Volume Of Flow, Speed Of Flow, Volume Rate Of Flow, Or Mass Rate Of Flow Patents (Class 73/1.16)
  • Patent number: 12215992
    Abstract: A method for calibrating a flowmeter is provided that comprises determining a relationship between tube period ratio and a flow tube temperature compensation (FTC) value for a plurality of flowmeters. Tube periods of the flowmeter under test are measured. A stiffness-correlated FTC is calculated using the determined relationship between the tube period ratio and the FTC value for the plurality of flowmeters and the measured tube periods of the flowmeter under test. The stiffness-correlated FTC is applied to an operating routine (314) of the flowmeter under test.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 4, 2025
    Assignee: MICRO MOTION, INC.
    Inventors: Gregory Treat Lanham, Anthony William Pankratz
  • Patent number: 12209679
    Abstract: A fluid control device 10 comprises a valve device V2 including actuators 22 and 24 for opening and closing a flow path and adjusting a flow rate of a fluid flowing through the flow path, a pressure sensor PT provided upstream of the valve device V2, and a control circuit 12 connected to the valve device V2 and the pressure sensor PT, and the control circuit 12 controls an operation of the actuator based on a pressure measured by the pressure sensor PT and a reference pressure drop curve, while the upstream side of the fluid control device is closed and the valve device is opened using the actuators.
    Type: Grant
    Filed: December 1, 2023
    Date of Patent: January 28, 2025
    Assignee: FUJIKIN INCORPORATED
    Inventors: Masahiko Takimoto, Toshihide Yoshida, Tsutomu Shinohara, Kouji Nishino
  • Patent number: 12116265
    Abstract: Systems and processes for blending at least one finished gasoline from a refined petroleum product comprising at least one neat gasoline with ethanol and optionally butane utilizing a blend model that calculates a volumetric blend ratio comprising at least one neat gasoline, ethanol and optionally, butane. The blend model utilizes estimated values for the octane number and the volatility of the ethanol and butane when calculating the volumetric blend ratio.
    Type: Grant
    Filed: November 10, 2023
    Date of Patent: October 15, 2024
    Assignee: Phillips 66 Company
    Inventors: James C. Moynihan, Paul M. Ryder, Robert L. Schnefke
  • Patent number: 12111671
    Abstract: A mass flow controller includes control module, fluid passage, flow regulating valve, flow sensor disposed between inlet and flow regulating valve, and pressure sensor disposed at outlet. The control module is configured to enter pressure feedback regulation mode when variation amount of target flow value exceeds preset threshold, and enter flow feedback regulation mode after fluid flow value detected by flow sensor meets first stabilization condition. The control module is configured to, in pressure feedback regulation mode, perform calculation according to fluid pressure value and target flow value to obtain opening regulation amount, and regulate opening degree of flow regulating valve according to opening regulation amount. The control module is also configured to, in flow feedback regulation mode, perform calculation according to fluid flow value and target flow value to obtain opening regulation amount, and regulate opening degree of flow regulating valve according to opening regulation amount.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: October 8, 2024
    Assignee: BEIJING SEVENSTAR FLOW CO., LTD.
