Solid Content Of Gas Patents (Class 73/28.01)
  • Patent number: 10352901
    Abstract: Particulate measurement processing executed by a sensor control section of a particulate measurement system includes a step of stopping voltage conversion by a first isolation transformer and a second isolation transformer, a step of obtaining correction information B, and a step of correcting ion current A through use of the correction information B. The correction information B reflects improper current generated through particulates, etc. (soot or the like) adhering to a particulate sensor. The ion current A (signal current Iesc) is corrected through use of the correction information B, and the amount of soot S is computed through use of the corrected ion current A?. As a result, it is possible to measure the amount of the soot S (the amount of particulates) while suppressing the influence of the improper current.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: July 16, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Isao Suzuki, Kazunari Kokubo
  • Patent number: 10260399
    Abstract: Methods and systems are provided sensing particulate matter by a particulate matter sensor positioned downstream of a diesel particulate filter in an exhaust system. In one example, a method may include increasing an inlet opening of the particulate matter sensor when an exhaust flow rate falls below a threshold to allow more particulates to enter the particulate matter sensor and further includes decreasing the inlet opening when the exhaust flow rate rises above the threshold to reduce the particulates entering the sensor. By adjusting the amount of particulates entering the sensor based on the exhaust rate, the rate of deposition of the sensor and hence the sensitivity of the sensor to the exhaust flow rate may be maintained at a desired level, and independent of the exhaust flow rate.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: April 16, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Xiaogang Zhang
  • Patent number: 10240984
    Abstract: A method for determining the temperature of a sensor that comprises a heater is provided. The method includes the steps of applying a voltage to the heater and measuring the voltage applied to the heater and the current through the heater during a first time interval, and removing the applied voltage from the heater and leaving the heater unpowered for a second time interval. The method further includes the steps of calculating the resistance of the heater using the measured voltage and current, and determining the temperature of the sensor from the resistance using a predetermined relationship. The first time interval is selected to be sufficiently short in duration and the second time interval is selected to be sufficiently long so as to not significantly raise the temperature of the heater. The sensor temperature so determined can be used to perform diagnostic functions for a system that includes the sensor.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 26, 2019
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Lary R. Hocken, Charles S. Nelson
  • Patent number: 10161286
    Abstract: In order to provide an exhaust gas sampling apparatus that makes it possible to simplify the entire system using a simple structure flow rate control mechanism having a small variable flow rate range as well as making the accuracy of an exhaust gas dilution ratio higher than before, the exhaust gas sampling apparatus is configured as an exhaust gas sampling apparatus that makes a multistage dilution. In addition, the exhaust gas sampling apparatus is configured to, given that a dilution ratio determined by an n-th diluter in a dilution flow path at an n-th stage as a final stage is R, make dilution ratios determined by diluters in dilution flow paths at the respective stages other than the n-th stage as the final stage substantially equal to (R+1).
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 25, 2018
    Assignee: Horiba, Ltd.
    Inventor: Yoshinori Otsuki
  • Patent number: 10073008
    Abstract: The present disclosure is directed to an integrated electrostatic sensor for detecting dust and/or other airborne particulates in an engine, e.g. in an aircraft gas turbine engine. The electrostatic sensor includes an outer housing having a sensing face, an electrode configured within the outer housing adjacent to the sensing face, and an amplifier configured with the electrode. The electrode contains a plurality of electrons configured to move as charged dust particles flow past the sensing face. Thus, the amplifier is configured to detect a dust level as a function of the electron movement. The electrostatic sensor also includes a circuit board configured within the outer housing and electrically coupled to the amplifier. Thus, the circuit board is configured to send the one or more signals to a controller of the engine indicative of the dust level.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventors: John David Weickert, Andrew Scott Kessie, Philip T. Smith, Charles Rickards
  • Patent number: 10018548
    Abstract: A measurement device includes a first flow passage, a heating unit provided on one end side of the first flow passage, a gas detection unit provided on one end side of the first flow passage and capable of detecting a gas through heat applied from the heating unit, and a particle measurement unit which optically measures, at an upper side than the heating unit of the first flow passage, particles passing through the first flow passage.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 10, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Osamu Tsuboi, Michio Ushigome, Satoru Momose
  • Patent number: 9952131
    Abstract: A measurement device includes: a mass measurer that measures a mass of particles in gas; a humidity changer that changes a humidity of atmosphere to which the particles are exposed; and a calculator that calculates information indicating a correlation of the mass with respect to the humidity.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: April 24, 2018
    Assignee: FUJITSU LIMITED
    Inventor: Ryozo Takasu
  • Patent number: 9770149
    Abstract: A robot cleaner is provided that may include a suction motor installed within a main body to generate a suction force, at least two conductive plates spaced apart from each other to form a flow path for external air introduced by the suction force, and a calculator to measure a capacitance value between the at least two conductive plates. Further, provided is a robot cleaner that may include a suction motor installed within a main body to generate a suction force, a porous structure having at least one through hole, through which external air introduced by the suction force may flow, at least one filter disposed on a surface of the porous structure to filter dust contained in the air, and a power supply configured to apply alternating current (AC) power to at least a portion of the surface of the porous structure.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: September 26, 2017
    Assignee: LG ELECTRONICS INC.
