With Signal Analyzing Or Mathematical Processing Patents (Class 73/602)
  • Patent number: 9038469
    Abstract: A method and apparatus for identifying an inconsistency. A number of waves that propagate through a structure are generated. A response signal is generated in response to detecting at least a portion of the number of waves that propagate through the structure. A determination is made as to whether the response signal includes a reflected component. A presence of the inconsistency in the structure is indicated when the response signal includes the reflected component.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 26, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Hoon Sohn, Hyung Jin Lim, Chul Min Yeum, Jeong-Beom Ihn
  • Patent number: 9038470
    Abstract: A method and apparatus for inspecting a composite structure. A response sound signal to a sound signal sent into the composite structure at a location on the composite structure is detected. An attenuation is identified in the response sound signal detected in response to the sound signal sent into the composite structure at the location on the composite structure. An indication of whether additional evaluation of the location is needed based on a comparison of the attenuation in the response sound signal to a baseline attenuation value for porosity for the location on the composite structure is generated.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: May 26, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Roger W. Engelbart, Christopher M. Vaccaro, Scott E. Black, Nancy Wood
  • Publication number: 20150135838
    Abstract: A method and apparatus for envelope detection are disclosed. An envelope detection method according to an embodiment of the invention can include: receiving ultrasonic signals reflected off a target object; detecting peaks by using differences in pulses in the received signals; and generating an envelope by connecting the detected peaks with straight or curved lines.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 21, 2015
    Inventors: Do Sik HWANG, Jin Seong JANG
  • Patent number: 9032798
    Abstract: Provided are a device (10) and a method for measuring the crispness of a food product. An item to be measured (22) comprising a porous food product is broken apart by causing the blade of a knife (14) to penetrate into the item. A vibration detector (18) attached to the knife (14) detects crack vibrations from cracks that form when the item to be measured (22) is broken apart. In a computer (20), the small crack vibrations of a predetermined vibration power or less that are included in the crack vibrations within an individual cracking duration time are extracted from the detected crack vibrations. Crispness is measured on the basis of the number of extracted small crack vibrations counted (number of cracks).
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 19, 2015
    Assignees: NISSHIN SEIFUN GROUP INC., GIFU UNIVERSITY
    Inventors: Michihiro Sakakibara, Takahisa Nishizu
  • Patent number: 9032800
    Abstract: A photoacoustic imaging apparatus performs imaging of an optical absorber. The photoacoustic imaging apparatus includes a light source, a detector configured to detect an acoustic wave generated from the optical absorber that has absorbed energy of light emitted from the light source, and a signal processing unit configured to form an image of the optical absorber. The signal processing unit stores information indicating whether a rate of change in pressure of the acoustic wave detected by the detector is positive or negative before performing a waveform process on the acoustic wave.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 19, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takao Nakajima, Kazuhiko Fukutani, Yasufumi Asao
  • Patent number: 9027404
    Abstract: The disclosed embodiments generally relate to non-destructive evaluation methods. More particularly, the disclosed embodiments relate to ultrasonic non-destructive evaluation methods for the evaluation of friction welded bladed discs (“blisks”). In an embodiment, a method for non-destructive evaluation of a bladed disc structure includes identifying a region of interest on the bladed disc structure; positioning an ultrasonic transducer and receiver in the region of interest; scanning the region of interest using the ultrasonic transducer and receiver to produce a scan image; and comparing the scan image against a reference image to determine the presence of an anomaly in the region of interest.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventors: Surendra Singh, Frederick William Vensel, Robert John Hogan, Vincent Chung
  • Patent number: 9022941
    Abstract: In order to simplify a manufacturing process and reduce cost and power consumption by providing an ultrasonic diagnostic apparatus including a carrier signal generating circuit excellent in IC implementation, a carrier signal generating circuit for generating an output voltage Vo applied to an ultrasonic probe 41 includes cascaded source follower type NMOSFETs 11 to 14, a variable current source 31, and a constant current source for biasing 32. The probe 41 can be made to generate the output voltage Vo with arbitrary amplitude by controlling a gate voltage V4 by controlling the output current value of the variable current source 31. In addition, a voltage applied to each NMOSFET can be divided by connecting the NMOSFETs 11 to 14 in a multi-stage manner. Accordingly, the withstand voltage of the NMOSFET may be low.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 5, 2015
