Solid Content Patents (Class 73/23.33)
  • Patent number: 10557815
    Abstract: A sensor element which has a pair of positive and negative detection electrodes disposed on a surface of an insulation body as a detecting portion and a cover body configured to cover an opening of a cylindrical housing. The cover body is provided with gas inlet and outlet holes via which the measuring gas is introduced and discharged. The pair of detection electrodes have a plurality of wire electrodes. The wire electrodes electrically connected to the positive electrode and the wire electrodes electrically connected to the negative electrode are alternately arranged in parallel. Any one of a first insulation layer which is a narrow electrode interval Dn and a second insulation layer which is a wide electrode interval Dw, arranged between adjacent wire electrodes, and the first insulation layer arranged in a center part of the detecting portion.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: February 11, 2020
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Yamamoto, Masayuki Tamura, Go Miyagawa, Toru Katafuchi, Takehito Kimata, Yuto Tamei
  • Patent number: 10539492
    Abstract: A device for determining a concentration of particles in a gas flow, e.g., soot particles in exhaust gas of an internal combustion engine, includes a carrier and a sensor, which is situated on a surface of the carrier and can be exposed to the gas flow, the sensor including an electrode structure including at least two measuring electrodes that are of different polarity and that are formed as an interdigital comb structure including finger electrodes. In first areas of the interdigital comb structure, the finger electrodes have a first mutual distance in relation to each other, and in second areas of the interdigital comb structure, the finger electrodes have a second smaller mutual distance in relation to each other, the first areas and the second areas in the interdigital comb structure each at least partially adjoining each other alternately, occupying respective surface areas on the sensor.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: January 21, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Andy Tiefenbach, Enno Baars, Sebastian Fuchs
  • Patent number: 10371615
    Abstract: A particulate matter detection sensor has an accumulation section for accumulating a part of particulate matter particles contained in exhaust gas emitted from an internal combustion engine, and a pair of a first detection electrode and a second detection electrode formed on the accumulation section. The second detection electrode is formed separated from the first detection electrode. The first detection electrode has projecting parts which project toward the second detection electrode. Because a separation between the first and second detection electrodes is locally reduced at the projecting parts, the projecting parts attract and accumulate more particulate matter, and this structure makes it possible to allow the particulate matter detection sensor to have improved detection sensitivity.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: August 6, 2019
    Assignee: DENSO CORPORATION
    Inventors: Go Miyagawa, Masayuki Tamura
  • Patent number: 10364717
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 30, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: David John Kubinski
  • Patent number: 10317328
    Abstract: An internal combustion engine includes an ECU, an A/F sensor being active at a first temperature lower than a PM combustion temperature and set in advance, and a heater to heat the A/F sensor to a second temperature equal to or higher than the PM combustion temperature and set in advance. The ECU detects PM based on a difference between an output value of the A/F sensor at the first temperature and an output value of the A/F sensor at the second temperature. The ECU may perform determining that a PM accumulation amount is smaller than a reference amount when the output value is higher than a threshold value, and that the PM accumulation amount is equal to or larger than the reference amount when the output value is a value equal to or smaller than the threshold value.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: June 11, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Kato, Go Hayashita
  • Patent number: 10247653
    Abstract: A continuous alpha monitor includes an air intake mechanism, which in turn includes an air mover and an air flowrate monitor, an air intake prefilter that limits particulates in the air intake mechanism to an aerodynamic diameter of 10 microns or less, and a particle size detector mounted downstream of the air intake prefilter, the air particle size detector providing an airborne dust concentration and a first distribution of aerodynamic diameters of particulates in air passing the prefilter, the particulates including depleted uranium particulates. The monitor further includes a sample filter web that collects the particulates; a solid state detector that detects alpha radiation emitted by the collected particulates; a processor that executes machine instructions embodied on a non-transient computer-readable storage medium to compute a dust loading on the sample filter web; and the processor computes an indication of alpha concentration detected by the detector mechanism.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 2, 2019
    Assignee: MAURO & ASSOCIATES, LLC
    Inventor: John Mauro
  • Patent number: 10233813
    Abstract: In order to surely remove deposits attached on the inner wall of an exhaust gas pipe, an exhaust gas measurement system that measures components contained in the exhaust gas of an internal combustion engine is adapted to include an exhaust gas piping member into which the exhaust gas is introduced; a purge gas supply mechanism adapted to supply purge gas to the exhaust gas piping member; a heating mechanism adapted to heat the exhaust gas piping member; and a control mechanism adapted to, after the heating mechanism has heated the exhaust gas piping member or the exhaust gas flowing through the exhaust gas piping member to a predetermined temperature, control the purge gas supply mechanism to start supplying the purge gas.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: March 19, 2019
    Assignee: HORIBA Ltd.
