By Drill Mud Analysis Patents (Class 73/152.04)
  • Patent number: 10371691
    Abstract: A mud gas analyzer and a well-site system using the mud gas analyzer are described. The mud gas analyzer includes at least one degasser adapted to extract gas from drilling mud passing through a flow path formed at least partially by a drill string within a well and an annulus positioned between an exterior surface of the drill string and a formation surrounding the well at a well-site, at least one gas analyzer adapted to interact with the gas extracted from the drilling mud. The gas analyzer determines an isotopic composition of a gas liberated from the drilling mud and generates a sequence of signals indicative of ratios of isotopes of a gas species liberated from the drilling mud.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 6, 2019
    Assignee: GEOSERVICES EQUIPEMENTS
    Inventors: Dariusz Strapoc, Martin Niemann, Benjamin Jacquet
  • Patent number: 9988901
    Abstract: It can sometimes be difficult to determine accurately the in-process degassing efficiency of a drilling fluid, thereby leading to inaccurate feedback from an ongoing drilling operation. Methods for determining degassing efficiency of a drilling fluid can comprise: combining a measured amount of an analysis gas with a drilling fluid sample; transferring the drilling fluid sample and the analysis gas to a degassing unit; withdrawing at least a portion of the analysis gas from the drilling fluid sample in the degassing unit; conveying the withdrawn analysis gas from the degassing unit to a detector with an inert carrier gas; determining an amount of the withdrawn analysis gas with the detector; and calculating an extraction efficiency of the analysis gas from the drilling fluid sample based upon the amount of the withdrawn analysis gas. The extraction efficiency may provide an estimate of the degassing extent for other gases.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 5, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Mathew Dennis Rowe
  • Patent number: 9772320
    Abstract: A classification scheme for classifying sized bridging materials is disclosed. The scheme identifies a durability metric for the sized bridging materials. The scheme then identifies a value range having a higher relative strength and a lower relative strength. The sized bridging materials may then be tested according to the durability metric and associated with a relative strength based on the durability metric determined during the test.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: September 26, 2017
    Assignee: Saudi Arabian Oil Company
    Inventor: Md. Amanullah
  • Patent number: 9562391
    Abstract: A driving head for telescopic drill rods has a frame, a cylindrical collar rotatably coupled with said frame, and provided at least with one internal surface comprising at least one driving rack adapted to be coupled with corresponding driven racks of telescopic drill rods, and actuation means to drive said cylindrical collar into rotation, said driving rack being coupled with said cylindrical collar by means of removable connection means. A machine provided with said driving head is also disclosed.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: February 7, 2017
    Assignee: I.M.T. INTERNATIONAL S.P.A.
    Inventors: Marcello Pennacchioli, Luca Urbani
  • Patent number: 9228433
    Abstract: An apparatus and a process for wellbore characterization are disclosed, including: separating, in a separation vessel, drilling mud from gas produced during drilling of a wellbore; transporting the separated produced gas from the separation vessel to a downstream process; and measuring at least one of a temperature, a pressure, a mass flow rate, and a volumetric flow rate of the separated produced gas during transport using one or more sensors. Properties of the gas separated from the mud may be used to determine characteristics of a wellbore.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 5, 2016
    Assignee: M-I L.L.C.
