With Signal Analyzing Or Mathematical Processing Patents (Class 73/602)
  • Patent number: 8438929
    Abstract: A phased array ultrasonic testing system for examining discontinuities in turbine or generator rotor bores formed within turbine or generator rotors of a turbine or generator rotor assembly. The system includes a phased array ultrasonic transducer structured to be coupled to a surface of the rotor bore at a first location in order to emit an ultrasonic beam toward a second location of the rotor bore which is to be examined. The system further includes a control system with a computer and a controller for programming, emitting, and steering the ultrasonic beam via at least one, two-dimensional phased array transducer, thereby precisely and accurately inspecting the area of interest. Computer control of the beam permits the number of inspection locations and the number of different transducer wedges to be reduced providing for an efficient, timely inspection.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 14, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Michael J. Metala, Waheed A. Abbasi
  • Patent number: 8440974
    Abstract: A system and method of performing acoustic thermography in which invalid data is filtered from data used to detect defects on a structure. An ultrasonic sound input signal is provided to a structure to produce a thermal image output. A sensor senses an input energy corresponding to the sound input signal and produces an input energy signal. The input energy signal is transformed to a test spectrum and is compared to a reference spectrum. The comparison of the test spectrum to the reference spectrum is used to determine whether to include the thermal image output in an analysis for detecting defects in the structure.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: May 14, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Forrest R. Ruhge, Clifford Hatcher
  • Publication number: 20130104657
    Abstract: An ultrasonic particle measuring system having an ultrasonic transducer with at least one ultrasonic transducer element and at least one coupling element, wherein, during operation, acoustic signals are transmittable and receivable by the ultrasonic transducer element via the coupling element, wherein the coupling element is embodied as an acoustic lens, and the ultrasonic, particle measuring system has an evaluation unit suitable for amplitude analysis of reflection signals of acoustic signals reflected from particles to the ultrasonic transducer, and wherein, with the evaluation unit, amplitudes of reflection signals in a predetermined time interval are countable, which are greater than a predetermined threshold value.
    Type: Application
    Filed: June 20, 2011
    Publication date: May 2, 2013
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Yaoying Lin, Beat Kissling, Wolfgang Drahm, Thomas Frohlich
  • Patent number: 8429974
    Abstract: Methods and systems for detecting features in thin-wall structures are provided. A plurality of ultrasonic waves are generated within a thin-wall structure. At least one echo from the plurality of ultrasonic waves within the thin-wall structure is detected. The at least one echo is processed to determine a position of at least one feature in the thin-wall structure based on Embedded Ultrasonic Structure Radar (EUSR) beamforming performed in the frequency domain.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 30, 2013
    Assignee: Honeywell International Inc.
    Inventors: Radek Hedl, Girija Parthasarathy
  • Patent number: 8429972
    Abstract: There is provided an ultrasonic imaging apparatus capable of efficiently generating an image both by using a transmission ultrasonic wave with a wide angle of beam spread and by using a transmission ultrasonic wave with a narrow angle of beam spread. The ultrasonic imaging apparatus includes: a transmission control part controlling transmission timings of a plurality of first piezoelectric elements so as to make a synthesized wave of ultrasonic waves transmitted from the plural first piezoelectric elements match an ultrasonic wave transmitted from a predetermined virtual transmission point; a signal detecting circuit detecting an electric signal corresponding to an ultrasonic echo transmitted from the plural first piezoelectric elements, reflected by an inspection target, and received by a plurality of second piezoelectric elements; and a generating part generating an image corresponding to the inspection target based on the electric signal.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: April 30, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirokazu Karasawa
  • Patent number: 8429973
    Abstract: An ultrasonic transducer is provided with a distance measuring ultrasonic sensor for detecting a distance between the ultrasonic transducer and a surface of an inspection object and an inclination of the ultrasonic transducer with respect to the surface of the inspection object, to control the distance and the inclination of the ultrasonic transducer with respect to the inspection object based on information detected by the distance measuring ultrasonic sensor, and at least part of ultrasonic wave transmission/reception by the distance measuring ultrasonic sensor is performed during execution of aperture synthesis processing during which transmission/reception by the ultrasonic transducer is not performed.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 30, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideo Isobe, Ryoichi Arai, Takahiro Ikeda, Noriyuki Yamane
  • Patent number: 8425423
    Abstract: A system and method are disclosed that facilitate generating visual representations of characterized tissue based upon ultrasound echo information obtained from a portion of an imaged body. The system includes a first filter having a first filter band that is applied to a near range portion of the ultrasound echo information to render near range filtered echo information. A second filter, having a second filter band that covers a frequency range of the first filter band, is applied to a far range portion of the ultrasound echo information to render far range filtered echo information. The system furthermore includes a set of characterization criteria that are applied to the near and far range filtered echo information. The characterized near and far range image data are thereafter combined into a single tissue-characterization image.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 23, 2013
    Assignee: Volcano Corporation
    Inventors: Anuja Nair, David Geoffrey Vince, Marja Pauliina Margolis, Kendall Rand Waters
  • Patent number: 8424384
    Abstract: A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium is disclosed. The measurement system comprises two different closed-loop feedback paths. The first path includes a driver circuit (628), a transducer (604), a propagation medium (602), a transducer (606), and a zero-crossing receiver (640). The zero-crossing receiver (640) detects transition states of propagated energy waves in the propagation medium including the transition of each energy wave through a mid-point of a symmetrical or cyclical waveform. A second path includes the driver circuit (1228), a transducer (1204), a propagation medium (1202), a reflecting surface (1206), and an edge-detect receiver (1240). Energy waves in the propagating medium (1202) are reflected at least once. The edge-detect receiver (1240) detects a wave front of an energy wave. Each positive closed-loop path maintains the emission, propagation, and detection of energy waves in the propagation medium.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 23, 2013
