by the controller to supply water to a water line, mixers for mixing the lubricant and the water supplied to the water line for each of the sub lines, and nozzles connected respectively to the mixers and disposed according to a width of the roller so as to spray a mixture onto the roller according to the widths of the steel sheets.
Abstract: A method and device for measuring and adjusting the evenness and/or tension of a stainless steel strip (1) during cold rolling in a 4-roll stand (2) provided with at least one control loop (4) comprising several actuators (3), resulting in more precise measurement and adjustment due to the fact that an evenness defect (10) is determined by comparing a tension vector (8) with a predefined reference curve (9), whereupon the characteristic of the evenness defect (10) along the width of the strip is broken down into proportional tension vectors (8) in an analysis building block (11) in a mathematically approximated manner and the evenness defect proportions (C1 . . . Cx) determined by real numerical values are supplied to respectively associated control modules (12a; 12b) for actuation of the respective actuator (3).
Type:
Grant
Filed:
June 17, 2005
Date of Patent:
September 21, 2010
Assignee:
SMS Siemag Aktiengesellschaft
Inventors:
Matthias Krüger, Olaf Norman Jepsen, Michael Breuer
Abstract: In a method and a strip treatment installation, in particular a strip rolling mill train or a strip rolling stand, to avoid strip stickers, as the material is being wound up the distribution of the radial pressure exerted by the strip on the coiler drum or a winding reel is measured over the strip width, then the measured values are used to produce a reproduction of the actual local stress distribution in the strip, and this reproduction is used as a template for a set curve for controlling the strip tensile stress distribution, on the basis of which actuators of the strip treatment installation are adjusted with a view to achieving a uniform compressive stress distribution.
Type:
Application
Filed:
December 19, 2003
Publication date:
December 2, 2004
Inventors:
Gert Mucke, Paul-Dieter Putz, Eberhard Neuschutz
Abstract: An automatically controlled multi-roll precision leveler for flattening a strip of material, such as a metal strip. A metal strip product may be fed into the leveler, typically from a coil. The leveler uses multiple work rolls to flatten the strip as it passes through a leveling section of the leveler. Upon exiting the leveling section of the leveler, the metal strip product passes over a shape sensor. The shape sensor may be divided into a plurality of individual measurement zones, each having one or more measurement segments. The shape sensor measures the shape error in the metal strip, which shape error is the result of stresses present in the strip. The shape error measurements are used by the shape control system of the leveler to automatically and continuously adjust the leveling parameters of the leveler. The control system attempts to operate the leveler, such that a shape error measurement of zero will be detected by the shape sensor—at which point the metal strip product will be flat.
Type:
Grant
Filed:
October 16, 2002
Date of Patent:
August 3, 2004
Assignee:
Machine Concepts, Inc.
Inventors:
Guil C. Bergman, Rodger E. Brown, Anthony D. Enneking, Joseph K. Perdue
Abstract: A method for measuring and displaying the flatness of a rolled steel sheet is disclosed that includes the steps of measuring tension in the sheet at a plurality of locations on the surface of the sheet and determining a plurality of tension ranges into which the sensed tension level can fall. A color is associated with each of the tension ranges, and a representation of the sheet is produced that is made up of a plurality of regions, each region having a color corresponding to tension range into which the tension sensed at the corresponding location on the surface of the sheet falls. A device for carrying out this method is also disclosed.
Type:
Application
Filed:
January 24, 2003
Publication date:
July 29, 2004
Applicant:
Bethlehem Steel Corporation
Inventors:
Thomas J. Russo, Peter F.W. Schrof, Bruce B. Grube, Donald James Ronemus, Stanley Petrilla