    Assignee: Hitachi Medical Corporation
    Inventors: Kanako Hatayama, Kenji Maio
  • Patent number: 9021856
    Abstract: A device is provided for checking a flow pressure measurement probe as well as a probe comprising the device. The probe includes an internal volume and at least one orifice for communication with the outside of the volume. The device includes: an acoustic transmitter and an acoustic receiver that are intended to be connected to the internal volume so that the transmitter transmits an acoustic signal that propagates in the internal volume and so that the receiver picks up an observed acoustic signal; and, means for comparing the observed signal with a reference signal. The device may be a stand-alone device or may be integrated into the probe.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 5, 2015
    Assignee: Thales
    Inventors: Henri Leblond, Philippe Guichard, Jean-Philippe Pineau
  • Patent number: 8984944
    Abstract: The invention relates to a method of estimating the internal state of a first electrochemical system for electric power storage, such as a battery, wherein at least one property relative to the internal state of the first electrochemical system is estimated from acoustic emission measurements.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: March 24, 2015
    Assignee: IFP Energies Nouvelles
    Inventor: Julien Bernard
  • Patent number: 8978478
    Abstract: A laser beam having a single wavelength emitted from a laser light source is converted at a wavelength shifter into a laser beam having at least two wavelengths, which is further demultiplexed at a beam splitter into a laser beam having a first wavelength and a laser beam having a second wavelength. The output power and pulse width of the laser beam having the first wavelength are adjusted by a first controller so as to reach levels appropriate for generating ultrasonic vibrations without causing damage to an inspection object. The output power and pulse width of the laser beam having the second wavelength are adjusted by a second controller so as to reach appropriate levels for detecting the above-described ultrasonic vibrations. These laser beams are multiplexed by a multiplexer into a single laser beam to be focused onto a surface of the inspection object.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masahito Ishioka
  • Patent number: 8973441
    Abstract: Embodiments of techniques and technologies to verify the interference fit of fasteners are disclosed. In one embodiment, a transducer is positioned to transmit a shear ultrasonic signal through a region of a fastener which is subject to stress when the fastener experiences an interference fit. The shear ultrasonic signal is transmitted through a region of the fastener subject to the stress. As the transmitted ultrasonic signal encounters the region, it is mode converted corresponding to a degree of interference which the fastener is experiencing. A return ultrasonic signal from the fastener is received with the transducer. From the return ultrasonic signal, a processor determines the degree of interference fit which the fastener is experience and outputs an indication of the same.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: March 10, 2015
    Assignee: The Boeing Company
    Inventors: Karl E. Nelson, Gary E. Georgeson, Paul S. Rutherford, Mark McKenna
  • Publication number: 20150059442
    Abstract: In the present invention a controllable acoustic source (14) in connection with the process fluid (10) emits a signal (18) into the fluid (10), consisting of a suspension of particles (12), being volumes of gas, liquid or solid phase. The controllable acoustic signal (18) is allowed to interact, with the particles (12), and the acoustic (pressure) signals (22) resulting from such an interaction is measured preferably via a sensor (24). A spectrum is measured. The spectrum is used to predict properties, content and/or size of the particles (12) and/or used to control a process in which the process fluid (10) participates. The prediction is performed in the view of the control of the acoustic source (14). The used acoustic signal has preferably a frequency below 20 kHz.
    Type: Application
    Filed: October 27, 2014
    Publication date: March 5, 2015
    Applicant: ACOSENSE AB
    Inventors: Thomas Liljenberg, Stevan Backa, Lennart Thegel, Mats Åbom
  • Publication number: 20150059478
    Abstract: The operational state of a slide bearing is monitored by determining measurement values that characterize noise emissions in the slide bearing using a sensor element which is mechanically coupled to the slide bearing. A characteristic value is calculated from determined measurement values and the operational state of the slide bearing is classified according to the characteristic value.