    Inventors: Scott Sawyer, Donovan Balli, Michael J. Tangedahl, James Gunnels, Roger Suter
  • Publication number: 20150107349
    Abstract: A sample that includes formation content from a subsurface formation and other sample constituents is obtained while the sample is in close proximity to the subsurface formation. While downhole, the formation content is separated from the other sample constituents by passing the sample through an oil-wet porous plate, a water-wet porous plate, or through both plates, and analyzed. Various petrophysical properties of the formation content may be determined. To further separate the formation content, one may pass the sample through a mesh, pass the sample into an expansion chamber, or draw the sample into a chamber using a moveable piston. The formation content may be analyzed downhole using, for example, a mass spectrometer, FTIR, or chromatograph. The hydrocarbon contribution from oil based drilling fluid can be accounted for. Alternatively, a capsule may be charged with “live” formation content and conveyed uphole to be analyzed.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: MOHAMMED BADRI, JULIAN POP, REZA TAHERIAN
  • Patent number: 9010460
    Abstract: A method and a system for detecting or measuring influxes of formation water or brine into a drilling fluid being used to drill a borehole through an earth formation are described. The method and system comprising using an electrode based sensor system to determine changes in capacitance and/or conductance of the drilling fluid.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: April 21, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Gerald H. Meeten, Richard H. Mills
  • Publication number: 20150027216
    Abstract: Methods and systems for improving operations of a formation tester are disclosed. The formation tester (400) is placed in a wellbore at a location of interest. The formation tester comprises a first isolation pad (402) coupled to a pad carrier (410) and a second isolation pad (404). The first isolation is extendable to substantially seal a probe of the formation tester against a well bore wall. The first isolation pad is then replaced with the second isolation pad if it is determined that the first isolation pad should be replaced with the second isolation pad.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 29, 2015
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Lizheng Zhang
  • Patent number: 8939021
    Abstract: Apparatus and methods for fluid expansion in mud gas logging to determine downhole the composition of a downhole hydrocarbon fluid sample by expanding the sample using an incrementally adjustable piston or a series of fixed chambers to extract vapor containing composition components of interest.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: January 27, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Pierre J. Daniel, Stefan Smuk, Reza Taherian, Julian J. Pop
  • Patent number: 8935957
    Abstract: Methods including providing a wellbore in a subterranean formation having at least one pore opening; providing a proposed wellbore operation; providing a proposed treatment fluid; providing proposed FLCM particulates; calculating the suspendability of the proposed FLCM particulates in the proposed treatment fluid as determined by a yield gravity function based on properties of the proposed treatment fluid and properties of the proposed FLCM particulates or as determined by an experimental FLCM function; manipulating at least one of the properties of the proposed treatment fluid, the properties of the proposed FLCM particulates, or the proposed wellbore operation based on the yield gravity function or the experimental FLCM function so as to produce a FLCM-suspension treatment fluid; and introducing the FLCM-suspension treatment fluid into the wellbore in the subterranean formation so as to contact the at least one pore opening.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 20, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Sandeep D. Kulkarni, Kushabhau D. Teke, Sharath Savari, Dale E. Jamison, Don Whitfill
  • Patent number: 8912000
    Abstract: Methods and apparatus for obtaining a mass spectrum of a sample and determining a concentration of a component of the sample by utilizing a model of chemical and electron ionization and the obtained mass spectrum.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Pierre J. Daniel, Julian J. Pop, Reza Taherian, Bruno Drochon
  • Patent number: 8838390
    Abstract: A system for creating a log during gas detection and monitoring is disclosed herein. The system can include a gas detection and well logging device for sensing and transmitting data, which can include a processor in communication with a monitoring device. The monitoring device can monitor, acquire, and transmit data associated with a drilling operation. The processor can receive the data, calibrate the data, and log the data into files. The processor can capture sensed data based on a time event and a depth event. The processor can scale the data and form a geological-hydrocarbon log for transmission. A client device can be in communication with the gas detection and well logging device, and can have computer instructions for querying the geological hydrocarbon log, the data, and the files to obtain real time streaming data for instant display.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: September 16, 2014
    Assignee: Selman and Associates, Ltd.
    Inventors: Thomas H. Selman, Matthew J. Jennings
  • Patent number: 8775086
    Abstract: A gas analyzer system that can detect atmospheric air gasses in drilling mud is used to calculate an actual lag time in a well. The calculated lag time and a theoretical lag time may be compared to estimate a caving percentage in an open hole section of the well.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Weatherford/Lamb, Inc.
    Inventor: Gabriel Frunza
  • Patent number: 8775088
    Abstract: The method uses a gas processor, various data collection devices each having a unique device protocol to receive drilling data, calibrate the devices and graphically present the data using both time events and depth events. The method includes computer implemented steps to scale the data and form the geological-hydrocarbon executive dashboard for transmission to various client devices to obtain real time streaming data, real time calibration information, while adding and removing detection devices and sensors online without shutting down the entire monitoring and analysis system for instant display.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 8, 2014
    Assignee: Selman and Associates, Ltd.
    Inventors: Thomas H. Selman, Matthew J. Jennings
  • Patent number: 8775087
    Abstract: The system includes a gas processor with gas processor data storage and computer instructions to receive in various device protocols simultaneously information from rig based sensors and gas analysis devices drilling data, calibrate the devices and graphically present the data using both time events and depth events. Computer instructions scale the data and form the geological-hydrocarbon executive dashboard for transmission to various client devices to present real time streaming data, real time calibration information, real time alarms while enabling users to add and remove detection devices and sensors, including rig servers and remote servers, online without shutting down the entire monitoring and analysis system.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 8, 2014
    Assignee: Selman and Associates, Ltd.