    Inventors: Bowen Deng, Changhua Mu, Yitao Zou
  • Patent number: 12085431
    Abstract: Provided is an ultrasonic flow sensor with improved practicality. An ultrasonic wave is transmitted and received by an ultrasonic element. A first flow rate value of a fluid in a pipe is calculated based on a propagation time difference of an ultrasonic signal, a measurement value corresponding to an ultrasonic velocity, and a parameter for identifying an inner diameter of the pipe. A second flow rate value of the fluid in the pipe is calculated based on a frequency shift of the ultrasonic signal and the parameter. The first flow rate value is calculated using a propagation time of the ultrasonic signal as the measurement value in accordance with a correspondence relationship among a distance of a path through which the ultrasonic wave propagates through the fluid in the pipe, a time for which the ultrasonic signal propagates in the path, and the ultrasonic velocity.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: September 10, 2024
    Assignee: KEYENCE CORPORATION
    Inventors: Yasunori Kawaguchi, Masaki Wada, Masaki Ishihara, Daishiro Ishikawa, Ryuma Miyake
  • Patent number: 12038317
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: July 16, 2024
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David J. Kapolnek, Matthew J. Rensing, Christopher George Larsen
  • Patent number: 12033834
    Abstract: A flow rate controller includes a valve and a valve control unit. The valve is configured to control a flow rate of a gas supplied to a processing device. The valve control unit is configured to open the valve to start a control of the flow rate of the gas when the processing device has issued a command that instructs a start of supplying gas; calculate a cumulative flow amount by integrating the flow rate of the gas at every predetermined cycle from a time point at which the command is issued; and close the valve to stop the control of the flow rate of the gas at a time point at which the calculated cumulative flow amount has reached a predetermined target cumulative flow amount.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: July 9, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Atsushi Sawachi
  • Patent number: 12002120
    Abstract: A method is provided for determining and monitoring gas consumption in a gas network under pressure or under vacuum. The gas network may include a sensor(s) capable of recording the state or status of a source(s), consumers, consumer areas or applications. The method includes: a start-up phase, during which the aforementioned sensors are calibrated before use; an optional leak quantification phase, in which unrecorded consumers or leaks are quantified on the basis of measurements from the aforementioned sensors; an operational phase, in which the flow and/or gas volume consumed by each consumer, consumer areas, application or possibly the leak/non-registered consumer is calculated or determined using a cumulative algorithm and a predefined, adjustable time horizon; an output phase, in which the calculated or determined flow and/or gas volume consumed by each consumer, consumer area, application or possibly the leak/non-registered consumer is displayed.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: June 4, 2024
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventors: Philippe Geuens, Ebrahim Louarroudi
  • Patent number: 11967161
    Abstract: The present disclosure generally relates to a system of a delivery device for combining sensor data from various types of sensors to generate a map that enables the delivery device to navigate from a first location to a second location to deliver an item to the second location. The system obtains data from RGB, LIDAR, and depth sensors and combines this sensor data according to various algorithms to detect objects in an environment of the delivery device, generate point cloud and pose information associated with the detected objects, and generates object boundary data for the detected objects. The system further identifies object states for the detected object and generates the map for the environment based on the detected object, the generated object proposal data, the labeled point cloud data, and the object states. The generated map may be provided to other systems to navigate the delivery device.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 23, 2024
    Assignee: Amazon Technologies, Inc.
    Inventors: Hakan Boyraz, Baoyuan Liu, Xiaohan Nie, Sheng Chen
  • Patent number: 11920964
    Abstract: A method for detecting fluid consumption that includes: detecting, by a fluid meter mounted on an exterior of a pipe containing fluid, a first time of flight between a first ultrasonic transducer and a second ultrasonic transducer; detecting, by the fluid meter, a second time of flight between the second ultrasonic transducer and the first ultrasonic transducer; determining a time of flight difference between the first time of flight and the second time of flight; determining a volumetric flow rate based on an environmental correction parameter and the time of flight difference; and generating a fluid volume consumption total for fluid flowing through the pipe based on the volumetric flow rate.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: March 5, 2024
    Assignee: SIMPLESUB WATER
    Inventors: Bradley W. Alcorn, Devin Callahan, Mark Clark
  • Patent number: 11885662
    Abstract: Methods for operating a flowmeter diagnostic tool are provided that comprise interfacing the diagnostic tool with a flowmeter (5) sensor assembly (10). A base prover volume (BPV), a desired number of passes per run, and/or a maximum number of allowed runs may be input into the diagnostic tool. Flowmeter data is received. An estimated total prove time (TPT) necessary to pass a predetermined repeatability requirement, an estimated minimum number of runs needed to achieve the calculated TPT, and/or an estimated minimum BPV may be calculated.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 30, 2024
    Assignee: MICRO MOTION, INC.