    Inventor: Yoshinori Otsuki
  • Patent number: 10100702
    Abstract: Methods and systems are provided for a particulate matter (PM) sensor assembly positioned downstream of a diesel particulate filter in an exhaust system. In one example, a PM sensor assembly may include a bent tube having a first, upstream end coupled to an exhaust passage, and a second outwardly flared end at a downstream end of the assembly. In this way, the second end of the bent tube may form a venturi that serves to block larger particulates from entering the assembly, and additionally serves to increase exhaust flow into the sensor assembly.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: October 16, 2018
    Assignee: Ford Global Technologies, LLC
    Inventor: Xiaogang Zhang
  • Patent number: 10067047
    Abstract: A particle detection system includes a sensor main body having an electrification section for electrifying particles contained in a gas under measurement so as to produce electrified particles, and detects the particles contained in the gas under measurement by using the electrified particles. The sensor main body has a heater portion which generates heat upon energization so as to heat at least a portion of the electrification section. The particle detection system detects a burnable period (for example, fuel cut period) during which the gas under measurement contains oxygen for burning particles adhering to the electrification section, and energizes the heater portion during the burnable period so as to heat at least a portion of the electrification section to a temperature at which the adhering particles burn.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: September 4, 2018
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventor: Toshiya Matsuoka
  • Patent number: 10012578
    Abstract: A particulate matter sensor includes a cartridge having an opening, and a substrate disposed inside the cartridge. A conductor is in contact with one surface of the substrate, has a plurality of penetration holes through a flow direction of the exhaust gas, and includes a plurality of cells formed therein with an electrode layer. The particulate matter sensor detects a particulate matter included in the exhaust gas based on a variation of resistance or capacitance.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: July 3, 2018
    Assignee: Hyundai Motor Company
    Inventor: Dong Gu Kim
  • Patent number: 9951672
    Abstract: Methods and systems are provided for sensing particulate matter by a particulate matter sensor positioned downstream of a diesel particulate filter in an exhaust system. In one example, a method may include accumulating incoming particulate matter by applying a higher bias to a first trap of the particulate matter sensor, and further charging the particulate matter and forming highly charged dendrites. The method further includes capturing the dendrites exiting the first trap by applying a lower bias to a second trap also housed within the same particulate matter sensor, thereby reducing the effects of exhaust flow rate on the particulate matter sensor and further increasing the sensitivity of the particulate matter sensor.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 24, 2018
    Assignee: Ford Global Technologies, LLC
    Inventor: David Bilby
  • Patent number: 9823176
    Abstract: A particulate matter sensor is provided. The particulate matter sensor includes a particulate matter detection unit that has first and second electrodes separately disposed on a substrate and configured to generate capacitance to correspond to a quantity of a particulate matter accumulated between the first and second electrodes. A signal generator is configured to generate a frequency signal that determines a resonant frequency by the capacitance. A detection result processor is configured to detect a signal magnitude of a predetermined reference frequency in the frequency signal and distinguishes an exhaust level of the particulate matter based on a change of the signal magnitude.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: November 21, 2017
    Assignee: Hyundai Motor Company
    Inventors: Sang Hyeok Yang, Yong Sung Lee, Dong Gu Kim
  • Patent number: 9803524
    Abstract: Methods are described for increasing the sensitivity of particulate matter detection in an exhaust system of a vehicle. An example particulate matter sensor assembly comprises a pair of planar interdigitated electrode structures held at a voltage bias with respect to each other. An alternate embodiment may comprise a planar interdigitated electrode pair, and a conducting plate assembly again held at a voltage bias with respect to the planar interdigitated electrode pair. The bias may overlay an additional electric field drive, which improves the capture of soot particles on the sensor assembly surface thereby increasing sensitivity of particulate matter sensors.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 31, 2017
    Assignee: Ford Global Technologies, LLC
    Inventor: David John Kubinski
  • Patent number: 9671380