    Type: Application
    Filed: April 19, 2012
    Publication date: March 5, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans-Henning Klos, Klaus-Dieter Müller, Michael Steckenborn
  • Patent number: 8966984
    Abstract: An apparatus testing axle shafts including i) at least one ultrasonic probe to analyze, in a selected angular sector, selected portions of a wall exhibiting known variable internal and external radius profiles of a tubular axle shaft and thus acquire analysis data, ii) a controller to determine, as a function of the profiles and possible loading and environment of the shaft, at least one first and at least one second selected site on the external or internal surface of the wall where each probe is to be placed manually, to analyze at least one first and at least one second selected portion of the wall respectively in at least one first and at least one second selected angular sector oriented in first and second opposing longitudinal or transverse directions, and thus acquiring analysis data for various relative angular positions of the shaft in relation to the probe, and iii) a processor to create from these acquired analysis data maps representing the transverse or longitudinal orientations and the positions
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 3, 2015
    Assignee: Vallourec Tubes France
    Inventors: Frederic Lesage, Alexandre Noel, Renato Nogueira de Paula
  • Patent number: 8960006
    Abstract: An ultrasonic inspection apparatus includes: an ultrasonic probe apparatus including an ultrasonic transducer; a drive element selecting section that selects a required piezoelectric vibrator of the ultrasonic transducer; a signal detecting circuit that detects an electric signal dependent on a reflected echo of an ultrasonic wave emitted from the selected piezoelectric vibrator; a signal processing section that produces data on an internal image of the inspection object based on the detected reflected echo; a second display unit that combines multiple pieces of image data acquired from the signal processing section and displays an integrated visualization data result; and an second input unit that is used to perform an operation command such as a command input to start or terminate an inspection or an a command to set inspection condition.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideo Isobe, Takahiro Ikeda, Ryoichi Arai
  • Patent number: 8950261
    Abstract: A method of detecting faults in a member having a first and second face opposite each other and communicating fluidically in the presence of at least one fault; the method including the steps of: generating a first sound signal by means of a transmitter, so that the first sound signal interacts with at least one portion of the first face of the member; arranging a receiver, configured to receive a second sound signal, close to a respective portion of the second face of the member corresponding to the portion of the first face, the second sound signal being the outcome of the first sound signal interacting with the member; moving the receiver, close to the second face of the member; generating a detection signal, by means of the receiver, as a function of the received second sound signal; calculating, at a number of instants (t1-tN) in which the receiver is moved, respective detection values (A?, B?, N?) of a quantity associated with the energy of the detection signal; and, in the event of at least one fault i
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: February 10, 2015
    Assignee: Ansaldobreda S.p.A.
    Inventors: Massimo Carradori, Paolo Rami, Gian Luca Pioppi
  • Publication number: 20150013462
    Abstract: In order to reduce the variation of transmitting and receiving sensitivity among a plurality of CMUT cells, an ultrasound diagnostic device comprises: a plurality of CMUT cells each having a vibrating membrane that vibrates when ultrasound is transmitted to or received from a subject; an upper electrode and a lower electrode disposed facing each other on mutually opposite sides of each of the CMUT cells to apply a bias voltage to each of the CMUT cells by a bias power supply; and transmitting and receiving correction units for each correcting the voltage supplied from the bias power supply by using a function using at least one parameter of the thickness and resonance frequency of the vibrating membrane of each of the CMUT cells.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 15, 2015
    Applicant: HITACHI ALOKA MEDICAL, LTD.