    Inventors: Marc Allan Buttler, Andrew Timothy Patten
  • Patent number: 11815920
    Abstract: A gas flow control system for delivering a plurality of gas flows. The gas flow control system has a gas flow path extending from a gas inlet to first and second gas outlets. First and second flow restrictors are operably coupled to the gas flow path. First and second valves are operably coupled to the gas flow path such that when both first and second valves are in a fully open state, flows of gas from the first and second gas outlets are split according to the impedances of the first and second flow restrictors.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: November 14, 2023
    Inventors: Daniel T. Mudd, Sean Joseph Penley, Michael Maeder, Patti J. Mudd
  • Patent number: 11774275
    Abstract: A method for proving or calibrating a first flow meter integrated into a common platform with a second flow meter is provided. The first flow meter comprises a first driver, a first flow tube, and a first meter electronics, and the second flow meter comprises a second driver, a second flow tube, and a second meter electronics. The method includes configuring the first flow meter to vibrate the first flow tube with a first driver voltage at a first default driver voltage amplitude using the first meter electronics, and configuring the second flow meter to vibrate the second flow tube with a second driver voltage at a second standby driver voltage amplitude using the second meter electronics.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 3, 2023
    Assignee: MICRO MOTION, INC.
    Inventors: Andrew Timothy Patten, Charles Depenning
  • Patent number: 11622493
    Abstract: An agricultural implement broadly includes a ground-engaging tool, a time-of-flight sensor, and a controller. The time-of-flight sensor is configured to obtain information indicative of seed parameters, furrow parameters, and/or soil condition parameters. The controller is configured to process the information obtained by the time-of-flight sensor to generate the parameters, wherein the controller is further configured to automatically control operation of one or more components of the implement based on the parameters.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: April 11, 2023
    Assignee: Great Plains Manufacturing, Inc.
    Inventors: Gregory W. Arnett, James Edward Schott, Paul Harold Haggard, Matthew D. Goodon, Michael Ohnsat
  • Patent number: 11614356
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 28, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11609144
    Abstract: A method of detecting leakage from a central detector unit 2 of an aspirating fire detection system 1 is described. The method includes actuating a valve 8 to block an outlet 8 of the detector unit 2, operating an aspirator 6 of the detector unit 2 at maximum power, and measuring a differential air pressure across the aspirator 6. If the resulting measured air pressure is below a predetermined threshold, it can be inferred that there is a leak within the central detector unit 2 downstream of the aspirator 6.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: March 21, 2023
    Assignee: CARRIER CORPORATION
    Inventor: Pere Moix Olive
  • Patent number: 11609113
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 21, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11585717
    Abstract: In a substrate processing system according to an exemplary embodiment, gas supply units are configured to supply gases to chambers through first gas flow channels thereof, respectively. Chamber pressure sensors are configured to measure pressures in the chambers. A second gas flow channel is connected to the first gas flow channel of each of the gas supply units. A reference pressure sensor is configured to measure a pressure in the second gas flow channel. In a method according to an exemplary embodiment, each of the chamber pressure sensors is calibrated by using a measurement value thereof and a measurement value of the reference pressure sensor which are obtained in a state where pressures in a corresponding chamber, the first gas flow channel of a corresponding gas supply unit, and the second gas flow channel are maintained.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: February 21, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Risako Matsuda, Norihiko Amikura, Kazuyuki Miura, Keita Shouji
  • Patent number: 11573116
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 7, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11555755
    Abstract: There is provided a method of calibrating multiple chamber pressure sensors of a substrate processing system. The substrate processing system includes: multiple chambers; multiple chamber pressure sensors; multiple gas suppliers configured to supply a gas to an internal space of the multiple chambers; multiple exhausters connected to the internal spaces of the multiple chambers via multiple exhaust flow paths; and multiple first gas flow paths. The method includes: acquiring a third volume, which is a sum of a first volume and a second volume; acquiring a first pressure change rate of the internal space of a selected chamber; calculating a second pressure change rate of the internal space of the selected chamber; and calibrating the selected chamber pressure sensor such that a difference between the first pressure change rate and the second pressure change rate is within a preset range.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: January 17, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Risako Matsuda, Keita Shouji
  • Patent number: 11555735
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 17, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11549842
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 10, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11371873
    Abstract: The disclosed technology is a portable/mobile test bench apparatus and method for testing the accuracy of fluid flow meters. The system comprises an improved drain line system that better removes the test fluid after testing. The system is configured to automatically test the fluid meter at a plurality of flow rates and record the test data as well as transfer the test data to a centralized database.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 28, 2022
    Inventors: Christopher Michael Mastic, David Allen Zook, Michael Louis Mastic, Floyd Stanley Salser, Jr.