    Inventor: Kuyoung Son
  • Patent number: 9750282
    Abstract: The present invention provides an electronic cigarette and a battery device thereof. The air switch includes a switch body and an airflow channel extending through the switch body. In present invention, because the airflow channel is disposed within the switch body of the air switch, it is better to design the size of the airflow channel which extending through the air switch, at the same time, fixing mechanism for mounting the air switch, such as pad or welding points can be arranged out of the airflow channel, to protect the air sucked into the second airflow channel from being polluted, thereby protecting the consumers' health.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: September 5, 2017
    Assignee: SHENZHEN SMOORE TECHNOLOGY LIMITED
    Inventor: Pingkun Liu
  • Patent number: 9746857
    Abstract: A heating installation or cooling installation mixing device has a valve housing (14) including a first flow path from a first connection (A-B) to a second connection (A), and a second flow path from the first connection (A-B) to a third connection (B). A movable valve element (24), arranged inside the valve housing (14) in the flow paths, is configured to vary a ratio of cross sections of the flow paths. A valve element drive (36) is arranged on the valve housing (14) and includes an internal control device (38) for movement control of the drive (36) and includes a first communication interface (44) for external control device (40) communication and a second communication interface (46). An internal sensor (48, 50) is arranged in or on the valve housing (14) and is connected to the first communication interface (44) for transmitting a sensor signal to the external control device (40).
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 29, 2017
    Assignee: GRUNDFOS MANAGEMENT A/S
    Inventor: Kåre Iversen
  • Patent number: 9718562
    Abstract: A system and method including a processor coupled to the non-volatile memory and a non-transitory medium connected to the processor wherein the processor is configured to select one of a flight path between two points or a point of departure and frequency of departure in the flight path from the point for an aircraft, wherein the flight path has at least two phases and a flight along the flight path or a departure constitutes one cycle.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 1, 2017
    Assignee: General Electric Company
    Inventors: Michael Howard Fisher, Andrew Scott Kessie, Mazen Hammoud
  • Patent number: 9691648
    Abstract: A particle supply device according to one embodiment includes a housing and a particle supplier. The housing seals a space between a substrate carry-out port provided in a FOUP and a substrate carry-in port provided at a load port of a substrate processing device. A particle supplier supplies particles to an inside of the housing.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 27, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaki Hirano, Yuichi Kuroda
  • Patent number: 9563209
    Abstract: A raw material gas supply method for use in a film forming apparatus which forms a film on a substrate, includes supplying a carrier gas to a gas phase zone defined inside a raw material container accommodating a liquid or solid raw material, vaporizing the raw material, supplying a raw material gas containing the vaporized raw material from the raw material container to the film forming apparatus via a raw material gas supply path, measuring a flow rate of the vaporized raw material flowing through the raw material gas supply path, comparing the flow rate of the vaporized raw material obtained by the flow rate measurement unit with a predetermined target value, and controlling an internal pressure of the raw material container to be increased when the flow rate is higher than the predetermined target value, and to be decreased when the is lower than the predetermined target value.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: February 7, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Mitsuya Inoue, Makoto Takado
  • Patent number: 9546970
    Abstract: An instrument and method using electron spin resonance spectrometry for measuring the concentration of airborne soot particles, and the like, that includes continuously passing a sample of exhaust gas through a resonating RF microwave cavity resonator during the application therethrough of a uniform slowly varying uniform magnetic field that is rapidly modulated and measuring the resulting phase modulation or amplitude modulation thereof to derive an electron spin resonance signal that directly senses the concentration of carbon free radicals produced as a result of inefficient combustion of hydrocarbons during operation of the vehicle or boiler. A further invention is the use of this signal for feedback control of the engine or boiler operating parameters to minimize or substantially eliminate particulate matter emissions.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: January 17, 2017
    Assignee: Active Spectrum, Inc.