    Inventors: Thomas H. Selman, Matthew J. Jennings
  • Patent number: 8714246
    Abstract: Methods and apparatus for acquiring mud gas logging data, comparing the mud gas logging data to second data associated with a sidewall fluid sample measurement, and adjusting calibration data associated with a mud gas logging tool based on the comparison of the mud gas logging data and the second data associated with the sidewall fluid sample measurement.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: May 6, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Julian J. Pop, Reza Taherian
  • Patent number: 8677814
    Abstract: A device (53) comprises an enclosure (63) and means (65, 67) for circulating a drilling mud in the enclosure (63). The inventive device is also provided with means (69) for introducing a gas carrier into the enclosure (63), which comprises a pipe (113) provided with a unit (121) for adjusting the gas carrier flowrate. The device (53) comprises a gas extracting pipe (71) open into the enclosure (63). The gas introducing means (69) comprise a sensor (123) for measuring a pressure at a point located downstream of the adjusting unit (121) and means (117) for controlling the flowrate of the gas carrier injected through said adjusting unit (121) according to the difference between a pressure measured by the sensor (123) and a determined gas extraction pressure.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: March 25, 2014
    Assignee: Geoservices Equipements
    Inventor: Jean-François Evrard
  • Patent number: 8616051
    Abstract: The method includes extraction of gases contained in a mud, in order to obtain a gas stream of extracted gases containing hydrocarbons to be analyzed and at least one parasitic compound. The method includes transporting the gas stream through a transport line (54) and passing it through a separation column (121) in order to separate the hydrocarbons to be analyzed according to their elution times in the separation column (121). The parasitic compound is likely to have an elution time in the separation column (121) between the elution time for the first hydrocarbon to be analyzed and the elution time of the final hydrocarbon to be analyzed. The method includes passing the gas stream over a surface (141) for chemical and/or physical interaction with the parasitic compound in order to selectively retain the or each parasitic compound without retaining the hydrocarbons to be analyzed.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 31, 2013
    Assignee: Geoservices Equipments
    Inventors: Farouk Kimour, Jerome Breviere
  • Patent number: 8596383
    Abstract: A method for detecting hydrocarbon zones in a geological formation, including obtaining a plurality of pulverized drill cutting samples representative of the geological material encountered at measured depth intervals, each drill cutting obtained at periodic intervals during the drilling process; measuring each cutting sample with a color measuring device to obtain a value representing the degree of lightness of the particular cutting sample; and analyzing the measured lightness values by order of borehole depth that the respective cutting sample was obtained to determine the presence of geological zones likely to possess producible hydrocarbons. L* data may be combined with other well logging data to improve the hydrocarbon layer determination accuracy. A method also for locating the drill bit within a desired hydrocarbon layer during directional drilling.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Encana Oil & Gas (USA) Inc.
    Inventors: Mark W. Montie, Charles L. Vavra
  • Patent number: 8584518
    Abstract: A gas trap apparatus for liberating gas from drilling mud and collecting such gas for analysis. A motor is connected to a rotatable vertical shaft having beater bars thereon, which when the shaft is immersed in drilling mud and rotate, stirs such mud to liberate gas entrained therein. The gas trap is characterized in having a top member and a bottom member which surrounds the vertical shaft and which is releasably secured to the top member thereof by a quick release mechanism which facilitates rapid detachment of the bottom member from the top member to permit quick access said vertical shaft and beater bars thereon for replacement or servicing. The vertical shaft may further likewise be provided with a quick-release means to allow quick release of the shaft from the motor for easy replacement and servicing of same.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 19, 2013
    Assignee: Rigsat Communications Inc.