    Inventors: Tomoko Takenaka, Mikio Izumi, Kazunari Ishida
  • Patent number: 8931345
    Abstract: An apparatus for measuring the strength of concrete using a surface wave velocity including an ultrasonic transmission and reception probe is provided. The apparatus is configured to include a surface wave velocity measurement device including an ultrasonic transmission probe and an ultrasonic reception probe. Further, a method of constructing the slip form of a concrete column member is provided. The method is capable of reducing the construction period by raising a concrete form rapidly and safely using a method of determining the slip-up time of the slip form based on the strength of concrete measured by the apparatus.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 13, 2015
    Assignee: Korea Institute of Construction Technology
    Inventors: Hee Seok Kim, Young Jin Kim, Won Jong Chin, Hye Jin Yoon, Byung Suk Kim
  • Publication number: 20150007659
    Abstract: A photoacoustic imaging apparatus includes a signal processor. The signal processor includes an adding unit configured to add received signals obtained by acoustic wave detecting devices to obtain a summed signal, a normalizing unit configured to normalize the summed signal for each acoustic wave detecting device with reference to an amplitude value in the received signal in the acoustic wave detecting device at the time when a maximum amplitude value in the summed signal is obtained to obtain a normalized signal, a reducing unit configured to subtract the normalized signal from the received signal for each acoustic wave detecting device to obtain a reduced signal in which the amplitude value in the received signal at the time when the maximum amplitude value in the summed signal is obtained is reduced, and an imaging unit configured to generate image data using the reduced signals.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventor: Ryuichi Nanaumi
  • Patent number: 8925386
    Abstract: An ultrasonic diagnostic apparatus having an ultrasonic probe configured to transmit and receive an ultrasonic wave, a transmitter for configured to supply a signal to the ultrasonic probe and forming an ultrasonic beam, a receiver configured to receive a reception signal obtained by transmitting the ultrasonic beam to an object, a signal processor configured to form an ultrasonic image on the basis of the reception signal, a display unit configured to display the ultrasonic image, and a control unit configured to control the transmitter, the receiver, the signal processor and the display unit, comprising a setting unit configured to set an operation mode of the transmitter to a low power consumption operation mode or a high spatial resolution operation mode.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: January 6, 2015
    Assignee: Hitachi Medical Corporation
    Inventor: Mitsuhiro Oshiki
  • Patent number: 8919202
    Abstract: A system including a plurality of sensing devices configured to generate acoustic emission (AE) signals that are representative of acoustic emission waves propagating through a plurality of stator vanes is presented. The system further includes a processing subsystem that is in an operational communication with the plurality of sensing devices, and the processing subsystem is configured to generate a dynamic threshold based upon an initial threshold and the AE signals, determine whether a plurality of signals of interest exist in the AE signals based upon the dynamic threshold, extract the plurality of signals of interest from the AE signals based upon the dynamic threshold, determine one or more features corresponding to the plurality of signals of interest, and analyze the one or more features to monitor and validate the health of the plurality of stator vanes.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 30, 2014
    Assignee: General Electric Company
    Inventors: Bhasker Rao Keely, Aninda Bhattacharya, Ravi Yoganatha Babu, Nilesh Tralshawala
  • Publication number: 20140360271
    Abstract: An object information acquiring apparatus comprises a light irradiation unit that irradiates an object with light; an acoustic probe that receives an acoustic wave generated within the object; a first data processing unit that generates a first image representing information within the object, on the basis of an acoustic wave received by the acoustic probe; a template acquisition unit that divides the first image into a plurality of regions on the basis of a spatial resolution within the image, and acquires a plurality of pieces of template data according to characteristics of each region after division; and a second data processing unit that performs deconvolution processing using corresponding template data with respect to each of the regions after division to generate a second image.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 11, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Kazuhiko Fukutani
  • Patent number: 8904872
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Publication number: 20140352437
    Abstract: An ultrasonic measuring device including: an ultrasonic transducer device; an emission unit for emitting an ultrasonic beam; a reception unit for receiving an ultrasonic echo reflected by a test subject; and a processing unit for processing reception, wherein the processing unit identifies a transfer function with respect to the ultrasonic transducer device and the test subject based on a first reception signal corresponding to an ultrasonic beam radiated to a first area in the test subject, a second reception signal corresponding to an ultrasonic beam radiated to a second area in the test subject, and a third reception signal corresponding to an ultrasonic beam radiated to a third area located between the first area and the second area in the test subject, and performs ultrasonic image generation processing including filter processing using a deconvolution filter including the transfer function performed on the reception signals.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Jiro TSURUNO, Hiroshi KANAI, Hideyuki HASEGAWA
  • Publication number: 20140345384
    Abstract: A system and method for the inspection of cylindrical components using an ultrasonic transducer assembly. The system and method comprise a robot disposed on a track secured about the circumference of the cylindrical component and adapted to carry the ultrasonic transducer along the track to inspect the component. A computer system is adapted to receive scan data from the transducer assembly and construct a three-dimensional representation of the scanned portion of the component.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: Veracity Technology Solutions, LLC
    Inventor: Manh Quoc Nguyen
  • Patent number: 8887572
    Abstract: A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. An example system includes a number of ultrasonic transducers configured to transmit ultrasonic waves towards a target region on a specimen, a voltage source configured to excite the first and second ultrasonic transducers, and a processor configured to determine one or more properties of the specimen.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: November 18, 2014
    Assignee: Board of Regents of the University of Nebraska
    Inventor: Joseph A. Turner
  • Publication number: 20140331772
    Abstract: An ultrasonic measuring system is described for detecting an obstacle using a resonant transducer element for transmitting an ultrasonic pulse and for generating a received signal which includes the ultrasonic echo pulse reflected from the obstacle, the transducer element generating a decay signal having its resonance frequency after transmitting an ultrasonic pulse. The ultrasonic measuring system includes an evaluation unit having a control unit which is designed to activate the transducer element for transmitting the ultrasonic pulse with the aid of a frequency-modulated transmitted signal generated by the control unit, the frequency modulation taking place with the aid of a modulation signal in such a way that the to signature of the ultrasonic pulse differs from that of the decay signal.