    Inventors: James Robert White, Christopher John White, Colin T. Elliott, Alexander H. Slocum
  • Patent number: 9506844
    Abstract: A measuring device for measuring dust in flue gas of small-scale furnace installations for solid fuels includes: a measuring probe; a weighing device having a filter device; a heated suction hose connecting the measuring probe to the weighing device; and a weighing module in which the weighing device is arranged. The weighing device is thermally insulated in the weighing module.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 29, 2016
    Assignee: Woehler Technik GmbH
    Inventor: Stephan Ester
  • Patent number: 9506843
    Abstract: A personally portable nanoparticle respiratory deposition (NRD) sampler configured to collect nanoparticles based upon a sampling criterion. In an aspect, the NRD sampler has an impactor stage, and a diffusion stage. In another aspect, the NRD sampler includes a particle size separator in addition to an impactor stage and a diffusion stage.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: November 29, 2016
    Assignee: University of Iowa Research Foundation
    Inventors: Thomas Peters, Lorenzo Cena
  • Patent number: 9459233
    Abstract: The disclosed invention relates to an amperometric gas sensor for measuring the concentration of an analyte, comprising: a solid support; and a working electrode in contact with the solid support; wherein the analyte comprises a dopant which when in contact with the solid support increases the electrical conductivity of the solid support. A sterilization process employing the amperometric gas sensor is disclosed.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: October 4, 2016
    Assignee: Steris Corporation
    Inventors: Elizabeth H. Schenk, Peter A. Burke, Michael A. Centanni
  • Patent number: 9422158
    Abstract: Disclosed herein is a structure having: a support, a plurality of nanowires perpendicular to the support, and an electrode in contact with a first end of each nanowire. Each nanowire has a second end in contact with the support. The electrode contains a plurality of perforations. The electrode contains a plurality of perforations. Also disclosed herein is a method of: providing the above support and nanowires; depositing a layer of a filler material that covers a portion of each nanowire and leaves a first end of each nanowire exposed; depositing a plurality of nanoparticles onto the filler material; depositing an electrode material on the nanoparticles, the ends of the nanowires, and any exposed filler material; and removing the nanoparticles and filler material to form an electrode in contact with the first end of each nanowire; wherein the electrode contains a plurality of perforations.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 23, 2016
    Assignee: The United States of Amerixa, as represented by the Secretary of the Navy
    Inventors: Pehr E Pehrsson, Chistopher Field, Hyun Jin In
  • Patent number: 9395345
    Abstract: A sensing system and method for detecting particles in an air volume includes a main airflow path including an inlet from the air volume. Also included is a collection site within the main airflow path. The collection site is for drawing an air sample from the main airflow path. Additionally the system includes a means to induce a localized increase in particle speed at the collection site relative to air speed along the remainder of the main airflow path. The means to induce a localized increase includes an auxiliary airflow path from the main airflow path. The auxiliary airflow path has an exit upstream of the collection site. In an alternative form of the invention, the means to induce the localized increase in particle speed at the collection site comprises a venturi in the main airflow path with the collection site being disposed along the venturi.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 19, 2016
    Assignee: Xtralis Technologies Ltd
    Inventors: Rajiv Kumar Singh, Kemal Ajay
  • Patent number: 9222396
    Abstract: A method and a system for estimation of a soot load in a particle filter in an exhaust cleaning system, which estimation involves using a pressure drop across said particle filter in order to determine the soot load. Measurement of the pressure drop across the particle filter and therefore the estimation have to take place at a time when an exhaust mass flow of the exhaust cleaning system exceeds a flow threshold value, the particle filter is substantially free from water and a temperature of the particle filter exceeds a first threshold value. The result is a robust estimate of the soot load in the particle filter.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: December 29, 2015