  • Patent number: 11353492
    Abstract: A monitoring device and a method for monitoring an insulation resistance for an ungrounded electric system includes a liquid cooling operated to ground and having refrigerant flowing in tubes. For this purpose, the measuring signal is supplied in series in the tube system via the refrigerant resistance. The monitoring device is realized having a current measurement or a voltage measurement at the tube sections in order to detect the insulation resistance and can be enhanced for monitoring a shared insulation resistance of several ungrounded electric subsystems fed by a shared transformer.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: June 7, 2022
    Assignee: BENDER GMBH & CO. KG
    Inventor: Dieter Hackl
  • Patent number: 11326928
    Abstract: Embodiments of a portable verification system (5) can move from one in-field gas flow meter location to another and temporarily connect downstream of a main pipeline's meter run or station. A control valve (19) of the portable verification system (5) allows volume measurement at different flow velocities to be verified. In some embodiments, the portable verification system (5) is connected to the meter run (13) and the main pipeline by a corresponding slip or linearly adjustable pipeline section (30/70). This section (30/70) can extend horizontally and vertically, as well as swivel to provide versatility when connecting in the field. Adaptor fittings may be used to connect the system (5) to the meter run (13) and main pipeline or a quick connect/disconnect (105) may be used. Downtime is limited to the time required to complete a circuit between the meter run, portable verification system (5), and main pipeline.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 10, 2022
    Assignee: Big Elk Energy Systems, LLC
    Inventor: Dennis McClintock
  • Patent number: 11112294
    Abstract: A multiphase flow calibration semi-closed loop system includes an oil-gas-water separation unit, a multiphase flow calibration unit, a single phase flow calibration section, a gas flow section, a flow data acquisition unit, and a programmable logic controller (PLC). The system is designed to have a two-step calibration process. In a first step, single phase water flow meters and single phase oil flow meters of the system are calibrated independently. In a second step, multiphase flow meters or multiphase water cut meters are calibrated using the pre-calibrated water flow meter, pre-calibrated oil flow meter, and the pre-calibrated gas flow meter. In doing so, the oil-gas-water separation unit, the multiphase flow calibration unit, the single phase flow calibration section, and the gas flow section communicate with the flow data acquisition unit providing real time data. Thus, the PLC connected to the flow data acquisition unit can perform the required calibration processes.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: September 7, 2021
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Aftab Ahmad, Luai M. Alhems
  • Patent number: 11099043
    Abstract: A method of determining a corrected measured flow rate is provided. The method includes measuring a flow rate with a first flow meter, measuring a flow rate with a second flow meter, the second flow meter being fluidly coupled to the first flow meter in series, and correcting the measured flow rate of the first flow meter with the measured flow rate of the second flow meter.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: August 24, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Richard L. Maginnis, Dean M. Standiford
  • Patent number: 11079404
    Abstract: A test fixture for determining calibration accuracy of an aircraft angle of attack sensor vane includes an outer disc, configured to be transiently fixed to an aircraft exterior portion surrounding the sensor vane, and an inner disc that includes a spring-loaded plunger configured to physically engage the sensor vane during tests. The inner disc is rotatable relative to the outer disc to accommodate rotation of the sensor vane when engaged with the inner disc. The outer disc includes a ring gear fixed thereto; the inner disc includes a manually operated knob containing a spur gear that reacts with the ring gear to rotate the inner disc when the knob is rotated. The outer disc is a clamshell structure formed of an upper annular disc and a lower annular disc rigidly secured together, and the inner disc is rotatably retained between the upper and lower annular discs.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 3, 2021
    Assignee: The Boeing Company
    Inventors: Charley Shin, Bally Bang
  • Patent number: 10921174
    Abstract: One aspect of the present disclosure includes a transfer standard apparatus for in situ calibration of measuring devices including a manifold having a first header in fluid communication with a second header via two or more flow lines, the first header and the second header each having ports at each end structured to accept external flow lines, two or more flow meters, each disposed in one of the flow lines such that the flow meters are connected in parallel relative to the first header and second header, and valves disposed in the flow lines adjacent the first header and the second header and operable to selectively isolate each flow meter from the first header and the second header. The transfer standard apparatus may include a mobile platform on which the manifold is mounted, including access to the ports of the first header and second header.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 16, 2021
