Nozzle Or Venturi Patents (Class 73/1.26)
  • Patent number: 11906336
    Abstract: A fluid sensor, and associated monitoring and control system, employing a cylindrical venturi to eliminate stratification of fluid passing therethrough, and a capacitive sensor operatively coupled with the cylindrical venturi to facilitate the sensing of the fluid while in the venturi.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: February 20, 2024
    Assignee: Hydroacoustics Inc.
    Inventors: Robert D. Valtierra, Mark J. Ozimek, Eugene Sisto, John H. Benton, Ricardo P. Quintanilla
  • Patent number: 11703023
    Abstract: A fuel injector testing machine is provided. The machine includes a head unit having a flow meter, and a fuel injector holding assembly. The head unit and/or the fuel injector holding assembly can be moved relative to each other, allowing the head unit to test a subset of fuel injectors held on the fuel injector holding assembly, and subsequently can test another subset of the fuel injectors via movement of the head unit and/or fuel injector holding assembly.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: July 18, 2023
    Inventor: Paul Arseneau
  • Patent number: 11692863
    Abstract: Embodiments of a portable verification system can move from one in-field gas flow meter location to another and temporarily connect downstream of a main pipeline's meter run or station. A control valve of the portable verification system allows volume measurement at different flow velocities to be verified. In some embodiments, the portable verification system is connected to the meter run and the main pipeline by an adjustable pipeline section. This section can extend horizontally and vertically, as well as swivel to provide versatility when connecting in the field. Adaptor fittings having one flange sized for and fitted to the inlet and outlet ends of the portable verification system and another flange sized for the meter run or main pipeline connection provide additional versatility. Downtime is limited to the time required to complete a circuit between the meter run, portable verification system, and main pipeline.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: July 4, 2023
    Assignee: Big Elk Energy Systems, LLC
    Inventor: Dennis McClintock
  • Patent number: 11112295
    Abstract: Embodiments of a portable verification system can move from one in-field gas flow meter location to another and temporarily connect downstream of a main pipeline's meter run or station. A control valve of the portable verification system allows volume measurement at different flow velocities to be verified. In some embodiments, the portable verification system is connected to the meter run and the main pipeline by an adjustable pipeline section. This section can extend horizontally and vertically, as well as swivel to provide versatility when connecting in the field. Adaptor fittings having one flange sized for and fitted to the inlet and outlet ends of the portable verification system and another flange sized for the meter run or main pipeline connection provide additional versatility. Downtime is limited to the time required to complete a circuit between the meter run, portable verification system, and main pipeline.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 7, 2021
    Assignee: Big Elk Energy Systems, LLC
    Inventor: Dennis McClintock
  • Patent number: 9791350
    Abstract: A verification system includes a reference gas supply part that supplies reference gas in place of exhaust gas and is configured to be able to verify the consistency between a supply amount of the reference gas from the reference gas supply part and a measured value of the reference gas measured by an analyzer. The verification system further includes a control part that receives a setting flow rate signal that is a signal indicating a setting flow rate and an analysis range signal that is a signal indicating an analysis range of the analyzer, calculates a target supply amount of the reference gas on the basis of the setting flow rate and the analysis range indicated by the respective signals, and controls the reference gas supply part so as to make the reference gas supply amount by the reference gas supply part equal to the target supply amount.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: October 17, 2017
    Assignee: Horiba, Ltd.
    Inventors: Tatsuki Kumagai, Tetsuji Asami, Yosuke Hisamori
  • Patent number: 9714852
    Abstract: A gas flow test apparatus and method include a flow monitor that is selectively connectable to a gas pipeline. An air motor driven regenerative blower is used to increase the flow of gas through the around a blockage in the pipeline to simulate an increased gas loading condition on the intake side of the apparatus. The gas drawn from the intake side is not vented to the atmosphere, but rather, is discharged to the exhaust side of the apparatus back into the pipeline. Pipeline pressure is measured on the intake side of the apparatus to ensure that gas supply is adequate for blocking off the pipeline for maintenance.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 25, 2017
    Assignees: ULC Robotics, Inc., National Grid USA Service Co., Inc.