    Assignee: SCANIA CV AB
    Inventors: Carl-Johan Karlsson, Klas Telborn
  • Patent number: 9206757
    Abstract: A particulate detection system (1, 2, 3) detects the quantity of particulates S contained in exhaust gas EG discharged from an internal combustion engine ENG and flowing through an exhaust pipe EP. The system (1, 2, 3) includes a detection section (10) attached to the exhaust pipe EP; and a drive processing circuit (201) electrically connected to the detection section (10), driving the detection section (10), and detecting and processing a signal Is from the detection section 10. The drive processing circuit (201) includes drive start delay means (S2, S3, S11, S12, S13, S22, S23) for delaying start of the drive of the detection section (10) until a start condition determined by the drive processing circuit (201) is satisfied after startup of the internal combustion engine ENG.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 8, 2015
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Toshiya Matuoka, Masayuki Motomura, Takeshi Sugiyama, Keisuke Tashima, Hitoshi Yokoi
  • Patent number: 9146188
    Abstract: A virtual impactor includes a jet nozzle that jets, from a jet outlet, a gas that contains particles, an opposing nozzle that is disposed with a specific separation distance from the jet nozzle and draws in, as a secondary flow, from a vacuum inlet at one end portion, a portion of the gas that is jetted from the jet nozzle, and a variable mechanism that varies at least one of a width of the jet outlet, the specific distance, and a width of the vacuum inlet.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: September 29, 2015
    Assignee: AZBIL CORPORATION
    Inventors: Shinsuke Yamasaki, Hidekazu Takahashi
  • Patent number: 9074512
    Abstract: An exhaust gas analyzing system includes, on an upstream side of an analytical instrument, an exhaust gas introduction pipe of which one end is opened to an exhaust gas flow path through which exhaust gas from an engine flows and the other end is connected to the analytical instrument. A switching mechanism selectively switches between a sampling path that samples the exhaust gas from the exhaust gas introduction pipe to introduce the sampled exhaust gas into the analytical instrument and an air introduction path that introduces air into the analytical instrument. When the engine is operated, a path to the analytical instrument is switched to the sampling path by the switching mechanism. When the engine is stopped, the path is switched to the air introduction path by the switching mechanism.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: July 7, 2015
    Assignee: HORIBA, LTD.
    Inventors: Tetsuji Asami, Hiroyuki Ikeda, Mineyuki Komada
  • Publication number: 20150121994
    Abstract: The invention relates to a method for detecting particles in a fluid stream, comprising: generating a measurement field that can be passed through by the fluid stream; acquiring and evaluating measurement values of the fluid stream passing through the measurement field, and detecting at least one particle by way of a distinctive sequence of measurement values. The invention is characterized in that each of the distinctive successions of measurement values is acquired and evaluated in order to determine if a particle or a gas bubble is passing through the measurement field.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 7, 2015
    Inventor: Andreas Wilhelm
  • Publication number: 20150114086
    Abstract: The present disclosure relates to a controller apparatus for regenerating a particulate matter sensor. The controller apparatus includes a sensing module configured to detect a soot loading on a particulate matter sensor and generate a regeneration request indicating a desired regeneration temperature and a heating module configured to receive the regeneration request and send a heating command signal to a heating element based on the regeneration request. The controller apparatus also includes an electrical resistance module configured to detect an electrical resistance in the heating element, a calibration module configured to determine an actual temperature of the heating element based on a resistance-to-temperature model, and a temperature feedback module configured to modify the heating command signal according to the difference between the desired regeneration temperature and the actual temperature.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Cummins IP, Inc.