    Assignee: Endress+Hauser Group Services AG
    Inventors: Brian Hoover, Christopher Brent Miller, Ron Onwezen
  • Patent number: 10900819
    Abstract: An ultrasonic flow meter includes a flow tube, and first and second ultrasound transducers that transmit ultrasonic pulses through a liquid flowing through the tube. The flow tube includes a reflector assembly that reflects pulses from the first transducer to the second transducer, and from the second transducer to the first transducer, thereby facilitating different sequences of time-of-flight measurements. A microcontroller obtains multiple sequences of measurements, where all the measurements in a single sequence are of the same measurement type, and each sequence uses a different type of measurement than that used by the other sequences. The microcontroller filters out the longest and shortest time-of-flights and, using an average of the remaining time-of-flights, calculates a volumetric flow rate of the fluid.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: January 26, 2021
    Assignee: AXIOMA Metering, UAB
    Inventors: Virgilijus Pamakstis, Rimas Wolyniec, Gintautas Lengvinas, Vainius Repsys, Arminas Ragauskas
  • Patent number: 10863666
    Abstract: A method and system for calibrating the feed rate of a metering device for airflow-borne feeding of granular material in an agricultural implement. The method of calibrating the feed rate of the metering device comprises a first volumetric feeder with a first metering rotor arranged to feed granular material to an airflow channel.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: December 15, 2020
    Assignee: Väderstad Holding AB
    Inventor: Crister Stark
  • Patent number: 10794869
    Abstract: The present invention discloses an acoustic emission sensor, including an acoustic emission probe, a probe installation mechanism, and a transmission mechanism transmitting a combination of the acoustic emission probe and the probe installation mechanism to a setting position in a borehole of a monitored rock mass; the probe installation mechanism includes a shell, a probe sleeve, a spring sleeve, a spring, and a fixed pulley component; the probe sleeve is installed in the guide cylinder of the shell, the spring sleeve is fixed on two sides of the probe sleeve, the spring is installed inside the spring sleeve; one end of the first rope in the fixed pulley component is fixedly connected to the end cap in the upper end surface of the probe sleeve through the fixed pulley mounted on the top of the inner wall of the shell.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 6, 2020
    Assignees: SICHUAN UNIVERSITY, RESEARCH INSTITUTE OF PETROLEUM EXPLORATION & DEVELOPMENT, PETROCHINA COMPANY LIMITED
    Inventors: Jianfeng Liu, Huining Xu, Jianliang Pei, Lu Wang, Chunping Wang, Xiaozhang Lei, Wenxi Fu, Jianhui Deng
  • Patent number: 10575828
    Abstract: The present invention relates to an ultrasound calibration device comprising a body portion having at least one echogenic fiducial; a marker portion having at least one tracking marker which can be detected by a medical tracking system; and a hook-shaped mounting portion extending from the body portion. The present invention also relates to a method for calibrating an ultrasound probe, comprising the steps of filling a container with a fluid, in particular a physiologic salt solution; placing an ultrasound calibration device in accordance with the invention into the container; comparing, with the aid of a medical navigation system, a calculated position of at least one fiducial with a determined position of the at least one fiducial which is determined using a tracked ultrasound probe.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: March 3, 2020
    Assignee: Brainlab AG
    Inventors: Edward Dunlap, Uli Mezger, Jerome Vuillemin
  • Patent number: 10557745
    Abstract: An electromagnetic flow meter includes a flowtube including a coil disposed in the vicinity of a measurement tube, and electrodes disposed on the measurement tube, a converter including an excitation unit configured to generate an excitation signal and output the excitation signal to the coil through an excitation cable, and a detection signal receiving unit configured to receive a detection signal from the electrodes through a signal cable, and generate a flow rate signal, and a miswiring detection unit configured to perform miswiring diagnosis on the excitation cable or the signal cable on the basis of a difference between a change amount of the flow rate signal when the excitation signal is being output and a change amount of the flow rate signal when the excitation signal is not being output.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: February 11, 2020
    Assignee: Yokogawa Electric Corporation
    Inventor: Toru Shimura
  • Patent number: 10519887
    Abstract: The present invention is one in which an off board Mass Air Flow (MAF) sensor is used to diagnose the internal combustion engine. The MAF sensor is connected to the air induction system of the engine. The sensor is then powered from the vehicles battery. The MAF sensor is designed for lower air flow rates produced from the engine such as; crank, idle, and light load. The sensor creates an output voltage that is proportional to the volumetric air flow of each cylinder entering the engine. This MAF voltage output signal is then used to diagnose engine pumping issues.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: December 31, 2019
    Assignee: Automotive Test Solutions, Inc.