    Abstract: A method is presented for diagnosing a particulate matter sensing system, where the system includes a sensing element having two electrodes spaced from one another. The method determining at a first time during a cool-down event a first sensing element temperature and a resistance of the sensing element, and determining at a later second time during the cool-down event a second sensing element temperature and the resistance of the sensing element. The method further includes calculating a predicted sensing element resistance at the second sensing element temperature, based on the first sensing element temperature, the resistance of the sensing element determined at the first time, and a predetermined model of the resistance vs. temperature characteristics of the sensing element. A fault condition for the system may be indicated based on a comparison of the predicted sensing element resistance at the second sensing element temperature and a measured sensing element resistance.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: June 6, 2017
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Konrad A. Weber, David A. Goulette
  • Patent number: 9605578
    Abstract: A PM sensing device including a front sensing piece receiving an exhaust flow, a back sensing piece posited downstream from the front sensing piece, and a sensor controller electrically connected to the sensing pieces for measuring their impedances and calculate a PM sensing value accordingly. The PM sensing device has two operating modes: an impedance measurement mode, in which a PM sensing value is calculated, and a regeneration mode, in which accumulated PM is removed. Since PM is only deposited in the front sensing piece, by comparing impedances of the front and the back sensing pieces, PM sensing values can be obtained insensitive to particle size, exhaust gas temperature, and exhaust gas species. When the PM sensor is positioned in a DPF system, sensor regeneration times in a predetermined period of time after a DPF regeneration completes can be used for triggering a new DPF regeneration and detecting DPF failures.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 28, 2017
    Inventor: Baohua Qi
  • Patent number: 9540984
    Abstract: The present invention relates to a process for determining the state of an exhaust-gas purification device. The exhaust-gas purification device is one which can store gas and/or particles. By means of the proposed process, it is for example possible for the loading state of the exhaust-gas aftertreatment system, for example the oxygen storage state of a catalytic converter which is provided with an oxygen-storing material, such as for example a three-way catalytic converter, to be analyzed. The present process operates contactlessly through the analysis of resonances which arise upon the excitation of the catalytic converter using the purification device as microwave cavity resonator.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: January 10, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Martin Roesch, Martin Votsmeier, Ralf Moos, Gerhard Fischerauer, Gunter Hagen, Sebastian Reiss
  • Patent number: 9395273
    Abstract: A particulate detection system (1) includes detection section (10), compressed air source (300) which includes compressor (301) for producing compressed air AK, compressor drive circuit (320) and control means (100). The detection section includes a gas jetting source (11). A drive condition for jetting air AR from jetting hole (31N) at a first flow rate Q1 is defined as a first drive condition JK1, and a drive condition for jetting the air AR at a second flow rate Q2 smaller than the first flow rate Q1 is defined as a second drive condition JK2. The control means includes first instruction means S5 for driving the compressor under the first drive condition JK1 when the quantity of the particulates S is detected, and second instruction means S6 for driving the compressor under the second drive condition JK2 when the quantity of the particulates S is not detected.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: July 19, 2016
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Masayuki Motomura, Takeshi Sugiyama, Keisuke Tashima, Toshiya Matsuoka, Hitoshi Yokoi
  • Patent number: 9334773
    Abstract: The present disclosure relates to a controller apparatus for regenerating a particulate matter sensor. The controller apparatus includes a sensing module configured to detect a soot loading on a particulate matter sensor and generate a regeneration request indicating a desired regeneration temperature and a heating module configured to receive the regeneration request and send a heating command signal to a heating element based on the regeneration request. The controller apparatus further includes an electrical resistance module configured to detect an electrical resistance in the heating element and determine an actual temperature of the heating element and a temperature feedback module configured to modify the heating command signal according to the difference between the desired regeneration temperature and the actual temperature. The present disclosure also includes a related method and system.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 10, 2016
    Assignee: CUMMINS IP, INC.