    Inventors: Ray Moore, Mike McGrade, Serafino Catapano, Robert Kodadek, III, G. Gregory Penza, Hermann Herrlich, Griffin Reames, Joseph M. Vitelli, Jr.
  • Patent number: 8707754
    Abstract: Methods and apparatus for calibrating a plurality of gas flows in a substrate processing system are provided herein. In some embodiments, a substrate processing system may include a cluster tool comprising a first process chamber and a second process chamber coupled to a central vacuum transfer chamber; a first flow controller to provide a process gas to the first process chamber; a second flow controller to provide the process gas to the second process chamber; a mass flow verifier to verify a flow rate from each of the first and second flow controllers; a first conduit to selectively couple the first flow controller to the mass flow verifier; and a second conduit to selectively couple the second flow controller to the mass flow verifier.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 29, 2014
    Assignee: Applied Materials, Inc.
    Inventors: James P. Cruse, John W. Lane, Mariusch Gregor, Duc Buckius, Berrin Daran, Corie Lynn Cobb, Ming Xu, Andrew Nguyen
  • Patent number: 8667830
    Abstract: Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 11, 2014
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Jialing Chen, Tao Ding, James MacAllen Chalmers
  • Patent number: 8424362
    Abstract: Methods and apparatuses are provided for calibrating a vacuum component of a phacoemulsification system at different elevations. The design comprises running a vacuum component to be calibrated at an elevation; determining a maximum vacuum pressure available at the elevation; determining a range of vacuum pressure available from running the vacuum component at the elevation; calibrating the vacuum component based at least in part on a the maximum vacuum pressure available and the range of vacuum pressure available. The design also comprises a to be calibrated vacuum component; a pressure delivery device; an altimeter configured to determine the elevation of the vacuum component; component reading hardware configured to read at least one measured value from the pressure sensing components of the vacuum component when exposed to at least one pressure value from the pressure delivery device; and a computer configured to correlate a plurality of measured values to the elevation.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 23, 2013
    Assignee: Abbott Medical Optics Inc.
    Inventors: Abraham Hajishah, David A. King, Michael J. Claus
  • Patent number: 8221702
    Abstract: A sample dispensing apparatus and method for dispensing a sample such as blood and urine collected for inspection from one vessel to another are provided wherein the remaining quantity of a primary sample can be reduced without disturbing the primary sample. When clogging by a separating agent is detected during suction of a sample such as blood and urine collected for inspection, the sample dispensing apparatus performs raising of an aliquot head such that an opening at the free end of a nozzle tip does not come out of the sample liquid surface to dissolve clogging; sucking of the sample under the residual pressure; and additionally sucking of a fixed quantity of the sample to reduce the remaining quantity of the sample.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: July 17, 2012
    Assignee: Hitachi-High Technologies Corporation
    Inventors: Akihiro Shimoda, Masahito Kakuno, Eiji Takaya, Junichi Oizumi
  • Patent number: 8024984
    Abstract: A device for testing decoking tools comprises means 30 for receiving the decoking tool 31 which can be connected to a high-pressure water conduit, as well as means for testing the water jet which exits from a nozzle of the decoking tool 31 following the opening of the high-pressure water conduit. It is possible to test, measure and analyse the high-pressure water jet exiting from the nozzle by means of this testing device in order to optimize the performance of the decoking tool on the basis of the results of this examination. According to the method of the invention the high-pressure water jet generated by means of the nozzles of the decoking tool is exposed to means for testing the high-pressure water jet.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: September 27, 2011
    Assignee: Ruhrpumpen GmbH
    Inventors: Wolfgang Paul, Kay Simon, Andreas Wupper
  • Patent number: 7950267