    Inventor: Terence D. Phillips
  • Patent number: 8528394
    Abstract: An assembly for transient and continuous testing of an open portion of a well bore arranged in a lower part of a drill string includes at least two packers fixed outside of the drill string, which are expandable for isolating a reservoir interval. The assembly includes a down-hole pump, sample chamber, sensors, closing valve, sensors and telemetry for measuring and realtime transmission of flow rate, pressure and temperature of fluid flow from the reservoir interval, from the down-hole pump, in the drill string and in an annulus above the packers, a mud driven turbine or electric cable, and a circulation unit. The circulation unit, independent of the circulation rate for mud to the annulus, can feed formation fluid from the reservoir interval into the annulus, so that at any time a well can be kept in over balance and the mud can solve the formation fluid from the reservoir interval.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 10, 2013
    Assignee: Statoil ASA
    Inventor: Kåre Otto Eriksen
  • Patent number: 8522896
    Abstract: Processes and apparatus that continuously change the physical state and characteristics of drilling fluids at planned periodic intervals to consistently and correctly compensate for differing geological formation properties, wellbore characteristics, rate of penetration, solids removal efficiency, and other essential factors involved in the drilling process, comprising: initiating a system correction of a Minimum Base Required (“MBR”); and administering a dilutant to a drilling fluid according to the MBR. The system corrections may be performed recursively, adjusting the system's base dilutant and chemical product additions according to MBR. The drilling fluid consistency produced is based upon several drilling-rig specific parameters.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 3, 2013
    Inventor: Michael V. Rowden
  • Patent number: 8434354
    Abstract: This invention describes an apparatus and a method for integrity monitoring of a borehole and the seal integrity of a caprock suitable for sequestration of greenhouse gases. The apparatus includes plural neutrally buoyant sensors for placement outside of a casing, placement including distribution within at least mud filter cake, cement, and proppant. This invention also includes a method for monitoring integrity of a borehole suitable for sequestration of greenhouse gases or other types of well using the described apparatus.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 7, 2013
    Assignee: BP Corporation North America Inc.
    Inventors: Walter Crow, Kevin Dodds, Walter C. Riese, Chester Little
  • Publication number: 20120000278
    Abstract: A gas trap apparatus for liberating gas from drilling mud and collecting such gas for analysis. A motor is connected to a rotatable vertical shaft having beater bars thereon, which when the shaft is immersed in drilling mud and rotate, stirs such mud to liberate gas entrained therein. The gas trap is characterized in having a top member and a bottom member which surrounds the vertical shaft and which is releasibly secured to the top member thereof by a quick release mechanism which facilitates rapid detachment of the bottom member from the top member to permit quick access said vertical shaft and beater bars thereon for replacement or servicing. The vertical shaft may further likewise be provided with a quick-release means to allow quick release of the shaft from the motor for easy replacement and servicing of same.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Inventor: Terence D. Phillips
  • Patent number: 8056408
    Abstract: A method for determining a property of formations surrounding an earth borehole being drilled with a drill bit at the end of a drill string, using drilling fluid that flows downward through the drill string, exits through the drill bit, and returns toward the earth's surface in the annulus between the drill string and the periphery of the borehole, including the following steps: obtaining, downhole near the drill bit, a pre-bit sample of the mud in the drill string as it approaches the drill bit; obtaining, downhole near the drill bit, a post-bit sample of the mud in the annulus, entrained with drilled earth formation, after its egression from the drill bit; implementing pre-bit measurements on the pre-bit sample; implementing post-bit measurements on the post-bit sample; and determining a property of the formations from the post-bit measurements and the pre-bit measurements.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: November 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Julian J. Pop, Reza Taherian, Martin E. Poitzsch, Jacques R. Tabanou
  • Patent number: 8032311
    Abstract: A method for characterizing a desired property of a fluid downhole is described. In some non-limiting examples, the method comprises receiving an input signal representing sound speed of a fluid downhole, processing the input signal using a correlation equation expressing the desired property in terms of at least sound speed to produce an output signal representing the desired property, and outputting the output signal. In some examples, the correlation equation is derived through a chemometric analysis of a training data set, the training data set comprises a plurality of input values and a plurality of output values derived from said input values, between the desired fluid property and the first measured property, and the output values are calculated from the input values using a series of correlation equations. In at least one example, the desired property is gas oil ratio. In another example, the desired property is gas brine ratio.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: October 4, 2011
    Assignee: Baker Hughes Incorporated