    Inventors: Xiao Lin, Jinqian Gong, Clyde Xi
  • Patent number: 9010198
    Abstract: An example aircraft debris monitoring sensor assembly includes an aircraft conduit defining a hollow core passage extending axially from an inlet opening to an outlet opening. A sensor arrangement detects debris carried by a fluid within the hollow core passage.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 21, 2015
    Assignee: United Technologies Corporation
    Inventors: Ravi Rajamani, Alexander I. Khibnik, William Donat, Rajendra K. Agrawal
  • Patent number: 8966956
    Abstract: A PM amount detecting apparatus having a PM sensor installed in a sensor case into which a part of exhaust gas of an internal combustion engine allowed to flow through an exhaust gas passage is intaken. The sensor case has a structure which lowers a flow rate of the exhaust gas therein to such an extent that PM is capable of performing thermal phoresis, and a structure which generates therein such a temperature difference that PM is guided to the PM sensor in accordance with the thermal phoresis.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mamoru Yoshioka
  • Patent number: 8952822
    Abstract: A smoke alarm comprises smoke detection circuitry for detecting smoke and generating a detection signal responsive thereto. Proximity detection circuitry generates a proximity detection signal responsive to detection of an object within in a selected distance of the smoke alarm. Alarm generation circuitry generates an audible alarm responsive to the detection signal. The audible alarm may be deactivated for a predetermined period of time responsive to at least one proximity detection signal.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 10, 2015
    Assignee: Google Inc.
    Inventor: Wayne T. Holcombe
  • Patent number: 8915119
    Abstract: A detection apparatus includes a particulate matter (PM) detection unit, a temperature detection unit, and a correction unit. The PM detection unit includes an insulator, a pair of electrodes, and a detector. The insulator is disposed in an exhaust path of an internal combustion engine through which an exhaust gas flows. The pair of electrodes are arranged in contact with at least a part of the insulator. The detector detects a PM detection value which is a value correlated to an amount of PM in the exhaust gas. The temperature detection unit detects at least one of an exhaust temperature of the exhaust gas passing through the PM detection unit and an insulator temperature of the insulator. The correction unit corrects the PM detection value detected by the PM detection unit based on at least one of the exhaust temperature and the insulator temperature.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: December 23, 2014
    Assignee: Denso Corporation
    Inventors: Tomohiro Ueno, Shigeto Yahata
  • Publication number: 20140331654
    Abstract: A particulate filter device monitoring system for an engine includes a regeneration mode trigger module configured to set a regeneration request based on soot accumulation in the particulate filter device, a regeneration control module configured to control regeneration of the particulate filter device, and a soot out model module including a soot out model configured to calculate changes in soot out rate during prolonged engine idling periods.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Christopher Whitt
  • Patent number: 8869613
    Abstract: The invention relates to A sensor end module, comprising: a sensor cap having a first connecting element and a sensorially active element for contact with a medium; and a memory module, comprising: a housing having a second connecting element, wherein the second connecting element enters into a shape- and/or force interlocking connection with the first connecting element; a memory element, wherein the memory element contains information concerning the sensorially active element the memory element is arranged in or on the housing; a first communication interface for sending and/or receiving information and/or data, and wherein the first communication interface is in electrical contact with the memory element. Furthermore, the invention relates to a sensor and a measuring system.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 28, 2014
    Assignee: Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG
    Inventors: Stephan BUschnakowski, Ronny Michael, Ronny Grosse-Uhlmann
  • Patent number: 8833145
    Abstract: A method for determining a soot concentration in an engine oil of internal combustion engines, in which method a defined quantity of the engine oil is conducted with a defined flow speed along and/or through a measurement path. In a region of the measurement path, the engine oil is acted on with energy from at least one energy source in such a way that the soot particles contained in the engine oil at least partially absorb the energy. An energy quantity absorbed in the measurement path region is subsequently detected, and from this a soot concentration in the engine oil is determined. A device for determining the soot concentration in the engine oil of internal combustion engines is provided for performing the method.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: September 16, 2014
    Assignee: MAN Truck & Bus AG
    Inventors: Felix Fischer, Harald Beck
  • Patent number: 8820139
    Abstract: A particulate matter detection device of the present invention includes a plate-like element base material, and a pair of measurement electrodes arranged in the element base material, each of the measurement electrodes is a combteeth-like electrode including a plurality of planarly arranged combteeth portions, and a comb spine portion which connects the plurality of combteeth portions of each of the measurement electrodes to one another at one end of each of the plurality of combteeth portions, the combteeth portions of the measurement electrodes are arranged to engage with each other with a space being left therebetween, and the comb spine portion of at least one of the measurement electrodes is covered with a comb spine covering portion made of a dielectric material.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 2, 2014
    Assignees: NGK Insulators, Ltd., Honda Motor Co., Ltd.