    Inventors: Bernie C. Thompson, Neal R. Pederson
  • Patent number: 10466084
    Abstract: A housing defines a bypass passage and a sub-bypass passage therein. A bypass passage is configured to draw a part of an air flowing through a duct. The sub-bypass passage branches off the bypass passage and is configured to draw a part of air flowing through the bypass passage. A flow rate sensor is arranged in the sub-bypass passage and configured to generate an electric signal according to a flow rate of air in the duct by performing heat transfer with air passing through the sub-bypass passage. A physical quantity sensor is configured to measure a physical quantity of air in the duct. A sensor assembly is integrally formed with the flow rate sensor, the physical quantity sensor, and a circuit module. The circuit module includes a substrate that is configured to process signals from the flow rate sensor and the physical quantity sensor.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 5, 2019
    Assignee: DENSO CORPORATION
    Inventor: Shinichi Kamiya
  • Patent number: 10393102
    Abstract: A pump for pumping a liquid has a pump housing with at least one inlet and at least one outlet. The pump housing has an eccentric rotatable relative to the pump housing by an axle. A deformable element is arranged between the pump housing and the eccentric, and by the deformable element, at least one pump path from the at least one inlet to the at least one outlet is delimited and at least one movable pump path seal is formed, which separates at least one closed pump volume in the pump path. The at least one movable seal is movable in a pump direction from the inlet to the outlet by a movement of the eccentric to pump the fluid along the pump path. The pump has at least one adjustable axial calibrating device, by which the deformable element is clamped in the axial direction parallel to the axle.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: August 27, 2019
    Assignee: Continental Automotive GmbH
    Inventors: Rolf Brück, Jan Hodgson
  • Patent number: 10303189
    Abstract: In one embodiment, a modular method of making mass flow controllers for delivery of a plurality of process gases includes providing a plurality of monolithic bases, each of the monolithic bases having a plurality of flow component mounting regions. A first set of flow components are coupled to the flow component mounting regions of a first of the monolithic bases to form a mass flow controller having a first set of operating characteristics. A second set of flow components are coupled to the flow component mounting regions of a second of the monolithic bases to form a mass flow controller having a second set of operating characteristics which are different from the first set of operating characteristics.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 28, 2019
    Inventors: Daniel T. Mudd, Marshall B. Grill, Norman L. Batchelor, II
  • Patent number: 10203234
    Abstract: To add a function of detecting a temperature to an ultrasonic flow sensor without making the structure of the ultrasonic flow sensor complicated. A sensor portion of the ultrasonic flow sensor includes an acoustic coupling member. The sensor portion includes a heat transfer member having a heat detecting surface for detecting heat of piping. The temperature of heat transferred in the heat transfer member via the heat detecting surface is detected by a temperature detecting device. The heat transfer member restricts an amount of collapse of the acoustic coupling member in a radial direction of the piping when the sensor portion is fixed to the piping.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 12, 2019
    Assignee: KEYENCE CORPORATION
    Inventors: Daishiro Ishikawa, Daiki Matsumoto
  • Patent number: 10184476
    Abstract: The invention relates to a method of determining a first hydraulic variable (Q) of a pump assembly (1) operated at a predefinable rotation speed (n0) from a mechanical or electrical variable (Mactual, Pel, nactual) by evaluating a correlation between the hydraulic variable (Q) with the mechanical or electrical variable (Mactual, Pel, nactual). A control parameter (Msetpoint, nsetpoint) of the pump assembly (1) is acted on by a periodic excitation signal (fA,n (t), fA,H(t)) having a predetermined frequency (f) such that a second hydraulic variable (H, ?p) is modulated. The instantaneous value of the first hydraulic variable (Q) is determined from the mechanical or electrical variable (Mactual (t), Pel (t), nactual (t)) as a system response (X(t)) to the excitation signal (fA,n (t), fA,H(t)), using the correlation. The invention further relates to a pump control system and a pump assembly that are configured for carrying out the method.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: January 22, 2019
    Assignee: WILO SE
    Inventors: Tilmann Sanders, Jens Fiedler
  • Patent number: 10041825