    Inventor: Rocco DiFoggio
  • Patent number: 8011238
    Abstract: A method of characterizing formation fluid present in a subsurface earth formation during drilling using methods for correcting the measured concentrations of gas components in drilling mud. Gas trap values for the gas components of interest, light hydrocarbons, are measured during mud logging and are corrected using relative response factors, determined from laboratory fluid analysis values and relative extraction efficiency values. The relative response factors for each gas component of interest can be used for correcting additional gas trap values measured in the same well or for correcting gas trap values measured in surrounding wells utilizing a similar drilling fluid. The corrected gas trap values for each of the gas components of interest can be utilized to calculate gas/oil ratios for characterizing the formation fluid from the volume of drilling mud.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: September 6, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventor: Scott A. Hanson
  • Patent number: 7937999
    Abstract: Apparatus, methods and computer programs disclosed herein, in one aspect, estimate a temperature of a selected region of an earth formation using a virgin formation temperature of the earth formation, a downhole fluid temperature measured over time, an elapsed time between drilling proximate the selected region and making of a formation evaluation measurement of the selected region, an estimate of thermal conductivity of the earth formation, and a heat capacity of the earth formation. In another aspect, the apparatus, methods and computer programs utilize the estimated temperature and the formation evaluation measurement to estimate a property of interest of the selected region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 10, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Martin Blanz, Thomas Kruspe
  • Publication number: 20110000294
    Abstract: The method includes extraction of gases contained in a mud, in order to obtain a gas stream of extracted gases containing hydrocarbons to be analyzed and at least one parasitic compound. The method includes transporting the gas stream through a transport line (54) and passing it through a separation column (121) in order to separate the hydrocarbons to be analyzed according to their elution times in the separation column (121). The parasitic compound is likely to have an elution time in the separation column (121) between the elution time for the first hydrocarbon to be analyzed and the elution time of the final hydrocarbon to be analyzed. The method includes passing the gas stream over a surface (141) for chemical and/or physical interaction with the parasitic compound in order to selectively retain the or each parasitic compound without retaining the hydrocarbons to be analyzed.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 6, 2011
    Applicant: GEOSERVICES EQUIPEMENTS
    Inventors: Farouk KIMOUR, Jerome BREVIERE
  • Publication number: 20100313645
    Abstract: A method of determining a particle size distribution in a wellbore fluid including collecting a volume of mud from a vibratory separator, sampling a volume of the collected mud, and testing the volume of collected mud with a test kit to determine the concentration of a sized additive in the mud is disclosed. A system for determining particle size distribution of a fluid, the system including a vibratory separator, a meter configured to receive a separated material from the vibratory separator, a counter configured to count the number of loads collected by the meter, a test kit including a sieve and a measuring tube, and a centrifuged configured to receive the measuring tube is also disclosed.
    Type: Application
    Filed: February 18, 2009
    Publication date: December 16, 2010
    Applicant: M-I L.L.C.
    Inventors: Aaron A. Doman, Jake M. Garber, Philip E. Herrera, Frank Butler, Toby Pierce, Tim Browning, John Riddell Smith, Frederick B. Growcock
  • Patent number: 7844400
    Abstract: A low maintenance adjustable system for sampling gas from a well using a gas analyzer; a conditioning and filtering device; a gas trap having a plurality of couplings, a plurality of hammer unions, a plurality of base manifold pipes, a base manifold flow line, a chimney pipe connected to the base manifold flow line, a controllable valve, a reducer connected to the chimney, an expansion chamber component connected to the reducer, a restrictor mounted to the expansion chamber component, and a conduit connection connected to the restrictor for engaging a conduit to flow a gas sample from the gas trap to a gas analyzer.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: November 30, 2010
    Assignee: Selman and Associates, Ltd.
    Inventors: Thomas H. Selman, Juanita C. Selman, Matthew J. Jennings, Richard James Gonzales, Brian A. Jennings, Stephen M. Bergman
  • Publication number: 20100294033
    Abstract: An assembly for transient and continuous testing of an open portion of a well bore arranged in a lower part of a drill string includes at least two packers fixed outside of the drill string, which are expandable for isolating a reservoir interval. The assembly includes a down-hole pump, sample chamber, sensors, closing valve, sensors and telemetry for measuring and realtime transmission of flow rate, pressure and temperature of fluid flow from the reservoir interval, from the down-hole pump, in the drill string and in an annulus above the packers, a mud driven turbine or electric cable, and a circulation unit. The circulation unit, independent of the circulation rate for mud to the annulus, can feed formation fluid from the reservoir interval into the annulus, so that at any time a well can be kept in over balance and the mud can solve the formation fluid from the reservoir interval.