    Type: Application
    Filed: March 20, 2012
    Publication date: November 13, 2014
    Inventors: Albrecht Klotz, Dirk Schmid, Michael Schumann, Matthias Karl
  • Patent number: 8875582
    Abstract: A photoacoustic imaging apparatus includes a signal processor. The signal processor includes an adding unit configured to add received signals obtained by acoustic wave detecting devices to obtain a summed signal, a normalizing unit configured to normalize the summed signal for each acoustic wave detecting device with reference to an amplitude value in the received signal in the acoustic wave detecting device at the time when a maximum amplitude value in the summed signal is obtained to obtain a normalized signal, a reducing unit configured to subtract the normalized signal from the received signal for each acoustic wave detecting device to obtain a reduced signal in which the amplitude value in the received signal at the time when the maximum amplitude value in the summed signal is obtained is reduced, and an imaging unit configured to generate image data using the reduced signals.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryuichi Nanaumi
  • Patent number: 8875580
    Abstract: A method and apparatus for evaluating and/or quantifying damage to wire strands of a wire caused during installation of a crimped wire connector, involves launching an ultrasonic wave having known characteristics into a wire at a location that is either the crimp or is adjacent the crimped wire connector, and detecting changes in the characteristics (e.g., amplitude and/or phase shift) of the wave as it is propagates along a length of the wire.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 4, 2014
    Assignee: The United States of America as represented by the Adminstrator of the National Aeronautics and Space Adminstration
    Inventors: William T. Yost, Karl Elliott Cramer, Daniel F. Perey
  • Patent number: 8857262
    Abstract: Systems and methods for ultrasonically evaluating one or more microstructural material properties of a structural specimen are disclosed. An example system comprises an ultrasonic sensor unit including a plurality of ultrasonic transducers that generate ultrasonic backscatter within the specimen, and an evaluation module that performs an autocorrelation function on the ultrasonic backscatter data. An autocorrelation algorithm is configured to execute a single scattering response (SSR) model that computes second order grain statistics of the structural specimen.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 14, 2014
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Joseph A. Turner, Christopher M. Kube
  • Publication number: 20140290368
    Abstract: A freestanding ultrasonic probe or transducer position relative to the inspected object is remotely tracked with a wireless transmitter/receiver or an optically based positioning system. Either type of positioning system generates a time stamped or commonly clocked positional data set that are sent to a post data processing module. The post data processing module creates a 3-D model of the inspected object, including location and size of indications in the inspected object, utilizing the positional data and inspection data generated by an ultrasonic testing instrument coupled to the freestanding probe/transducer.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 2, 2014
    Applicant: Siemens Energy, Inc.
    Inventors: Yan Guo, Kevin P. Bailey, Joshua S. McConkey
  • Patent number: 8844359
    Abstract: Apparatus for non-invasive measuring of the sound velocity of a fluid flowing in a tubing having a small internal diameter for the fluid passage as compared to the tubing wall thickness and having points of two different and known transverse length with a sensor mounted at each point and a delay line adjacent to the tubing at each point. Each sensor is connected to a circuit that provides ultrasonic energy signals that are transmitted through the tubing walls, the flowing fluid and the delay line to be reflected back to the sensor from which the round trip transit time of the signals is measured and the sound velocity calculated from the two measured round trip transit times and the differential between the known transverse lengths.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: September 30, 2014
    Assignee: Hema-Q, Inc.