    Inventors: Xiao Lin, Archana Chandrasekaran, Jinqian Gong
  • Publication number: 20150114087
    Abstract: A particulate measurement system measures the amount of particulates when at least one or a plurality of three operating condition parameters selected from speed of the vehicle, rotational speed of the internal combustion engine and torque of the internal combustion engine fall within previously set respective ranges, and the particulate measurement system does not measure the amount of particulates or invalidates the result of measurement of the amount of particulates when the one or plurality of operating condition parameters do not fall within the previously set respective ranges.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 30, 2015
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi SUGIYAMA, Masayuki MOTOMURA, Toshiya MATSUOKA, Keisuke TASHIMA
  • Publication number: 20150107336
    Abstract: Electromechanical detection device, particularly for gravimetric detection, and method for manufacturing the device. The electromechanical detection device includes a support including a face defining a plane, at least one beam that can move relative to the support, and means of detecting beam displacement, outputting a signal that depends on the displacement. The beam is anchored to the support through an end and is approximately perpendicular to the plane, and the other end of the beam includes at least one reception zone that can receive one or several particles causing or modifying displacement of the beam, in order to determine at least one physical property of the particle(s) from the signal. According to the invention, the detection means are located between the reception zone and the support.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Sébastien Hentz, Thomas Ernst
  • Patent number: 9010198
    Abstract: An example aircraft debris monitoring sensor assembly includes an aircraft conduit defining a hollow core passage extending axially from an inlet opening to an outlet opening. A sensor arrangement detects debris carried by a fluid within the hollow core passage.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 21, 2015
    Assignee: United Technologies Corporation
    Inventors: Ravi Rajamani, Alexander I. Khibnik, William Donat, Rajendra K. Agrawal
  • Patent number: 9011659
    Abstract: A sensor apparatus includes a first electrode and a second electrode at a predefined distance from one another. The sensor apparatus includes a substrate arranged in a predefined first region of the sensor carrier such that the first electrode and the second electrode are substantially electrically decoupled from one another if the outer side of the sensor carrier is substantially free of particles. A third electrode is coupled to a solid electrolyte that is additionally coupled to the second electrode. A diffusion barrier is coupled to the third electrode in a predefined third region and the exhaust gas is applied to the third electrode only in the third region via the diffusion barrier.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 21, 2015
    Assignee: Continental Automotive GmbH
    Inventor: Philippe Grass
  • Publication number: 20150096351
    Abstract: A device and method for facilitating convenient measurement of airflow in a duct detector. The device may include a detector assembly and an airflow sensor mounted within the detector assembly. The airflow sensor may be coupled to a remote control device, such as via control circuitry. A method for testing airflow in the duct detector may be performed by measuring airflow in the detector assembly, generating a signal that corresponds to the measured airflow in the detector assembly, and determining whether the generated signal exceeds a predetermined threshold signal level. If the generated signal does not exceed the threshold signal level, alarms may be activated and/or blowers in a ventilation system may be deactivated.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: SimplexGrinnell LP
    Inventors: Todd F. Orsini, Donald D. Brighenti, Anthony J. Capowski
  • Publication number: 20150059443
    Abstract: A measuring device for measuring dust in flue gas of small-scale furnace installations for solid fuels includes: a measuring probe; a weighing device having a filter device; a heated suction hose connecting the measuring probe to the weighing device; and a weighing module in which the weighing device is arranged. The weighing device is thermally insulated in the weighing module.