    Type: Application
    Filed: February 14, 2008
    Publication date: November 25, 2010
    Applicant: STATOILHYDRO ASA
    Inventor: Kåre Otto Eriksen
  • Publication number: 20100242585
    Abstract: This invention relates to a nano-robots system and methods for well logging and borewell measurements. In one embodiment, a nano-robot includes a propulsion system for providing thrust in drilling mud, with extendable fins to help steer nano-robot in the drilling mud. The fins are also extendable to a further position then when used for steering, so that the nano-robot may embed itself into a formation to measure its properties, such as porosity and permeability. In an embodiment, a nano-robot includes electrodes to generate a voltage from the ions in the drilling mud, and a transceiver and antenna to provide communication with other nano-robots, and with a transponder on a drilling string so that measured data may be transmitted to surface receivers for data storage and analysis. Other embodiments are described and claimed.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 30, 2010
    Applicant: Halliburton Offshore Service, Inc
    Inventors: Singh Pratyush, Bhat Sumit
  • Publication number: 20100223988
    Abstract: This invention relates to an apparatus and a method for a wireless sensor to monitor barrier system integrity, such as used or employed during sequestration of greenhouse gases. This invention includes an apparatus for integrity monitoring of a borehole suitable for sequestration of greenhouse gases. The apparatus includes one or more sensors for placement outside of a casing to monitor a borehole, and a tool for movement within the casing to power and interrogate the one or more sensors. This invention also includes a method for monitoring integrity of a borehole suitable for sequestration of greenhouse gases or other types of well. The method includes the step of disposing one or more sensors outside a casing and the step of powering the one or more sensors with a tool inside the casing. The method also includes the step of interrogating the one or more sensors with the tool to monitor an engineered borehole and/or a natural caprock seal.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: BP Corporation North America Inc.
    Inventors: Walter Crow, Kevin Dodds, Walter C. Riese, Chester Little
  • Publication number: 20100186951
    Abstract: In a formation pressure tester tool, an elongated filter piston possibly having a tapered or sharp edge configured to penetrate mud cake while the probe is being set. At the end of the setting sequence, the filter piston is retracted, thus opening a flowpath from the formation, through the mudcake, to the probe.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 29, 2010
    Inventor: Nathan Church
  • Patent number: 7757562
    Abstract: Technique for deterring and monitoring internal defect condition of a mud pump during the operation and/or in a laboratory conditions are illustrated. One or more acoustic transducers are attached in the proximity of one or more valves of the pump. Variation(s) in the output signal parameters are continuously monitored. Variation of the signal over the predetermined threshold level indicate a gradual degradation of the pump or if the variation of the signal occurs over a short interval it may indicate a sudden failure of the pump. Likewise, a system of detecting internal defect condition of the pump and apparatus for monitoring the pump condition is illustrated. The techniques are also applied to duplex and/or triplex high-pressure pumps used to push hydrocarbons through pipelines. Apparatus and system similar to that disclosed for the mud pump is equally applicable to the high-pressure pumps used to push hydrocarbons through pipelines.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 20, 2010
    Assignee: MBH Data Source
    Inventor: Jeffery Lyn Mercer
  • Patent number: 7752906
    Abstract: A method for determining a property of formations surrounding an earth borehole being drilled with a drill bit at the end of a drill string, using drilling fluid that flows downward through the drill string, exits through the drill bit, and returns toward the earth's surface in the annulus between the drill string and the periphery of the borehole, including the following steps: obtaining, downhole near the drill bit, a pre-bit sample of the mud in the drill string as it approaches the drill bit; obtaining, downhole near the drill bit, a post-bit sample of the mud in the annulus, entrained with drilled earth formation, after its egression from the drill bit; implementing pre-bit measurements on the pre-bit sample; implementing post-bit measurements on the post-bit sample; and determining a property of the formations from the post-bit measurements and the pre-bit measurements.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: July 13, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Julian J. Pop, Reza Taherian, Martin E. Poitzsch, Jacques R. Tabanou
  • Publication number: 20090272186
    Abstract: A method of preparing a thin section sample includes affixing the sample to a receptacle using an affixing media that includes a material having a thickness-sensitive characteristic. The sample may then be shaped to have an asymmetric cross-section. The method may further include reducing a thickness of the material until the thickness-sensitive material exhibits a change in an optical characteristic. The added material, which may be quartz, may exhibit a predetermined optical characteristic at a specified thickness and/or exhibit a change in an optical characteristic in response to a change in thickness. In one application, the method may include retrieving the sample from a subterranean formation. For instance, the sample may be retrieved from a gas shale formation.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 5, 2009
    Applicant: CORE LABORATORIES LP
    Inventor: Craig Hall
  • Publication number: 20090260430
    Abstract: A method for determining drilling fluid losses or gains by providing a drilling fluid, measuring a plurality of supply parameters of the drilling fluid, delivering the drilling fluid to a subsurface drilling operation, the subsurface drilling operation providing a returns drilling fluid, measuring a plurality of returns parameters of the returns drilling fluid, and determining change in composition, or loss of or gain of drilling fluid from a comparison between the supply parameters and the returns parameters.