    Inventor: Naim Dam
  • Publication number: 20140283611
    Abstract: Disclosed in the present disclosure is a phased array system configured to ultrasonically inspect test targets complex surfaces while employing the surface profiling capability of phased-array linear and sectorial scans. Adaptive focusing is employed for inspecting the test target by using customized apertures according to the surface profiles to generate a plurality of beams that are evenly and thoroughly spaced along a scan line inside the test target.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 25, 2014
    Inventors: Jason Habermehl, Jinchi Zhang
  • Patent number: 8839671
    Abstract: In the measurement method, a vibrator (5) of a detection unit (4) is relatively moved against a plate (3) of which surface is flat having predetermined area. The vibrator (5) which is vibrating is moved closer to a surface of an object-to-be-measured (1) which is mounted on the plate (3) until the frequency thereof is varied. A position where the frequency of the vibrator (5) is varied is output as a contact position where the vibrator (5) is contacted to the object-to-be-measured (1). Then, thickness of the object-to-be-measured (1) is measured by comparing the position where the vibrator (5) is contacted to the object-to-be-measured (1) with a surface position of the plate (3).
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: September 23, 2014
    Assignee: TS Tech Co., Ltd.
    Inventor: Mitsuru Sueki
  • Patent number: 8833168
    Abstract: An ultrasonic inspection device allows position adjustment of three-dimensional inspection data and shape data to be easily performed on a display screen and allows a defect echo and a shape echo to be quickly identified. A calculator generates the three-dimensional inspection data from waveforms stored in a data storage unit. A three-dimensional display unit displays the three-dimensional inspection data generated by the calculator and the three-dimensional shape data on an object to be inspected.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 16, 2014
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: So Kitazawa, Naoyuki Kono, Atsushi Baba
  • Patent number: 8826740
    Abstract: A method and apparatus for non-destructively inspecting a composite structure with an ultrasonic system including an ultrasonic probe includes positioning the composite structure in a tank-less environment, and scanning the composite structure with the ultrasonic system to measure ultrasonic sound waves reflected by the composite structure to the single ultrasonic probe. A physical characteristic of the composite structure is determined based at least in part on the measured ultrasonic sound waves.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventor: Robert William Bergman
  • Patent number: 8826738
    Abstract: The structural integrity of a safe-life aircraft component on an aircraft is measured and assessed by a processing unit. The component includes a load-bearing metal element that is free from cracks. In the method, acoustic emissions generated in the metal element are converted into electronic signals. The acoustic emissions converted include relevant acoustic emissions resulting from changes in the structure of the element that make the element more susceptible to the formation of cracks. The electronic signals are set to a processing unit. The processing unit processes over time the signals in conjunction with stored reference data that allows a measure of the structural integrity to be made. Information providing a measure of the structural integrity of the aircraft component is outputted. Thus, deterioration of the structure of the component can be detected and monitored before a crack occurs.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 9, 2014
    Assignee: Airbus Operations Limited
    Inventors: Murad El-Bakry, Kathryn Jane Atherton, Christophe Armand Nicolas Paget
  • Patent number: 8820163
    Abstract: A nondestructive inspection apparatus includes a pair of guided wave sensors disposed on an outer surface of a piping and a guided wave inspection device connected to the pair of guided wave sensors which, outputs a transmitting signal for propagating a guided wave to the guided wave sensors, and obtains a receiving signal by receiving a propagated signal by the guided wave sensors. An inspection-result storage device stores the guided wave as a digitized signal of the received wave and an inspection-result diagnostic device performs arithmetic processing of judging whether or not a signal associated with a defect exists.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: September 2, 2014
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Masahiro Miki, Yoshiaki Nagashima, Masao Endou, Kojiro Kodaira, Mitsuru Odakura
  • Publication number: 20140230556
    Abstract: An ultrasonic test equipment includes: a signal generating mechanism that generates a voltage waveform; an ultrasonic transmitting mechanism that excites ultrasonic vibrations having a lower frequency than a predetermined frequency to an object to be tested; an ultrasonic receiving mechanism that receives an ultrasonic response from the object to be tested; an AD converting mechanism that digitizes the received ultrasonic waveform; an analyzing mechanism that performs frequency analysis of the digital ultrasonic waveform digitized by the AD converting mechanism; an evaluating mechanism that extracts a variation of a nonlinear ultrasonic component from a frequency component of the digital ultrasonic wave obtained by the frequency analysis, compares the variation with defect data information in a defect information database, identifies a physical quantity of defect information of the object to be tested, and evaluates a defect in the object to be tested; and a control mechanism that partly or entirely controls