    Type: Application
    Filed: March 25, 2013
    Publication date: March 5, 2015
    Inventor: Stephan Ester
  • Patent number: 8966956
    Abstract: A PM amount detecting apparatus having a PM sensor installed in a sensor case into which a part of exhaust gas of an internal combustion engine allowed to flow through an exhaust gas passage is intaken. The sensor case has a structure which lowers a flow rate of the exhaust gas therein to such an extent that PM is capable of performing thermal phoresis, and a structure which generates therein such a temperature difference that PM is guided to the PM sensor in accordance with the thermal phoresis.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mamoru Yoshioka
  • Patent number: 8966958
    Abstract: A new installment classifies particles by their aerodynamic size This installment produces a truly monodisperse aerosol, and can produce very narrow distributions over a wide range of sizes Particles suspended in a fluid are classified by supplying particles into suspension in a carrier flow of a fluid and providing an acceleration to the flow at an angle to the velocity of the flow to cause the particles to follow trajectories determined by the acceleration and drag on the particles caused by the fluid The particles are then classified according to their trajectories The installment has a flow channel and a source of particles to supply particles into suspension in a carrier fluid in the flow channel A drive is connected to the flow channel at an angle to the flow of fluid through the carrier flow channel, and a classification system classifies the suspended particles according to their trajectories.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 3, 2015
    Assignee: The Governors of the University of Alberta
    Inventor: Jason Olfert
  • Patent number: 8950239
    Abstract: An apparatus is provided, which includes a dust detector, a voltage source, and a controller. The dust detector includes two opposing surfaces and a conductive dust sensor. The two opposing surfaces are disposed in spaced, opposing relation to allow for the passage of airflow between the surfaces, and the conductive dust sensor is disposed at a surface of the two opposing surfaces. The voltage source is configured and controlled to establish an electrostatic field at least partially between the two opposing surfaces to facilitate directing conductive particles in the airflow passing between the two opposing surfaces towards the dust sensor. The controller monitors for a leakage current within the conductive dust sensor and determines whether the leakage current exceeds a predetermined trigger level indicative of the presence of conductive dust, and if so, automatically indicates a conductive dust warning.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Melissa K. Miller, Prabjit Singh, Heidi D. Williams, Jing Zhang
  • Patent number: 8943873
    Abstract: Sizes or size distribution of aerosol particles of an aerosol gas stream is detected. A particle-free carrier flow is saturated in a saturator by a first condensing medium, after which, the carrier flow is mixed in a mixing section turbulently with aerosol particle flow. Advantageously, a plurality of separate mixtures with different saturation ratios are provided and introduced to the first condensing environment in order to condensate the condensing medium onto the aerosol particles. Depending on the saturation ratio, the particles with different lowest original size are activated and grown in a growing section and/or in the condensing environment. After activation and growing, the particles are detected by a detecting means.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: February 3, 2015
    Assignee: Airmodus Oy
    Inventors: Joonas Vanhanen, Markku Kulmala, Jyri Mikkilä, Erkki Siivola, Mikko Sipilä
  • Patent number: 8939013
    Abstract: A device and method for facilitating convenient functional testing of a duct detector is provided. The device includes a duct detector having a remote-controlled test light mounted in a housing thereof, and a detector chamber defined by a filter screen and a plurality of labyrinth members that allow light emitted by the test light to enter the detector chamber. A functional test of the duct detector can be conducted by activating the test light. If the detector is functioning properly, an amount of light emitted by the test light will be detected by the light detector, thereby simulating the presence of an excessive amount of particulate within the detector chamber. The light detector will then generate an output signal that will cause the actuation of alarms and/or the deactivation of a blower system, thereby indicating functionality of the duct detector.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 27, 2015
    Assignee: Tyco Fire & Security GmbH
    Inventors: Donald D. Brighenti, Jeffrey R. Brooks
  • Patent number: 8925370
    Abstract: An object of the present invention is to provide a particulate matter detecting apparatus for an internal combustion engine that can maintain an appropriate balance between reduction in time required for one detecting sequence and limiting of power consumption of a heater for sensor reset. The particulate matter detecting apparatus for an internal combustion engine includes: a sensor disposed at an exhaust passage of an internal combustion engine, the sensor including a pair of electrodes for trapping particulate matter; voltage applying means for applying voltage across the electrodes; discharge amount index acquiring means for acquiring a predetermined index associated with a discharge amount of the particulate matter; and voltage adjusting means for adjusting the voltage to be applied across the electrodes based on the index acquired by the discharge amount index acquiring means such that the voltage is lower when the discharge amount is large than when the discharge amount is small.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: January 6, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Nishijima