    Inventors: Masahiro Tokuda, Takashi Egami, Takeshi Sakuma, Atsuo Kondo, Masanobu Miki, Keizo Iwama, Tatsuya Okayama
  • Patent number: 8794048
    Abstract: A system for determining a number of particles includes a diluter arranged at a connecting point of a main flow channel and dilution gas flow channel, a dilution gas flow rate control part that controls the flow rate of the dilution gas introduced into the diluter, a particle number measuring unit that measures a number of solid particles in a diluted exhaust gas, a bypass flow channel that bifurcates from between the diluter and particle number measuring unit in the main flow channel and in which a constant flow rate unit is arranged, and an information processing unit that calculates the dilution factor of the exhaust gas based on a dilution gas flow rate controlled by the dilution gas flow rate control part, and a total of a unit flow rate of the particle number measuring unit and a set flow rate of the constant flow rate unit.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: August 5, 2014
    Assignee: Horiba, Ltd.
    Inventors: Takashi Matsuyama, Masayoshi Shinohara, Yoshinori Otsuki, Kaoru Okada, Masanobu Akita
  • Patent number: 8786455
    Abstract: A tool lubrication delivery monitoring system and a method of control. An accelerometer is provided to detect a position of a valve and fluid flow through the valve. Accelerometer data may be compared to a baseline profile to determine whether fluid flow or valve operation is within established parameters.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Ford Motor Company
    Inventors: James William Perry, Chandra Jalluri
  • Patent number: 8783097
    Abstract: A system for sensing soot of a diesel engine includes a combustion element which is a porous ceramic structure and to which a catalytic substance that is combustion-reacted with the soot is fixed, a comparison element which is the porous ceramic structure and to which a stable substance that is not combustion-reacted with the soot, and a detection section for detecting the temperatures of the combustion element and the comparison element and for deducing the soot formation amount among exhaust gas by using the temperature difference of the respective element.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: July 22, 2014
    Assignee: Hyundai Motor Company
    Inventor: Cheol Beom Lim
  • Patent number: 8783090
    Abstract: The present disclosure provides apparatus and methods to determine real-time total carbon content, non-inclusive of carbon dioxide, and/or solid carbon content of engine exhaust. For a total carbon content determination, substantially all carbon dioxide is removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine total carbon content of the exhaust. For solid carbon content determination, in addition to substantially all carbon dioxide being removed from the exhaust, substantially all carbon-containing non-solid substances are also removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine solid carbon content of the exhaust.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Southwest Research Institute
    Inventors: Qiang Wei, Imad Said Abdul-Khalek
  • Patent number: 8769937
    Abstract: A control method for monitoring a soot sensor of an exhaust treatment system is provided. The control method includes: determining when regeneration has completed; comparing soot sensor data to an estimated soot data based on the determining; and generating a message based on the comparing.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ognyan N. Yanakiev, David E. Winn, Eric M. Hall, Christopher P. Musienko
  • Patent number: 8754775
    Abstract: A smoke alarm comprises smoke detection circuitry for detecting smoke and generating a detection signal responsive thereto. Proximity detection circuitry generates a proximity detection signal responsive to detection of an object within in a selected distance of the smoke alarm. Alarm generation circuitry generates an audible alarm responsive to the detection signal. The audible alarm may be deactivated for a predetermined period of time responsive to at least one proximity detection signal.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: June 17, 2014
    Assignee: Nest Labs, Inc.