    Abstract: Mass flow controllers with on-tool diagnostic capabilities and methods for on-tool diagnostics are disclosed. A mass flow controller includes a differential voltage processing component to provide a first output that is indicative of a differential voltage between second and fourth nodes of a bridge circuit and a top voltage processing component provides a second output indicative of a top voltage between the first node and the third node of the bridge circuit. Top-and-differential voltage reference data stored in non-volatile memory defines a characteristic curve relating top voltage reference values to corresponding differential voltage reference values. A sensor analysis component obtains a top and differential voltage pair and assesses whether the top and differential voltage pair deviates from the characteristic curve to determine whether the sensing element circuit has changed since the top-and-differential voltage reference data was stored in the non-volatile memory.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 7, 2018
    Assignee: HITACHI METALS, LTD.
    Inventors: Alexei V. Smirnov, Patrick Albright
  • Patent number: 10018595
    Abstract: A fixing device for acoustic emission test sensors for rock damage testing, the device including: a fixing frame; installation bases operating to accommodate the acoustic emission test sensors, respectively; fixing assemblies operating to fix the acoustic emission test sensors in the installation bases; and installation mechanisms operating to arrange the installation bases on the fixing frame. The fixing frame is an assembled loop-shaped frame and includes between two and four frame members and corresponding fixing structures; and the frame members are assembled into an integrated loop-shaped frame by the fixing structures. Each of the installation bases is a cylinder structure. The cylinder structure includes: a cavity corresponding to an outer edge of each of the acoustic emission test sensors, and a wall including a gap for leading out wires of each sensor.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: July 10, 2018
    Assignee: SICHUAN UNIVERSITY
    Inventors: Jianfeng Liu, Heping Xie, Yang Ju, Jianliang Pei, Huining Xu, Lu Wang
  • Patent number: 9885600
    Abstract: For diagnosing a proper functioning of an auxiliary heater in an air mass sensor in an engine system including an internal combustion engine, the auxiliary heater being used for preventing contamination of a sensor area, the air mass sensor communicating air mass information via a signal line during a sensor operating mode and, if a specified state on the signal line is detected, activating the auxiliary heater, the following are performed: setting the state of the signal line to the specified state for a predefined time period in an auxiliary heater operating mode; transmitting a first temperature information before the activation of the auxiliary heater operating mode and a second temperature information via the signal line after expiration of the predefined time period; and detecting the proper functioning of the auxiliary heater depending on the difference between the first temperature information and the second temperature information.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 6, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Pandurang Jadhav, Daniel Kuhn
  • Patent number: 9849235
    Abstract: A method, computer program product, and infusion pump assembly for determining a first rate-of-change force reading that corresponds to the delivery of a first dose of an infusible fluid via an infusion pump assembly. At least a second rate-of-change force reading is determined that corresponds to the delivery of at least a second dose of the infusible fluid via the infusion pump assembly. An average rate-of-change force reading is determined based, at least in part upon the first rate-of-change force reading and the at least a second rate-of-change force reading.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: December 26, 2017
    Assignee: DEKA PRODUCTS LIMITED PARTNERSHIP
    Inventors: Marc A Mandro, Robert J Bryant
  • Patent number: 9724549
    Abstract: An installation for testing open fire extinguishing systems includes a smoke and/or mist generator and a connecting conduit suitable and dedicated for being connected to a fire fighting system. A method for testing of fire extinguishing systems has the following steps performed in any suitable order: a) providing an installation for the generation of smoke and/or mist, b) connecting a conduit of the installation to a conduit of a first section of a preferably open fire extinguishing system, c) opening a valve which provides a connection between the first section of the fire fighting system and the connecting conduit of the installation, d) turning on the smoke and/or mist generator, such that, by the exiting of the smoke and/or mist, the spray heads of the first section of the fire extinguishing system can be inspected on their openness, e) repeating steps b-d for any further section of the fire extinguishing system.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 8, 2017
    Assignee: Luphi B.V.