  • Publication number: 20150000375
    Abstract: In one embodiment, the present disclosure provides a particulate monitoring system. The system includes a vehicle. A wake conditioner is mounted in the vehicle. A sample inlet is placed in communication with an engineered vehicle wake that will be produced by the wake conditioner when the vehicle is in motion.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Applicant: Board of Regents of the Nevada System of Higher Education, on behalf of the Desert Research Instit
    Inventors: Vicken Etyemezian, George Nikolich
  • Patent number: 8899097
    Abstract: Systems and methods for detection of airborne impurities in confined spaces are disclosed. In one embodiment, a detection system to detect impurities in a confined chamber comprises an emitter to emit radiation, at least one channel positioned proximate the emitter to receive radiation from the emitter at a first end of the channel, and a receiver positioned proximate a second end of the channel to receive radiation from the emitter, and generate a first signal in response to the radiation received from the emitter. Other embodiments may be described.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 2, 2014
    Assignee: The Boeing Company
    Inventor: Tateh Wu
  • Publication number: 20140345364
    Abstract: An apparatus and a method for detecting hazardous substances on a surface of an object are provided. The apparatus for detecting hazardous substances on a surface of an object comprises: a conveyer belt (1) for conveying an object, a capture device (6) provided to match the conveyer belt (1), wherein the capture device (6) may automatically capture a substance adsorbed on the surface of the object when the object is being conveyed by the conveyer belt (1), and a detection module (3) for automatically detecting the substance captured by the capture device (6). The present invention also provides a method for detecting a substance adsorbed on the surface of an object by utilizing the detection apparatus and a method for detecting whether the detected substance is hazardous or not. The detection technique of the present invention enables quick detection for poisons, explosives, and other substance particles attached on the surfaces of cargos and mails.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 27, 2014
    Inventors: Weizhi Lin, Haijun Yu, Yangtian Zhang
  • Patent number: 8869594
    Abstract: A particle detecting device evaluating system having a test chamber provided, in one face thereof, with a plurality of gas intake vents, where respective particle detecting devices are provided; an injecting device for injecting particles into the test chamber; a light sheet forming device for forming a light sheet within the test chamber; and an imaging device for imaging particles made visible by the light sheet.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: October 28, 2014
    Assignee: AZBIL Corporation
    Inventor: Shinsuke Yamasaki
  • Patent number: 8869593
    Abstract: The invention provides an apparatus for increasing the size of gas-entrained particles in order to render the gas-entrained particles detectable by a particle detector, the apparatus comprising an evaporation chamber (2) and a condenser (7); the apparatus is configured so that vapour-laden gas from the evaporation chamber can flow into the condenser and condensation of the vaporisable substance onto gas-entrained particles in the condenser takes place to increase the size of the particles so that they are capable of being detected by a particle detector.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: October 28, 2014
    Assignee: Particle Measuring Systems Inc.
    Inventors: Boris Zachar Gorbunov, Harald Wilhelm Julius Gnewuch
  • Patent number: 8845798
    Abstract: A particulate matter detecting apparatus for an internal combustion engine that can estimate a discharge amount of the particulate matter accurately. The particulate matter detecting apparatus for an internal combustion engine, comprises: a sensor disposed at an exhaust passage of the internal combustion engine, the sensor including a pair of electrodes for detecting particulate matter in an exhaust gas; means for estimating a discharge amount of the particulate matter based on an output of the sensor, and means for acquiring a predetermined parameter that serves as an index for a rate with which the particulate matter in the exhaust gas is deposited on the sensor. The discharge amount estimating means corrects an estimated value of the discharge amount of the particulate matter based on the parameter acquired by the parameter acquiring means.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Nishijima
  • Publication number: 20140238108
    Abstract: A method for regenerating a particle sensor, which comprises a ceramic base body, in the exhaust gas duct of an internal combustion engine for driving a motor vehicle, wherein a particle loading of the particle sensor is determined by applying an electrical voltage between at least two electrodes with interdigital arrangement, a temperature of the particle sensor is determined with a temperature sensor mounted to the ceramic base body or from the electrical resistance of a heating element and said particle sensor is regenerated by means of heating with the electrical heating element.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Inventors: Ariel Di Miro, Bernhard Kamp, Michael Bessen