    Inventor: Wayne T. Holcombe
  • Publication number: 20140123608
    Abstract: A method for engine-out soot flow rate prediction of an exhaust gas treatment system is provided. A measured level of oxides of nitrogen in the exhaust gas treatment system is received. An engine fuel injection timing and air-fuel ratio of an engine producing the oxides of nitrogen are also received. An engine timing factor is determined based on the engine fuel injection timing. An engine air-fuel ratio factor is determined based on the engine air-fuel ratio. An engine-out soot flow rate prediction is generated based on the measured level of oxides of nitrogen, the engine timing factor, and the engine air-fuel ratio factor.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Min Sun, Michelangelo Ardanese, Jean-Yves Lavallee, Amanpal S. Grewal, Paul Jasinkiewicz
  • Patent number: 8713991
    Abstract: A sensor assembly includes a voltage source, a sensor electrode, a grounded assembly, an integration capacitor, and a current meter. The sensor electrode is coupled to the voltage source to receive a voltage. The sensor electrode is disposed within a directed and controlled exhaust flow to facilitate particle agglomeration into particulate matter structures at a surface of the sensor electrode. The grounded assembly is coupled to a ground reference and disposed at a distance from the sensor electrode. The integration capacitor is coupled to a negative side of the voltage source to integrate in time current pulses from charge transfers from the sensor electrode of the particulate matter structures. The current meter is coupled to the voltage source to measure an integrated value of current supplied to the voltage source in response to charge transfers from the sensor electrode to the particulate matter structures in the exhaust flow.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 6, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan
  • Patent number: 8707678
    Abstract: A system for improving operation of an engine having a particulate matter sensor is presented. The system may be used to improve engine operation during cold starts especially under conditions where water vapor or entrained water droplets are present in vehicle exhaust gases. In one embodiment, an engine controller that activates a heater of an exhaust gas sensor after an output of a particulate matter sensor exceeds a threshold value after an engine is started.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 29, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Garry Anthony Zawacki, Robert F. Novak, Roberto Teran, Jr., Dave Charles Weber, Michiel J. Van Nieuwstadt, Michael Hopka, William Charles Ruona
  • Patent number: 8707761
    Abstract: A shielding part is formed on a detection part in a particulate matter detection element. The detection part has a pair of detection electrodes formed in a comb structure. A shielding layer is made of heat insulating material and formed on the detection part in order to shield a predetermined area having non-uniform electric field intensity. An area having uniform electric field intensity on the detection part is exposed only to exhaust gas as target detection gas when a predetermined voltage is supplied between the detection electrodes in order to detect electric characteristics of the detection part. This structure prevents the area other than the area having the uniform electric field intensity on the detection part from being exposed to the exhaust gas.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: April 29, 2014
    Assignee: Denso Corporation
    Inventors: Eriko Maeda, Takehito Kimata, Yushi Fukuda
  • Patent number: 8695400
    Abstract: In order to improve a system for monitoring the working area atmosphere of an operating engine, measuring devices (2) for determining readings for a gas and/or an aerosol in the working area (4) of an operating engine are used as a starting point. Each measuring device comprises a suction means (8) which extracts a gas and/or a mixture of an aerosol from the working area (4) of the operating engine and feeds it to a sensor unit (16, 17, 18). An electronics module for operating the sensor unit (16, 17, 18) is also present. The suction means is designed as a convection pump (8) preferably with a heating device (42) and a cooling device (44).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 15, 2014
    Inventor: Uwe Gnauert
  • Patent number: 8671736
    Abstract: A sensor includes a housing, a central sensor electrode assembly, an insulating member, and a trace. The central sensor electrode assembly is coupled to a supply side of a voltage source. The insulating member is coupled between the housing and the central sensor electrode assembly. The insulating member circumscribes a section of the central sensor electrode assembly. The trace is coupled to the insulating member and circumscribes the section of the central sensor electrode assembly. The trace directs at least a portion of leakage current away from a voltage ground offset on an opposite side of the central sensor electrode assembly.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 18, 2014