    Abstract: Methods and systems for determining an LPG fuel output characteristic of an LPG injector. The output characteristic of the LPG can be determined by calculating a total mass of LPG injected into a canister of known volume by the injector during a plurality of open/closed cycles of the injector. The pressure differential and temperature in the canister can be used in the calculation of total LPG mass along with a gas constant of the LPG and the volume of the canister. The total LPG mass can then be used to determine the mass of LPG injected by the injector during each open/closed cycle.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: May 31, 2011
    Assignee: Bi-Phase Technologies, LLC
    Inventors: Victor Vandyke, Kevin Michael Wolter, Thomas Arnold Kulenkamp
  • Patent number: 7823436
    Abstract: Methods and apparatus utilize a rate of drop in pressure upstream of a gas flow controller (GFC) to accurately measure a rate of flow through the GFC. Measurement of the gas flow through the many gas flow controllers in production use today is enabled, without requiring any special or sophisticated pressure regulators or other special components. Various provisions ensure that none of the changes in pressure that occur during or after the measurement perturb the constant flow of gas through the GFC under test.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: November 2, 2010
    Assignee: Pivotal Systems Corporation
    Inventors: Joseph R. Monkowski, Jialing Chen, Tao Ding, James MacAllen Chalmers
  • Patent number: 7638096
    Abstract: Methods and devices for detecting photoresist coating failures are disclosed. A disclosed method to detect a photoresist coating failure on a semiconductor wafer comprises: loading a photoresist coated wafer on a notch position check block; rotating the coated wafer; detecting the position of a notch in the wafer; blowing air toward the surface of the wafer with at least one air nozzle located over the rotating wafer; detecting an amount of the air blown from the at least one air nozzle; and generating a coating failure signal if a variation in the amount of air blown from the at least one air nozzle is indicative of a photoresist coating failure.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: December 29, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Ook Hyun Kim
  • Patent number: 7555928
    Abstract: A vehicle exhaust measurement system is provided includes that a conduit having a conduit inlet and a conduit outlet. A make-up air tube is connected to and is in fluid communication with the conduit inlet. The make-up air tube provides make-up air for mixing an exhaust gas. A mixed gas tube is connected to and is in fluid communication with the conduit outlet. The mixed gas tube conveys a mixture of make-up air and exhaust gas to analysis equipment. In the preferred embodiment, the exhaust gas tube extends through an outer wall of the conduit. A mixing plate is arranged in either the conduit or the mixed gas tube with the exhaust gas tube extending to a position adjacent to the mixing plate. The exhaust gas tube conveys the exhaust gas to the mixing plate to mix the exhaust gas and the make-up air at the mixing plate.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: July 7, 2009
    Assignee: AVL North America Inc.
    Inventor: William Martin Silvis
  • Patent number: 7552614
    Abstract: A system and method for determining functionality and accuracy of a sensor such that monitoring of a sensor is possible without the provision of redundant sensors. Briefly described, one embodiment is an anemometer operable to detect wind speed adjacent to the wind power installation, a calculating unit operable to calculate a calculated wind speed using data from an operating parameter of the wind power installation, and a comparison device operable to compare the detected wind speed with the calculated wind speed to determine the functionality of the anemometer.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 30, 2009
    Inventor: Aloys Wobben
  • Publication number: 20090112504
    Abstract: A high accuracy mass flow verifier (HAMFV) which provides high measurement accuracy over a wide flow verification range with low inlet pressures is disclosed for verifying flow measurement by a fluid delivery device. The HAMFV includes a chamber defining a plurality N of inlets with upstream valves, an outlet with a downstream valve, a pressure sensor and a temperature sensor configured to measure the pressure and the temperature of the fluid within the chamber, respectively. A plurality N of critical flow nozzles is located adjacent to the corresponding upstream valve. The HAMFV further includes a controller configured to activate one of the plurality N of critical flow nozzles based on the desired flow verification range and the fluid type by opening the corresponding upstream valve and closing all other upstream valves. At least two of the plurality N of critical flow nozzles have different cross-sectional areas.
