With Magnetic Or Optical Sensor Patents (Class 73/1.22)
  • Patent number: 11906466
    Abstract: A measurement method performed by a semiconductor manufacturing apparatus including a chamber is provided. In the measurement method, first measurement data including a signal of a resonance frequency of the chamber is acquired as reference data, in response to transmitting an electrical signal into the chamber while a jig capable of performing wireless communication is not placed in the chamber. Subsequently, second measurement data including the signal of the resonance frequency of the chamber and including a signal of a resonance frequency of a sensor installed in the jig is acquired, in response to transmitting an electrical signal into the chamber while the jig is placed in the chamber. By subtracting the reference data from the second measurement data, third measurement data is calculated.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: February 20, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Takayuki Hatanaka, Tong Wu, Satoshi Nomura
  • Patent number: 11633538
    Abstract: A system for modulating delivery of a fluid medium includes an injector for injecting the fluid medium during an injection cycle, a delivery catheter including a conduit for delivering the fluid medium, a manifold disposed in a fluid medium flow path between the injector and the delivery catheter, and a pulsatile generator. The pulsatile generator is configured to apply a pulsatile force to the fluid medium defined by a plurality of duty cycles during the injection cycle, each of the duty cycles including a first pressure level and a second pressure level that is lower than the first pressure level.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: April 25, 2023
    Assignee: Osprey Medical, Inc.
    Inventors: Matthew M. Burns, Tuan M. Doan, Rodney L. Houfburg, David M. Kaye, Todd J. Mortier
  • Patent number: 11507104
    Abstract: A robotic cleaner may include a body, an optical receiver, the optical receiver being configured to detect an optical signal generated by an external device, and an optical pattern generator configured to emit light according to an optical pattern that extends at least partially around the body, wherein, when the optical pattern intersects an obstacle, at least a portion of the light incident on the obstacle is reflected towards the optical receiver, the optical receiver being configured to detect the reflected light.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 22, 2022
    Assignee: SharkNinja Operating LLC
    Inventor: Isaku D. Kamada
  • Patent number: 10861686
    Abstract: Embodiments of the present disclosure provide an automatic calibration device for an ion migration spectrometer and an ion migration spectrometer. The automatic calibration device includes: a reservoir configured to store liquid calibration sample therein; and an automatic transfer portion communicated with the reservoir and configured to transfer the liquid calibration sample in the reservoir.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 8, 2020
    Assignee: Nuctech Company Limited
    Inventors: Yangtian Zhang, Guangqin Li, Bin Xue, Zhanhong Jia
  • Patent number: 10677636
    Abstract: A method for calibrating flow meters for fluid media comprises the steps of guiding a medium (102) through a reference measuring section (101-1) and a test measuring section (101-2) which has a flow meter to be calibrated, establishing at least approximately identical and constant pressure and flow conditions for the medium (102) in both measuring sections (101-1, 101-2), detecting a reference throughflow of the medium (102) through the reference measuring section (101-1) and throughflow values which correspond temporally thereto and are measured by the flow meter (125) to be calibrated of the test measuring section at a preset medium temperature, comparing the detected reference throughflow through the reference measuring section (101-1) with the throughflow values which correspond temporally thereto of the flow meter (125) to be calibrated, in order, based on this, to determine at least one correction value for the calibration of the flow meter (125) at the preset medium temperature, and determining of the
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: June 9, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Karl Weindl
  • Patent number: 9825641
    Abstract: A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 21, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Dean C. Alhorn, Kenneth R. Dutton, David E. Howard, Dennis A. Smith
  • Patent number: 9035781
    Abstract: A gas appliance monitoring apparatus for automatically detecting and alerting to a “gas-out” condition of a gas appliance during operation, and/or for alerting to the presence of prolonged “gas-on” conditions of an appliance. The apparatus utilizes a highly sensitive low loss and low flow gas flow indicator with multiple flow sensors to monitor the gas flow characteristics of the appliance during use. A gas flow analyzer and alarm timing mechanism analyzes the gas flow characteristics and sounds an alarm at the appliance or wirelessly at a remote location upon detection of either of the above conditions. A biasing attraction magnet is incorporated in the fluid flow indicator to offset either the force of gravity or a return spring in low flow/low pressure applications. The piston is sealed for use in high pressure/low flow applications, and provided with a vent hole for residual gas bleed-off upon a stoppage of gas flow.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 19, 2015
    Assignee: WATERSTRIKE INCORPORATED
    Inventor: David A. Struyk
  • Patent number: 8915115
    Abstract: A piston prover comprises a measurement cylinder; a hydraulic cylinder coupled with a downstream end of the measurement cylinder; a measuring piston that moves a predetermined distance through the measurement cylinder during a measurement due to a fluid flow to eject a reference volume of fluid; and a piston rod that is movably in the hydraulic cylinder, wherein the measuring piston and the piston rod are separately constructed. When returning the measuring piston to a predetermined upstream measurement standby position, the piston rod moves the measuring piston to set the measuring piston at the predetermined measurement standby position, and thereafter only the piston rod is moved from upstream to downstream and is accommodated in the hydraulic cylinder.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 23, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kuge, Hajime Iida
  • Patent number: 8826717