    Type: Application
    Filed: February 20, 2014
    Publication date: August 21, 2014
    Inventors: Setsu Yamamoto, Jun Semboshi, Masahiro Yoshida, Takahiro Miura, Kazumi Watanabe, Makoto Ochiai, Satoshi Nagai
  • Patent number: 8806944
    Abstract: The invention relates to very precisely measuring changes in thickness of pipe walls to determine corrosion rate prior to any significant corrosion loss. The thickness is determined by ultrasonic testing where many measurements of the wall thickness are taken at the same spot by a fixed sensor and errors associated with noise and temperature changes are substantially eliminated. A highly sensitive receiver converts each reflected pulse to waves that are averaged with other pulse measurements. The resulting average wave is analyzed so that each waveform is analyzed to identify the extrema and inflection points of each reflected pulse. The resulting analysis provides a far more accurate determination of the time between reflected pulses. As a result, a far more accurate picture of corrosion at the location of the wall of the pipe can be determined within weeks with a high degree of confidence.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 19, 2014
    Assignee: ConocoPhillips Company
    Inventors: Scott A. Grubb, David J. Blumer
  • Patent number: 8806946
    Abstract: A system is provided for the detection of deposits in a fluid line that includes, but is not limited to a measuring body, and ultrasonic transducer and an ultrasonic receiver and at least one evaluation unit connected to the ultrasonic transducer and the ultrasonic receiver. The ultrasonic transducer transmits an ultrasonic signal and the ultrasonic receiver receives response signals generated by reflections in the fluid line. From known geometric changes in shape of the fluid line, resulting response signals are finally filtered out of the response signal sequence and from the remaining response signals relating to the deposits, the distances can be calculated between the ultrasonic transducer and the deposits.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 19, 2014
    Assignee: Airbus Operations GmbH
    Inventors: Michael Flister, Wilhelm Lutzer
  • Patent number: 8776603
    Abstract: Provided herein is a non-destructive testing method capable of diagnosing a condition of an object to be tested using a single-pulse ultrasonic wave signal. An attenuation waveform of the single-pulse ultrasonic wave signal received by a receiving section 3 is wavelet transformed by a wavelet transform section 6 to obtain an envelope line A(t) and a phase ?(t) of the attenuation waveform. A temporal change computing section 7 approximates the attenuation waveform by an approximation equation available for computation, using the envelope line A(t) and the phase ?(t) of the attenuation waveform inputted from the wavelet transform section 6, and obtains the temporal change of instantaneous frequency of the attenuation waveform. A diagnosing section 8 diagnoses a condition of the object to be tested, based on the temporal change of the instantaneous frequency computed by the temporal change computing section 7.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 15, 2014
    Assignee: Kyushu University, National University Corporation
    Inventor: Takumi Inoue
  • Patent number: 8776604
    Abstract: An ultrasonic probe for detecting a flaw by ultrasonic waves in a tubular test object includes a plurality of transducers arranged along an annular curved surface, wherein the annular curved surface is obtained by cutting a predetermined spheroid with two parallel planes facing to each other that do not pass through a center of the spheroid and do not sandwich the center of the spheroid, said two parallel planes being orthogonal to a rotational axis of the spheroid. A shape of said annular curved surface is determined so that when transducers appropriately selected from said plurality of transducers are caused to transmit and receive ultrasonic waves, respective internal refraction angles ?? of the ultrasonic waves are approximately equivalent regardless of propagation directions of the ultrasonic waves.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 15, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventor: Masaki Yamano
  • Patent number: 8770028
    Abstract: The subject of the invention is a device for the nondestructive recording of a rotational movement, e.g. of a probe, on the surface of a specimen. In a developed configuration, a translational movement on the surface of the specimen can be detected. To this end, the device comprises a transmitter which is set up to transmit a temporal sequence of excitation signals Si, which penetrate into the specimen at least to some extent and interact with it. Furthermore, an array is provided, which is based on a plurality of receivers which are set up to receive echo signals, which result from the interaction of the excitation signals Si, transmitted by the transmitter, with the specimen. The echo signals for an excitation signal Si which are absorbed by the receivers form a set M (Si) of measurement values.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: July 8, 2014