    Assignee: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Patent number: 8661993
    Abstract: In an exhaust gas treatment system including a denitration device that removes nitrogen oxide in exhaust gas from a heavy fuel-fired boiler, an air preheater that recovers heat in the gas after the nitrogen oxide is removed, an electric precipitator that removes dust while adding ammonia into the gas after heat recovery, a desulfurization device that removes sulfur oxide in the gas after dust removal, and a stack that exhausts the gas after desulfurization to the outside, an ash-shear-force measuring instrument is provided to measure an ash shear force, which is ash flowability, on the downstream side of the electric precipitator, so that a feed rate of an air supply unit that supplies air to the boiler is reduced according to ash shear-force information.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoyuki Kamiyama, Tomoo Akiyama, Toshihiko Setoguchi, Koutaro Fujimura, Yoshihisa Yamamoto, Koichi Tagami, Yasutoshi Ueda
  • Patent number: 8635900
    Abstract: A method for performing on-board functional diagnostics on a soot sensor of a vehicle and/or for detecting further components in the soot in a motor vehicle having an internal combustion engine. The soot sensor is electrically connected to an evaluation circuit with is permanently installed in the motor vehicle. In order to specify a method for performing functional diagnostics on a soot sensor and/or for detecting further components in the soot, with which method it is possible to detect a faulty soot sensor and/or further components in the soot in a cost-effective way, the evaluation circuit measures the temperature coefficient of the soot sensor and detects the defectiveness of the soot sensor and/or the presence of further components in the soot on the basis of the temperature coefficient of the soot sensor.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 28, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Johannes Ante, Rudolf Bierl, Markus Herrmann, Andreas Ott, Torsten Reitmeier, Willibald Reitmeier, Denny Schädlich, Manfred Weigl, Andreas Wildgen
  • Patent number: 8627645
    Abstract: A method for controlling a particulate matter sensor heater is provided. The method includes operating the heater to burn-off soot accumulated on the sensor; and adjusting the heater level based on sensor output generated during the heater operation. In this way, improved heater control can be achieved using the sensor output already available.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Hopka, Michiel J. Van Nieuwstadt, Robert F. Novak
  • Patent number: 8578756
    Abstract: In a PM detection sensor with a sensor element having a pair of detection electrodes formed on a substrate, quantity of PM accumulated in the detection electrode is calculated on the basis of a resistance change between the detection electrodes. A series circuit composed of a temperature detection resistance and a capacitor connected in series is formed on a conductive path in the sensor element. A microcomputer in an ECU instructs a power source to supply a DC voltage to the resistance and the capacitor to make a first state in which no current flows in the resistance when a quantity of PM accumulated in the sensor element is detected. The microcomputer instructs the power source to supply an AC voltage to the resistance and the capacitor to make a second state in which a current flows in the resistance when a temperature of the sensor element is detected.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 12, 2013
    Assignee: Denso Corporation
    Inventor: Toshiyuki Suzuki
  • Patent number: 8550016
    Abstract: Provided are a method and an apparatus of controlling a flow rate of a primary recirculating exhaust gas in an oxyfuel combustion boiler, capable of realizing a stable combustion by a burner in oxyfuel combustion. Weight ratio of flow rate of primary recirculating exhaust gas [ton/h] to amount of pulverized coal from a mill [ton/h] is defined as G/C, and the flow rate of primary recirculating exhaust gas is controlled so that the G/C falls within a given range.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 8, 2013
    Assignees: IHI Corporation, Electric Power Development Co., Ltd.
    Inventors: Shuuhei Terushita, Toshihiko Yamada, Shuzo Watanabe, Terutoshi Uchida
  • Patent number: 8550017
    Abstract: Provided are a method and an apparatus of controlling exhaust gas in an oxyfuel combustion boiler which can attain stable combustion of the boiler while an amount of unburned combustibles and a NOx density in exhaust gas are maintained in their allowable ranges. A rate of supply of directly supplied oxygen to burners 6 to a total amount of oxygen produced by an air separation unit 18 is regulated in an operating range where the NOx density in the exhaust gas is below a NOx limit value and the amount of unburned combustibles in the exhaust gas is blow an unburned combustible limit value to thereby attain stable combustion of the oxyfuel combustion boiler.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 8, 2013
    Assignees: IHI Corporation, Electric Power Development Co., Ltd.