  • Patent number: 8813540
    Abstract: The invention relates to novel methods and to devices for a measuring and analysis apparatus that measures impurities and/or particles in a gas or air. In a particle separation step, target particles having predetermined particle properties are separated from remaining particles from a gas or gas mixture such as air or a liquid, in short a fluid, that contains a particle mixture, and the occurrence and/or frequency of said target particles is determined in a measuring chamber. The likewise novel cooling of the radiation sources required for measurement permits the use of such having high power, as is required for measuring few particles or the smallest impurities. A further novel expansion of the electrical measurement range allows small but also abundant particles and impurities to be measured. In addition, a novel interface simplifies the start-up of the apparatus.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 26, 2014
    Assignee: MaxDeTec AG
    Inventor: Markus Dantler
  • Patent number: 8813582
    Abstract: A system for testing the efficiency of a test HEPA filter, the system comprises a dilution system and a sampling system. The dilution system processes samples collected upstream of the test HEPA filter. The dilution system has a test portion and a calibrated portion. The calibrated portion aids in determining the dilution ratio of the test portion thereby rendering the dilution system self-calibrating. The sampling system receives upstream samples via the dilution system, and downstream samples collected directly downstream of the test HEPA filter. The sampling system incorporates a flow rate balancing system to ensure accurate counts with respect to samples collected upstream and downstream of the test HEPA filter. The sampling system works well with particle counters fitted with relatively weak fans to draw in samples for counting; this is achieved by connecting the sampling system to both the inlet and exhaust outlet of a particle counter.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 26, 2014
    Assignee: The United States of America as Represented the Secretary of the Army
    Inventors: Derek J. Mancinho, Myat S. Win
  • Publication number: 20140230522
    Abstract: A cleanliness measuring carriage includes a cleanliness measuring device for measuring cleanliness within a semiconductor manufacturing room, a holding unit for holding the cleanliness measuring device, and a conveying unit for conveying the cleanliness measuring device along a substrate container transport lane.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 21, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eri UEMURA, Makiko KATANO, Tsunekazu YASUTAKE
  • Publication number: 20140230523
    Abstract: A device for measuring the particle concentration in an aerosol using a flow tube includes a cavity in which there is a sleeve, the cavity branching off from the flow tube. The sleeve includes, at its end facing away from the flow tube, a collar. The collar encircles the periphery of the sleeve and is fastened at the periphery of the cavity. There is one or more inflow openings in the collar. At least one outflow opening is in an end of the sleeve, which end extends into the flow tube. A measuring chamber is also included in the cavity on the side of the sleeve facing away from the flow tube.
    Type: Application
    Filed: June 14, 2012
    Publication date: August 21, 2014
    Inventors: Karl Stengel, Gerhard Haaga, Michael Neuendorf, Joerg Staib, Andrea Matteucci
  • Patent number: 8783090
    Abstract: The present disclosure provides apparatus and methods to determine real-time total carbon content, non-inclusive of carbon dioxide, and/or solid carbon content of engine exhaust. For a total carbon content determination, substantially all carbon dioxide is removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine total carbon content of the exhaust. For solid carbon content determination, in addition to substantially all carbon dioxide being removed from the exhaust, substantially all carbon-containing non-solid substances are also removed from the exhaust, and thereafter substantially all the remaining carbon of the exhaust is oxidized to provide a quantity of carbon dioxide which then may be used to determine solid carbon content of the exhaust.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Southwest Research Institute
    Inventors: Qiang Wei, Imad Said Abdul-Khalek
  • Patent number: RE47116
    Abstract: A control apparatus for an internal combustion engine detects an amount of particulate matter contained in an exhaust gas in an exhaust passage, according to an electrical property across electrodes of a particulate matter sensor disposed in the exhaust passage of the internal combustion engine. The term “electrical property” here refers to a property that changes with the amount of particulate matter deposited, for example, a current value of when a predetermined voltage is applied. After the internal combustion engine is started and detection of the amount of the particulate matter is completed, an element section of the particulate matter sensor is set to a predetermined temperature range. The particulate matter deposited on the element section is thereby burned and removed. The control apparatus maintains the element section in the predetermined temperature range after burning and removing the particulate matter until the internal combustion engine stops.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 6, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichiro Aoki, Hiroki Nishijima