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventor: Wolf-Dietrich Kleinert
  • Patent number: 8770029
    Abstract: A method for ultrasonic testing of an object, the method comprising ultrasonic scanning of a plurality of scan regions of the object; converting ultrasonic echoes of the ultrasonic scanning into a plurality of electrical signals; gating the electrical signals to provide gated signals; and wherein different gating times are used for the electrical signals.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 8, 2014
    Assignee: General Electric Company
    Inventors: Stephan Falter, Roman Koch
  • Patent number: 8746069
    Abstract: An ultrasound time-of-flight diffraction reference block has a plurality of notches that extend into the block to simulate cracks, wherein the notches have a normal and transverse orientation with respect to a test path formed on the block.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 10, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: Dennis Smythe
  • Patent number: 8746049
    Abstract: A creep indication system and a method for determining a creep amount are disclosed. The system includes a first creep indicating member on a first rotating component and a second creep indicating member on a second rotating component. The second creep indicating member has at least one different creep characteristic from the first creep indicating member. The system further includes at least one measurement device configured to measure a change in radial position of at least one of the first creep indicating member or the second creep indicating member. The method includes measuring a first creep amount of a first creep indicating member and measuring a second creep amount of a second creep indicating member. The method further includes estimating a temperature of a rotating component using the first creep amount and the second creep amount.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 10, 2014
    Assignee: General Electric Company
    Inventors: Fred Thomas Willett, Jr., Paul Stephen DiMascio
  • Publication number: 20140150554
    Abstract: An in-medium monitoring system for monitoring material carried within a pipe. The system includes an acoustic device installed within the pipe that generates voltage signals indicative of changes in the material, such as flow rate or leaks, a hardware unit that includes a detector module and a communication module, a switch for switching the voltage signals to and communication signals from the hardware unit. The hardware unit and a power source are attached to the pipe. The acoustic device may be detector or a sensor. The communication module may communicate date through the sensor in the medium or outside of the pipe to a fixed network. The hardware unit may include a log detection amplifier for generating an amplified pulsed output signal without voltage gain and without significantly adding noise.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Inventors: Patrick Rada, Forrest Brown
  • Patent number: 8726733
    Abstract: An ultrasonic measuring method includes: (A) receiving a coded spread spectrum ultrasonic signal in at least two receivers, and generating at least two received signals; (B) performing an quadrature detection on the received signals using the carrier frequency, and producing I and Q components of the received signals; (C) performing phase difference processing on the I and Q components with a coding period synchronized with that of the carrier frequency, and obtaining I? and Q? components from which a phase shift caused by a Doppler shift has been canceled; (D) despreading the I? and Q? components signals using different codes at time intervals synchronized with the carrier frequency, and obtaining despread I? and Q? components; (E) computing the amplitude and phase information based on the I? and Q? components; and (F) calculating the propagation distance and/or orientation of the ultrasonic wave based on the amplitude and phase information.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventors: Masahiko Hashimoto, Yong Wang
  • Patent number: 8714018
    Abstract: The non-destructive testing of a test object by way of ultrasound includes: (a) radiating directed ultrasonic pulses into the test object at an irradiation angle ? wherein the irradiation angle ? is set electronically, (b) recording echo signals that result from the ultrasonic pulses radiated into the test object, and (c) determining an irradiation position X0 in which echo signals can be recorded that can be associated with an error in the volume of the test object. The method also includes (d) determining the irradiation angle ?max for which the ERS value of the error reaches its maximum at position X0, (e) changing the irradiation position X0?X1 on the surface of the test object, the change of the irradiation position being captured, and (f) electronically adjusting the irradiation angle ? in such a manner that the ERS value of the error reaches its maximum in the changed irradiation position X1.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: May 6, 2014
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: York Oberdoerfer, Wolf-Dietrich Kleinert