    Abstract: A small volume prover (SVP) apparatus and method for providing variable volume calibration. The apparatus includes a precision bore cylinder and a piston configured with a valve arrangement in order to permit fluid to pass through an annular passage when the piston is traveling from one position to an opposite position. A position sensor and a pair of optical slot detectors can be integrated in association with the piston for continuously sensing an accurate position and stroke of the piston. The position sensor verifies the optical slot detectors at every run and provides calibration of flexible volumes as the fluid travels via the annular passage. The position sensor also checks the correct return of the piston after the flow stroke and detects the stuck mechanics. Such small volume prover apparatus associated with the position sensor can be employed for precise and fast position sensing of the piston and variable volume calibration of a fluid flow sensor.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventor: Frank Van Bekkum
  • Patent number: 8783088
    Abstract: Apparatus and methods for proving a flowmeter. In one embodiment, a flowmeter prover includes a flow tube, a displacer, and a signal analyzer. The displacer is moveable in a flow passage of the flow tube. A magnetic target is disposed on the displacer. One or more inductive transducers are disposed on the flow tube and configured to detect the magnetic target as the displacer moves in the flow tube. The signal analyzer is configured to detect a maximum slope of rising and falling edges of a signal generated by the transducer responsive to the magnetic target traversing the transducer. The signal analyzer is further configured to determine displacer velocity based on the detected maximum slope.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 22, 2014
    Assignee: Daniel Measurement and Control, Inc.
    Inventor: Drew S. Weaver
  • Patent number: 8739597
    Abstract: Apparatus and methods for proving a flow meter at low temperatures. A flow meter measuring low temperature fluids (e.g., less than about ?50° F., or less than about ?220° F.) must still be proved. Low temperature fluids can be destructive to piston or compact provers, or may require indirect proving methods. The apparatus disclosed is a low temperature prover directly coupled into the pipeline carrying the low temperature fluids. In some embodiments, a magnetic pickup coil and a magnetic member communicate between the displacer and the flow tube. The magnetic target member may be carbon-free. In some embodiments, a pair of ultrasonic transceivers coupled to the flow tube communicate a signal across the flow tube and a displacer is moveable to interrupt the signal. In some embodiments, the flow tube includes an inner surface having a microfinish for lubrication. The displacer may be a piston rotatable while being moved axially.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 3, 2014
    Assignee: Daniel Measurement and Control, Inc.
    Inventor: Donald Day
  • Patent number: 8590562
    Abstract: A fluid flow detection device includes a housing of non-magnetic metal, a flow passage through the housing and a valve seat in the flow passage. A magnetic valve element emits a magnetic field. The valve element is movable relative to the valve seat between a closed position blocking fluid flow through the flow passage and an open position allowing fluid flow through the flow passage. The magnetic valve element is biased toward the closed position. A magnetic field enhancer is movable with the magnetic valve element for enhancing the magnetic field. A magnetic field sensor on the housing is operable to signal a change in position of the valve element as it moves between its open and closed positions.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 26, 2013
    Assignee: Lincoln Industries Corporation
    Inventors: Canlong He, Paul G. Conley
  • Patent number: 8369990
    Abstract: A robot platform is provided, which is intended in particular for remotely controlled and/or autonomous inspection of technical facilities, in particular in power stations, and comprises at least a drive mechanism configured to move the robot platform, an inspection device configured to inspect the technical facility and a communication device for exchanging measurement and/or control data. Particular flexibility in use and extended areas of use are achieved in that the robot platform is modular and the communication device operates in accordance with a uniform standard.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 5, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Wolfgang Zesch, Markus Wiesendanger
  • Publication number: 20120260717
    Abstract: A small volume prover (SVP) apparatus and method for providing variable volume calibration. The apparatus includes a precision bore cylinder and a piston configured with a valve arrangement in order to permit fluid to pass through an annular passage when the piston is traveling from one position to an opposite position. A position sensor and a pair of optical slot detectors can be integrated in association with the piston for continuously sensing an accurate position and stroke of the piston. The position sensor verifies the optical slot detectors at every run and provides calibration of flexible volumes as the fluid travels via the annular passage. The position sensor also checks the correct return of the piston after the flow stroke and detects the stuck mechanics. Such small volume prover apparatus associated with the position sensor can be employed for precise and fast position sensing of the piston and variable volume calibration of a fluid flow sensor.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Frank Van Bekkum
  • Patent number: 7881828
    Abstract: A bus module for connecting electrically triggerable fluidic valves to a data bus. The bus module has an electrical circuit configuration, which evaluates address data and user data from data telegrams transmitted on the data bus and which triggers a fluidic valve determined by the address data in accordance with the user data of the data telegram. In order to keep the current load on the bus module low particularly when triggering hydraulic valves, the electronic circuit configuration, following the reception of user data in the form of a switch-on command for one of the fluidic valves connected to the bus module, first constantly supplies a supply voltage to the fluidic valve determined by the address data during a gate-controlled rise time of specifiable duration. Following the expiration of the gate-controlled rise time, the electronic circuit configuration supplies the fluidic valve with the supply voltage in a pulse width modulated form having a specifiable pulse control factor.