    Inventors: Shuuhei Terushita, Toshihiko Yamada, Shuzo Watanabe, Terutoshi Uchida
  • Patent number: 8505303
    Abstract: The present invention discloses a combustor system and method of measuring impurities in the combustion system. The combustion system includes an up-stream fuel injection point; a down-stream turbine combustor; a flame zone in the turbine combustor comprising a plurality of axial sub-zones; an optical port assembly configured to obtain a non-axial, direct, optical view of at least one of the plurality of axial sub-zones, and an impurity detection system in optical communication with the optical port assembly.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Peter Micah Sandvik, Richard Dale Slates, Alexey Vasily Vert, Samer Aljabari
  • Patent number: 8505276
    Abstract: Disclosed is a particulate matter measurement device that continuously measures changes in a mass of particulate matters contained in an exhaust gas under dynamic operating conditions. The device dilutes and separates the flow of exhaust gas while an engine is operating. The particulate matters contained in one of the exhaust gas streams are collected by a collection filter to measure the mass and the remainder is measured by a mass-related value measurement. Then, time series change data for the mass of the particulate matter are found based on correlations of the individual measured data. With this arrangement, the flow volume of the dilute exhaust gas that passes through the collection filter and the flow volume of the dilute exhaust gas that is introduced into the mass-related value measurement device are ensured by adjusting the flow volume of the diluting gas that dilutes the exhaust gas.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: August 13, 2013
    Assignee: Horiba, Ltd.
    Inventor: Hiroshi Nakamura
  • Publication number: 20130192214
    Abstract: A control method for monitoring a soot sensor of an exhaust treatment system is provided. The control method includes: determining when regeneration has completed; comparing soot sensor data to an estimated soot data based on the determining; and generating a message based on the comparing.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ognyan N. Yanakiev, David E. Winn, Eric M. Hall, Christopher P. Musienko
  • Publication number: 20130185001
    Abstract: What is disclosed is a system and method for testing a motorized vehicle's exhaust emissions in a non-controlled emissions testing environment. In one embodiment, the present system comprises a toll collection structure having a sensor for obtaining information about a registered owner of a motor vehicle and about the motor vehicle itself, as the vehicle travels on a lane which passes through the structure. At least one emissions detector, which is fixed to the toll collection structure, performs an emissions test on the vehicle by analyzing an exhaust plume emitted by the vehicle. Speed/acceleration of the vehicle is also measured. In various embodiments hereof, the emissions detector comprises a combination of dispersive or non-dispersive infrared detector and a dispersive or non-dispersive ultraviolet detector. Emissions data collected is automatically compared to emissions standards and an authority is notified if that the vehicle does not meet those standards. Various embodiments are disclosed.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: Xerox Corporation
    Inventors: George Cunha Cardoso, Lalit Keshav Mestha
  • Patent number: 8484955
    Abstract: An amount of particulate matter accumulated in a particulate filter of an exhaust system is estimated by preloading a memory location with a plurality of hybrid models. Each hybrid model estimates an amount of particulate matter accumulated in the particulate filter between a pair of operating points. An estimated amount of particulate matter accumulated in the particulate filter is stored in the memory location for each hybrid model. Each hybrid model is ranked based on estimation accuracy during operating conditions and the highest ranked hybrid model is selected. The estimated amount of particulate matter accumulated in the particulate filter corresponding to the highest ranked hybrid model is added to the soot estimation value stored in the memory location that corresponds to a ranked hybrid model to provide a soot estimation value of a cumulative estimated amount of particulate matter contained in the particulate filter for the ranked hybrid model.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: July 16, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Raffaello Ardanese, Rebecca J. Darr, Michelangelo Ardanese, Paul Jasinkiewicz, Christopher Whitt
  • Publication number: 20130133631
    Abstract: A system to measure a parameter of a particulate laden gas flow may include a conduit enclosed by a boundary wall directing the particulate laden gas flow and a sensor configured to measure the parameter. The system may also include an annular averaging chamber extending radially outwardly from the conduit. The averaging chamber may be positioned such that the sensor is fluidly coupled to the conduit through the averaging chamber. The system may further include a porous element extending around the conduit. The porous element may be positioned such that the averaging chamber is fluidly coupled to the conduit through the porous element.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventor: Russell Robert GRAZE, JR.