    Type: Application
    Filed: November 21, 2008
    Publication date: October 22, 2009
    Inventor: Konstandinos Zamfes
  • Publication number: 20090205869
    Abstract: Method and system for monitoring rotational time of a rotatable equipment. At least some of the illustrative embodiments are methods comprising powering a sensor coupled to a rotatable equipment, the powering by a self-contained electronic system integral to the rotatable equipment monitoring rotational time of the rotatable equipment by way of the sensor, and providing a report of rotational time of the rotatable equipment upon request.
    Type: Application
    Filed: February 3, 2009
    Publication date: August 20, 2009
    Applicant: NATIONAL OILWELL VARCO, .LP.
    Inventors: Jonathan R. Prill, Michael X. Tang
  • Publication number: 20090066959
    Abstract: A method, system and an apparatus for estimating a property of a fluid in a wellbore are disclosed. In one aspect, the fluid may be exposed to light and light reflected by or passed through the fluid may be separated into a plurality of channels by a plurality of photonic crystals, each providing light corresponding to particular center wavelength. In another aspect, the light may be passed through a plurality of photonic crystals to provide light centered about one or more wavelengths. The fluid then may be exposed to the light output from the photonic crystals. Light detected from the fluid corresponding to each center wavelength is processed to estimate the parameter of interest.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Rocco DiFoggio
  • Publication number: 20090049889
    Abstract: A method for determining a property of formations surrounding an earth borehole being drilled with a drill bit at the end of a drill string, using drilling fluid that flows downward through the drill string, exits through the drill bit, and returns toward the earth's surface in the annulus between the drill string and the periphery of the borehole, including the following steps: obtaining, downhole near the drill bit, a pre-bit sample of the mud in the drill string as it approaches the drill bit; obtaining, downhole near the drill bit, a post-bit sample of the mud in the annulus, entrained with drilled earth formation, after its egression from the drill bit; implementing pre-bit measurements on the pre-bit sample; implementing post-bit measurements on the post-bit sample; and determining a property of the formations from the post-bit measurements and the pre-bit measurements.
    Type: Application
    Filed: October 29, 2008
    Publication date: February 26, 2009
    Inventors: JULIAN J. POP, Reza Taherian, Martin E. Poitzsch, Jacques R. Tabanou
  • Publication number: 20090038389
    Abstract: An apparatus and process for measuring the formation gas pore pressure in drilling cuttings samples in a container. The Apparatus includes vertical holder for container, for placing the cutting sample and pipette for adding measurable quantity of liquid. The container may be vibrated to facilitate separation by grain size. The process includes measuring the gas bubbles size and volume in the test tube and the height of liquid covering the bubble. The volume and the pressure of the gas emitted out of the pores is calculated. By adding/subtracting liquid and/or pressure to the sample and increasing/decreasing the height and the pressure of the liquid on the pore, the test is repeated and the measurements documented in the tables for math processing to obtain the error corrections and standard deviation of the measurements. The results are expressed in Emission=V/P=mm3/Pa, Total Volume=V=mm3, Maximum Pressure=P=Pa.