    Type: Grant
    Filed: June 11, 2005
    Date of Patent: February 1, 2011
    Assignee: Bosch Rexroth AG
    Inventor: Stefan Schmidt
  • Publication number: 20090044596
    Abstract: A piston-and-cylinder gas flow calibrator (prover) having piston and cylinder elements with interface surfaces made of glass, quartz, or alumina. The piston and cylinder are made of the same material so as to have the same coefficient of thermal expansion. In one embodiment, the surface of the piston is ground, while the facing surface of the cylinder is unground. Also, disclosed are movement detectors for detecting movement of the piston in the cylinder.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 19, 2009
    Inventors: Harvey F. Padden, Edward Morrell
  • Patent number: 7475586
    Abstract: A meter calibration apparatus includes a fluid intake conduit, a fluid discharge conduit, and a calibration cylinder connected in fluid communication with the intake and discharge conduits, the calibration cylinder defining a chamber. The apparatus further includes a piston slidable within the cylinder and defining first and second chamber portions on opposite sides of the piston, and at least one valve having an intake port in fluid communication with the intake conduit, a first flow port with a first flow conduit extending therefrom and connected to the first chamber portion for providing fluid communication therebetween, and a second flow port with a second flow conduit extending therefrom and connected to the second chamber portion for providing fluid communication therebetween.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 13, 2009
    Assignee: Total Meter Services Inc.
    Inventor: Dennis Jerome Swanek
  • Patent number: 7171285
    Abstract: In a mobile robot and a method for measuring a moving distance thereof, by including an image capture unit for photographing the bottom surface according to motion of a mobile robot at a certain intervals and capturing images; a displacement measurer for measuring displacement about the captured image; and a microcomputer for outputting an actual moving distance by direction and motion of the mobile robot on the basis of the measured displacement value, it is possible to measure an accurate moving distance of the mobile robot with only one image sensor installed at the center of a body of the mobile robot, and accordingly it is possible to simplify a mechanical structure and facilitate maintenance and repairing.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 30, 2007
    Assignee: LG Electronics Inc.
    Inventors: Se Wan Kim, Chan Hee Hong
  • Patent number: 7157054
    Abstract: A gas sensor includes a semiconductor substrate and a sensing membrane. The sensing membrane is located at the bottom of a recess, which is formed by etching the substrate, and includes a heater, heater extension electrodes, a gas sensitive film, and gas-sensitive-film extension electrodes. A first end of each heater extension electrode is in contact with the heater, and a second end of each heater extension electrode extends outward from the sensing membrane. A first end of each gas-sensitive-film extension electrode is in contact with the gas sensitive film, and a second end of each gas-sensitive-film extension electrode extends outward from the sensing membrane. All of the heater, the heater extension electrodes, and the gas-sensitive-film extension electrodes are made of polycrystalline silicon.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: January 2, 2007
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Yasutoshi Suzuki
  • Patent number: 6988423
    Abstract: A controller for a gradient sequential compression system is provided for inflating a plurality of inflatable chambers of one or more compression sleeves according to several different modes of operation. A mode of operation may define the number and selection of chambers to be inflated, the pressurization levels, the pressurization time, or the sequence of chamber inflation. To enable the controller to automatically perform a designated mode of operation based on the type of compression sleeve connected, a new and improved connecting device is provided. An indicator on an interface connector associates a predetermined mode of operation with the interface connector. A sensor associated with a complementary connector identifies the mode of operation associated with the interface connector. It is contemplated that the universal connecting device can be used for any type of system, not just controllers for a gradient sequential compression system.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: January 24, 2006
    Assignee: KCI Licensing, Inc.
    Inventors: Kenneth Michael Bolam, James Arthur Borgen