Abstract: An on-line wheel airtightness detecting device where a centering device centers a wheel above a roller bed, and a sixth cylinder causes arms to drive clamping jaws through a second gear, second racks, and fifth guide rails to clamp the wheel; a servo motor turns the wheel 90°; a fifth cylinder drives the wheel to a support roller through a fourth guide rail; a second cylinder drives the wheel through first guide pillars; a first cylinder drives the wheel through a first guide rail and flush with a right rubber disc; the hydraulic cylinder drives a left rubber disc through second guide pillars; a motor drives a hollow shaft and the wheel to rotate through a small pulley, a large pulley and a synchronous belt; and compressed air is charged into the hollow shaft, to detect air tightness.
Abstract: A tire sensor device comprising sensor modules 20A to 20D, each comprising a sensor, a communication module having a communication function and a power regenerating circuit, and an antenna; and a base station comprising an internal communication device for communication with the sensor modules 20A to 20D, an information processing device for processing tire information signals from the sensor modules, an external communication device for communicating with a car control device 40 on the car body side and a power source. The sensor modules 20A to 20D and the base station 30 are arranged in the tire and constitute an intra-tire LAN. Tire information signals transmitted from the sensor modules 20A to 20D are processed by the base station 30 and transmitted to the car control device 40 so that appropriate tire information can be obtained and the size and power consumption of the sensor device can be reduced.
Abstract: Tire pressure monitoring system for a vehicle includes sensor units mounted in each tire of the vehicle, each sensor unit being operable to output an RF signal indicative of the pressure in the tire in which it is mounted; a pair of communicator units for receiving signals from said sensor units, said pair of communicator units being provided at different locations on the vehicle; and a control unit connected to said communicator units wherein said control unit is operable to determine which sensor unit is associated with which tire by monitoring the strength of the RF signal received from each respective sensor unit by each communicator unit.
Type:
Application
Filed:
September 15, 2006
Publication date:
October 1, 2009
Applicant:
Melexis NV Microelectronic Integrated Systems