    Type: Application
    Filed: August 28, 2008
    Publication date: February 12, 2009
    Inventor: Konstandinos Zamfes
  • Patent number: 7458257
    Abstract: A method for determining a property of formations surrounding an earth borehole being drilled with a drill bit at the end of a drill string, using drilling fluid that flows downward through the drill string, exits through the drill bit, and returns toward the earth's surface in the annulus between the drill string and the periphery of the borehole, including the following steps: obtaining, downhole near the drill bit, a pre-bit sample of the mud in the drill string as it approaches the drill bit; obtaining, downhole near the drill bit, a post-bit sample of the mud in the annulus, entrained with drilled earth formation, after its egression from the drill bit; implementing pre-bit measurements on the pre-bit sample; implementing post-bit measurements on the post-bit sample; and determining a property of the formations from the post-bit measurements and the pre-bit measurements.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: December 2, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: Julian J. Pop, Reza Taherian, Martin E. Poitzsch, Jacques R. Tabanou
  • Patent number: 7395691
    Abstract: A process to analyze fluid entrained in well boreholes. The process includes gathering trap gas samples from return of drilling mud at multiple depths. The process also includes the steps of subjecting the samples to mass spectrometry in order to determine mass to charge ratios data of hydrocarbons and analyzing the mass to charge ratios data in relation to depth or time. Samples from at least one other source may also be gathered and analyzed chosen from the group consisting of mud fluid analysis, cuttings backgrounds analysis and cuttings crush analysis.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: July 8, 2008
    Assignee: Fluid Inclusion Technologies, Inc.
    Inventors: Steven Michael Sterner, Donald Lewis Hall, Wells Shentwu
  • Patent number: 7363829
    Abstract: A device for sampling drill cuttings includes a frame, an inclined perforated member mounted on the frame, a sprayer for washing cuttings down over the perforations, and a removable open-topped cuttings collector mounted under the perforated member, the perforated member cooperating with the downstream end of a vibratory screen over which the cuttings pass before translating onto the perforated screen.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: April 29, 2008
    Inventor: Willy Rieberer
  • Patent number: 7357030
    Abstract: Methods and an apparatus for determining at least one characteristic of an environment are disclosed. A vibrational energy may be imparted into an environment and a magnitude of damping of the vibrational energy may be measured and at least one characteristic of the environment may be determined. Particularly, a vibratory source may be operated and coupled to an environment. At least one characteristic of the environment may be determined based on a shift in at least one steady-state frequency of oscillation of the vibratory source. An apparatus may include at least one vibratory source and a structure for positioning the at least one vibratory source proximate to an environment. Further, the apparatus may include an analysis device for determining at least one characteristic of the environment based at least partially upon shift in a steady-state oscillation frequency of the vibratory source for the given impetus.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: April 15, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Stephen R. Novascone, Phillip B. West, Michael J. Anderson
  • Patent number: 7168310
    Abstract: A novel process and methodology in deterministic formation evaluation is provided. The formation evaluation results can accurately quantify formation attributes, such as clay-volume, clay-bound-water, effective-porosity and water saturation in shaly sands. Total-porosity is determined using porosity-logs, such as density, neutron and sonic logs. After clay-volume and total-porosity are determined, sand volume (quartz, feldspar, mica . . . ) is the remaining part in the bulk formation evaluated, see FIG. 5.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: January 30, 2007
    Assignee: Saudi Aramco
    Inventor: Saleh Al-Ruwaili
  • Patent number: 7103982
    Abstract: A method for determining a borehole azimuth in a borehole is disclosed. In one exemplary embodiment, the method includes acquiring at least one standoff measurement and a tool azimuth measurement at substantially the same time. Such measurements are then processed, along with a lateral displacement vector of the downhole tool upon which the sensors are deployed in the borehole, to determine the borehole azimuth. The computed borehole azimuths may be advantageously correlated with logging sensor data to form a borehole image, for example, by convolving the correlated logging sensor data with a window function. As such, exemplary embodiments of this invention may provide for superior image resolution and noise rejection as compared to prior art LWD imaging techniques.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: September 12, 2006
    Assignee: PathFinder Energy Services, Inc.
    Inventor: Samuel Mark Haugland
  • Patent number: 6959773
    Abstract: In a method for drilling, completing and fracturing a subterranean formation, an electrical potential is applied to oil or synthetic based drilling fluid to increase the viscosity of the fluid and enable the fluid to entrain drill cuttings and proppant. The same base fluid may be used for drilling, completion and fracturing by adjusting the electrical potential and consequently the viscosity of the fluid for the particular application. In fracturing, little or no potential is applied until the fluid enters the zone of the formation to be fractured. High potential is then applied at the fracture point of the formation to effect fracturing and to enable the fluid to transport proppant into the fracture.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: November 1, 2005
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ali Mese, Mohamed Soliman