    Type: Application
    Filed: March 18, 2008
    Publication date: April 30, 2009
    Inventors: Junhua Ding, Kaveh Zarkar
  • Patent number: 7469570
    Abstract: A calibrating system for measuring amounts of sprayed material has an array of nozzles for dispensing a sprayed material and a capture apparatus positioned to receive the dispensed sprayed material from the array of nozzles. The capture apparatus has aligned channels configured for receiving the dispensed sprayed material.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: December 30, 2008
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventor: William R. Cooper
  • Patent number: 7461537
    Abstract: A device and method for calibration of a mass flow sensor (14) employs a flow channel and a holder for the mass flow sensor in the flow channel. An adjustable throttle device is provided between the holder and a connection to a pump during a calibrating operation to operate on the basis of a predetermined time/displacement profile by means of a control device. During operation of the pump, the throttle device generates a supercritical flow with which a flowing medium has the speed of sound in the narrowest cross section of the throttle device.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: December 9, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rudolf Bierl, Manfred Schweimeier
  • Patent number: 7249486
    Abstract: The present invention concerns a method of monitoring a sensor for sensing the flow speed of a medium. The invention further concerns an apparatus for carrying out that method. In order to be able to monitor the sensor, without providing redundant sensors, the flow speed of the medium, which is specified by the sensor, is correlated with at least one operating parameter of an installation operated with the medium. For that purpose the apparatus according to the invention includes a sensor for detecting the flow speed of a medium, an installation operated with the medium and a correlation device for correlating the flow speed of the medium, which is specified by the sensor, with at least one operating parameter of the installation.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 31, 2007
    Inventor: Aloys Wobben
  • Patent number: 7089789
    Abstract: A fuel injection system (18) is calibrated as an assembled system. The fuel injection system (18) includes a unit pump (10) a cam follower (24), a joined fuel injection line (14) and injection nozzle (16). The fuel injection system (18) is mounted to a test stand an is subsequently calibrated to a specified fuel delivery and timing. The relative positions of the unit pump (10) and fuel injection nozzle (16) are fixed during calibration. The assembled fuel injection system is packaged and delivered so that the calibrated system can be installed in the relative positions fixed during calibration.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: August 15, 2006
    Assignee: Stanadyne Corporation
    Inventors: Kenneth H. Klopfer, Michael O'Brien
  • Publication number: 20040089052
    Abstract: An adjusting apparatus and method for automatic setting of injectors are disclosed. The setting is carried out via accurate adjustment of the distance between an actuator and a lever element. In the process, an injector to be set is provided in the correct position in a measurement and setting station and is coupled to a pressure generating device. The setting element of the injector is then rotated in such a way that the injector switches through at a specific setting of the setting element. At the same time, the current values for the torque applied to the setting element, for the angular position of the setting element, for the exciter voltage applied to the actuator and for the pressure drop caused by the switching-through action are registered and compared with predefined parameters. If all the measured values agree with the predefined parameters, then the injector has been set correctly.
    Type: Application
    Filed: November 3, 2003
    Publication date: May 13, 2004
    Inventors: Manfred Bodenmueller, Lothar Mueller, Gerhard Freiseis
  • Patent number: 6698270
    Abstract: A system for testing systems which are in turn used to test the leaktightness of a hollow body is suggested. Instead of the hollow body, a test body (2) is placed in the system which generates a defined pressure increase in a measuring chamber (4) within a pre-determined time span. This defined pressure increase corresponds exactly to the pressure increase generated by a hollow body with a small amount of leakage, wherein the hollow body can still just be regarded as leaktight. The test body can be configured as a glass capillary which extends in a sealing manner between two chambers with different air pressure. Alternatively, the test body can comprise a material which can accept a defined amount of moisture from the ambient atmosphere during storage. A vacuum formed around the test body causes moisture to be withdrawn from the test body and at least partially evaporated in the vacuum, which again leads to an increase in pressure in the chamber.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Boehringer Ingelheim Pharma KG
    Inventor: Kuhn Torsten
  • Patent number: 6470281
    Abstract: In a process and a device for measuring a throttle point, a fluid under pressure is applied to the throttle point by a pump, at least one operating parameter of the pump is acquired and stored, at least two reference operating parameters of two reference throttles are acquired and stored, and the operating parameters are compared with a reference operating parameters in an evaluating unit and a throttle magnitude is outputted.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: October 22, 2002
    Assignee: Robert Bosch GmbH
    Inventor: Harald Merz