    Inventor: Antoon Lambertus Ruurd Buitenhuis
  • Patent number: 9703901
    Abstract: A processor connected to a process module executes processor executable instructions stored on the process module according to process input data received by a process definition interface, according to variables input data received by a variables interface. A non-linear correction factor as defined by a non-linear correction factor module is applied to provide a solution to an iterative process. A processor implemented process solves a process problem and comprises processor executable instructions stored on a tangible storage device.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: July 11, 2017
    Assignee: Schneider Electric Software, LLC
    Inventors: Rajkumar Vedam, James Kattapuram, Peter Le
  • Patent number: 9677921
    Abstract: A method of manufacturing a Coriolis mass flowmeter from a polymeric material is described, in which a dynamically responsive manifold is fabricated from the same material as the flow sensor's flow-sensitive elements. The flowmeter is free of mechanical joints and adhesives. The manifold and flow-sensitive elements therefore do not slip or change their location relative one another, nor are they subject to differing degrees of thermal expansion that would otherwise undermine integrity, reliability, and/or accuracy of the boundary condition at the ends of the vibrating flow-sensitive elements.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 13, 2017
    Assignee: Malema Engineering Corporation
    Inventor: Alan M. Young
  • Patent number: 9410920
    Abstract: An apparatus is mountable to a duct having a cross-section, for determining parameters of a flowable medium flowing through the duct. The apparatus includes a mounting attachment having a conduit member, and at least one combination of multiple sensing members configured to the conduit member. The conduit member may be disposed entirely within the duct such that the multiple sensing members are located within the duct establishing direct contact with the flowable medium. The multiple sensing members include oxygen and temperature sensing elements respectively, to determine parameter such as oxygen level in the flowable medium, and temperature of the flowable medium. Several such apparatus may be mounted in the duct across the cross-section to define a grid to determine said parameter at various locations across the cross-section.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: August 9, 2016
    Assignee: ALSTOM TECHNOLOGY LTD
    Inventor: Allan Gunn Ferry
  • Patent number: 9395224
    Abstract: A Coriolis flowmeter (205) is provided. The Coriolis flowmeter (205) includes a flowmeter assembly (206) including one or more flowtubes (210), a driver (220) coupled to and configured to vibrate the flowmeter assembly (206), two or more pickoff sensors (230, 231) coupled to and configured to generate two or more vibration signals from the flowmeter assembly (206), and meter electronics (20) coupled to the driver (220) and the two or more pickoff sensors (230, 231), with the meter electronics (20) configured to provide a drive signal to the driver (220) and receive the resulting two or more vibration signals from the two or more pickoff sensors (230, 231), wherein the two or more pickoff sensors (230, 231) are affixed at two or more corresponding pickoff sensor locations that maximize a Coriolis vibration mode of the Coriolis flowmeter (205).
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 19, 2016
    Assignee: Micro Motion, Inc.
    Inventors: Manoj Rao, Anand Vidhate, Timothy J. Cunningham
  • Patent number: 9316527
    Abstract: A bidirectional sphere prover is used to check the accuracy of a custody transfer meter when fluids, such as crude oil or gasoline are bought and sold. The bidirectional sphere prover of the present invention uses a straight calibrated section of pipe between the detection switches, the straight calibrated section of pipe being free of welds, flanges and elbows.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 19, 2016
    Assignee: WFMS, Inc.
    Inventor: Daniel J. Rudroff