Pressure Patents (Class 73/28.03)
  • Patent number: 10352854
    Abstract: The disclosure relates to a motor vehicle comprising a dust sensor. The dust sensor is a scattered light photometer according to the disclosure. The scattered light photometer measures the dust load of the air in a region of the motor vehicle in which resuspended or emitted dust has a tendency to occur during travel. In addition, the motor vehicle contains a device for dust reduction, which receives measured data from the scattered light photometer, and decides, on the basis of the measured data, whether measures are to be taken against dust resuspension or dust emission. The device takes corresponding measures if the dust load exceeds a threshold value.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 16, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Marcel Mathissen, Volker Scheer, Rainer Vogt
  • Patent number: 10054357
    Abstract: A purity monitor is provided. The purity monitor includes a cryo-cooler and a piezo-electric crystal microbalance that may have a matte finish. The cryo-cooler includes a nozzle and plumbing components disposed to supply a fluid having a working pressure of up to 10,000 psig to the nozzle. The nozzle provides for locating substantially all of a pressure drop of the cryo-cooler near an exit thereof. The nozzle sprays fluid onto the piezo-electric crystal microbalance and the piezo-electric crystal microbalance measures a mass of non-volatile residue (NVR) left thereon by the spraying. Respective temperatures of the fluid and the piezo-electric crystal microbalance are controllable based on a type of the NVR.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 21, 2018
    Assignee: RAYTHEON COMPANY
    Inventor: Paul L. Buelow
  • Publication number: 20150089999
    Abstract: A pulsation and particle suppressing continuous air flow system for air sampling instruments, particularly particle counters. An air pump occupies a portion of a sealed vacuum housing, with the other portion of the housing forming a surge chamber used to damp surges as the air pump attempts to pump air towards an air outflow port through an outflow pipe. The unoccupied volume of the surge chamber dampens or dilutes the surges at an air inflow port of the housing that is associated with an air sampling instrument, such as a particle counter. The air outflow port is associated with a filter for trapping particles originating inside of the air pump and associated motor while the interior of the housing itself traps particles originating outside of the air pump and motor.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Gerald A. Szpak, Thomas L. Pottberg
  • Patent number: 8127592
    Abstract: A particulate matter sensor includes a particulate matter detection filter having a volumetric soot storage capacity smaller than the volumetric soot storage capacity of a diesel particulate filter, and a differential pressure measuring part measuring a differential pressure between an inlet and an outlet of the particulate matter detection filter.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 6, 2012
    Assignees: Ibiden Co., Ltd.
    Inventor: Athanasios G. Konstandopoulos
  • Patent number: 8106785
    Abstract: To enable an air velocity of sampling air to be precisely measured, a smoke detector (S) includes: a smoke detection part (22) connected to a sampling pipe (11); a fan (12) that sucks sampling air (SA) into the sampling pipe; and an air velocity sensor (15) that measures an air velocity of the sampling air within the sampling pipe. The air velocity sensor (15) is disposed at a primary side of the fan (12), and a straightening vane (25) is disposed between the air velocity sensor (15) and a suction port (12a) of the fan (12).
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: January 31, 2012
    Assignee: Nohmi Bosai Ltd.
    Inventor: Hiroyuki Yokota
  • Patent number: 8077018
    Abstract: To enable an air velocity of sampling air to be precisely measured, a smoke detector (S) includes: a smoke detection part (22) connected to a sampling pipe (11); a fan (12) that sucks sampling air (SA) into the sampling pipe; and an air velocity sensor (15) that measures an air velocity of the sampling air within the sampling pipe. The air velocity sensor (15) is disposed at a primary side of the fan (12), and a straightening vane (25) is disposed between the air velocity sensor (15) and a suction port (12a) of the fan (12).
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: December 13, 2011
    Assignee: Nohmi Bosai Ltd.
    Inventor: Hiroyuki Yokota
  • Patent number: 7755363
    Abstract: An ionization vacuum gauge includes a cathode electrode, a gate electrode, and an ion collector. The gate electrode is disposed adjacent to the cathode electrode with a distance therebetween. The ion collector is disposed adjacent to the gate electrode also with a distance therebetween. The cathode electrode includes a base and a field emission film disposed thereon facing the ion collector.
    Type: Grant
    Filed: December 29, 2007
    Date of Patent: July 13, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yuan-Chao Yang, Jie Tang, Li Qian, Pi-Jin Chen, Liang Liu, Shou-Shan Fan
  • Patent number: 7238238
    Abstract: A deposition apparatus supplies a reactive gas obtained by vaporizing a liquid material at a vaporizer 30 into a chamber 10 via a processing-gas pipe 40 and forms a thin film on a semiconductor wafer W due to a thermal decomposition of the reactive gas. The deposition apparatus is provided, in the processing-gas pipe 40, with a crystal gauge 51 detecting a pressure Pq under the influence of mist in the reactive gas and a capacitance manometer 52 detecting a pressure Pg under no influence of the mist. The apparatus further includes a gasification monitor 50 detecting a quantity of mist in the reactive gas on the basis of a difference ?P between the pressure Pq and the pressure Pg measured by the crystal gauge 51 and the capacitance manometer 52 in order to prevent deposition defects due to the mist in the reactive gas.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 3, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Teruo Iwata
  • Patent number: 7222517
    Abstract: A method for determining the characteristic properties of soot particles originating from combustion processes utilizes the determination of the blackening of a filter paper. In order to allow for achieving a quick and relatively accurate determination of the particle sizes, possibly of further characteristics as well, a method of this kind provides that the pressure conditions on the filter paper are established as well. It is advantageous for this purpose to determine the differential pressure on the filter and/or filter paper caused by the deposition of the particles.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: May 29, 2007
    Assignee: AVL List GmbH
    Inventor: Erich Schiefer
  • Patent number: 7168325
    Abstract: A gas pressure sensor 100 is disclosed as including a housing 10 to which a pressure is adapted to be introduced, a stem 20 communicating with the housing to admit the pressure thereto and having a diaphragm 22 deformable in response to the pressure, a sensor 24 associated with the diaphragm to produce an electric signal depending on a deformation of the diaphragm, and a substrate 30 that responds to the electric signal to generate an output signal that is outputted through a terminal 50. A chip capacitor 33 is connected between the terminal 50 and the substrate 30 and includes a first electrode 36, which admits a noise passing through the terminal 50 to be inputted to the substrate 30, and a second electrode 37 electrically connected to the housing 10, thereby enhancing improved resistance to noise.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: January 30, 2007
    Assignee: Denso Corporation
    Inventor: Kazuhiro Yoshino
  • Patent number: 6984252
    Abstract: A dust collection apparatus includes a container and a suction pump that sucks dust and transports it into the container. A filter is provided on a side surface of the container. This filter passes air but prevents passage of the dust in the container. A pressure detector detects an internal pressure of the container. The internal pressure of the container fluctuates due to a variation in an effective area of the filter for allowing the air to pass according to the dust collected and accumulated in the container. A dust accumulating quantity calculator which determines a quantity of the dust in the container based on the pressure detected.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: January 10, 2006
    Assignee: Ricoh Company, Limited
    Inventor: Yoshiyuki Tanimoto
  • Patent number: 6647758
    Abstract: An impactor assembly comprises a base for supporting a plurality of cups that form impactor plates, and a nozzle above each of the cups through which a flow passes for classification. The cover is removable, and a test cover can be put into position for mounting in place and providing outlets connectable to pressure sensor for determining pressure drop across the nozzle plates at each impactor stage. The cover also is designed to be easily washed by having no blind cavities or moving parts on the cover, and the latch and other hinge assemblies are all supported on the base. The flow enters and exits the impactor without having external connections on the cover.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: November 18, 2003
    Assignee: MSP Corporation
    Inventors: Virgil A. Marple, Daryl L. Roberts
  • Patent number: 6401520
    Abstract: A personal sampling method and apparatus for real time respirable dust dosimetry for dust exposure assessment is provided to aid in assuring the respiratory health of workers. An embodiment uses a low flow-rate gas sampling pump for differential pressure measurements across a glass fiber collection filter in a disposable detector tube (12) or dust detecting device coupled to the pump inlet. The dust detecting device includes an elongated tubular element (12) having the filter (30) positioned between proximal and distal ends of the tube (12) for trapping dust mass. A pressure transducer (16) at the proximal end (36) measures the pressure from the flow of gas. The pump draws the flow of gas through the dust detecting device from the distal end (38) towards the proximal end (36) trapping the dust mass at the filter (30).
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: June 11, 2002
    Assignee: The United States of America as represented by the Department of Health and Human Services
    Inventors: Jon C. Volkwein, Steven J. Page, Harry DoBroski, Jr.