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Kelly
  • Patent number: 8413513
    Abstract: An ultrasonic testing equipment includes a linear array ultrasonic probe in which a plurality of transducers are arranged in a direction orthogonal to the rolling direction of a test object and a signal processing unit. The signal processing unit executes following (1) to (6). (1) Generating an aperture synthetic image of testing signals of each section of the test object. (2) Generating a maximum value distribution of testing signals in the arrangement direction of transducers. (3) Calculating the width of a defect in each section based on the maximum value distribution. (4) Generating a maximum value distribution of the testing signals in the rolling direction based on the maximum value distribution of a plurality of sections of the test object. (5) Calculating the length of the defect based on the maximum value distribution of the testing signals in the rolling direction. (6) Calculating the area of the defect based on the calculated defect length and the calculated defect width of each section.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 9, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshio Ueda, Masaki Yamano, Masami Ikeda
  • Patent number: 8413515
    Abstract: There is provided an ultrasonic inspection apparatus which detects various deviations with respect to an ideal scanning position and achieves, with high accuracy, an ultrasound flaw inspection by autonomously adjusting the deviations. The ultrasonic inspection apparatus according to the present invention is provided with an integrated type ultrasound transducer including an ultrasonic transducer, an integral type ultrasound transducer control unit, an actuator for distance adjustment, an actuator for tilt control, and a distance measuring sensor. The integrated type ultrasound transducer calculates a deviation between a scanning position based on a preliminarily generated scanning path information and an ideal scanning position, and performs a deviation correction processing by autonomously controlling a distance and a tilt between an opening surface of the ultrasound transducer and an inspection region of an object to be inspected in accordance with this deviation.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideo Isobe, Hirokazu Karasawa
  • Patent number: 8408061
    Abstract: An apparatus for performing ultrasonic inspection of an object, during one measurement on the object, triggers a sequence of excitations of the probe system and receives a sequence of substantially identical echo signals reflected from the object, and further scales each echo signal to different degrees to increase and extend the dynamic range of the echo signals. An A/D converter is then used to digitize the scaled signal sequentially in a manner which dispenses the need for using numerous A/D converters and the associated filters. The digitized signal samples are then combined to produce a single digital output in a manner that is not over-flowed and with desirable resolution.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: April 2, 2013
    Assignee: Olympus NDT
    Inventor: Andrew Thomas
  • Patent number: 8402830
    Abstract: A method for nondestructive testing of a test object by means of ultrasound, and a corresponding device, the method including radiating directed ultrasonic pulses into the test object 100 at an irradiation angle ?, whereby the irradiation angle ? is set electronically, recording of echo signals that result from the ultrasonic pulses radiated into the test object 100, determining an ERS value of an error 102 in the volume of the test object from echo signals, which can be associated with the error 102.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: March 26, 2013
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: Wolf-Dietrich Kleinert, York Oberdörfer
  • Publication number: 20130068026
    Abstract: An ultrasonic inspection method and an ultrasonic inspection apparatus are provided, in which bending of a propagation path of an inspection object in three dimensions is considered. The ultrasonic inspection method includes calculating the ultrasonic propagation path by using three-dimensional shape data of the inspection object and information relating to a position and a direction of an ultrasonic sensor, giving spatial coordinates along the calculated ultrasonic propagation path to each point of sound field intensity data of an ultrasonic wave received in time series by the ultrasonic sensor, and displaying ultrasonic inspection data obtained by using the sound field intensity data and the spatial coordinates.
    Type: Application
    Filed: August 23, 2012
    Publication date: March 21, 2013
    Applicant: Hitachi, Ltd.
    Inventors: So Kitazawa, Naoyuki Kono, Atsushi Baba
  • Publication number: 20130061678
    Abstract: This invention employs an object information acquiring apparatus including a probe for receiving, as a received signal, an acoustic wave which is generated within an object irradiated with light and propagates on an object surface, and a processor for generating object information, which is information based on an internal optical characteristic value of the object, by using intensity of the received signal. The processor corrects the intensity of the received signal by using the reflectance upon the acoustic wave entering the probe which is calculated based on the angle of the acoustic wave entering the probe, and on the acoustic impedance and acoustic velocity of the object and the probe.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 14, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Yamamoto, Yukio Furukawa, Toshinobu Tokita
  • Patent number: 8393216
    Abstract: The invention provides a fatigue exciter for wind turbine blades. Wind turbine blades require excitation at or near their natural frequency to induce bending moments that simulate in service loadings and must be easily controllable and with the minimum of unnecessary added mass or force. The invention provides a device and a method by which force controlled feedback is used for finding an optimal excitation frequency. This force could be provided e.g. by a digital signal generator.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 12, 2013
    Assignee: Vestas Wind Systems A/S
    Inventor: Stuart Guy
  • Patent number: 8387461
    Abstract: A method of monitoring the condition of a flexible pipeline comprising the step of scanning the pipeline with an ultrasonic scanner to produce and/or record a signal indicative or the level of flooding within the annulus of the pipeline and/or indicative of the integrity of the layers of the pipeline.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: March 5, 2013
    Assignee: Flexlife Limited
    Inventors: John Nicholas Marsden, Stuart Andrew Mitchell
  • Patent number: 8378816
    Abstract: Signal processing technology for assessing dynamic system similarity for fault detection and other applications is based on time- and frequency-domain time series analysis techniques and compares the entire autocorrelation structure of a test and reference signal series. The test and reference signals are first subjected to similar pre-processing to help guarantee signal stationarity. Pre-processing may include formation of multivariate signal clusters, filtering and sampling. Multivariate periodograms or autocovariance functions are then calculated for each signal series. Test statistics are computed and assessed to determine the equality of the test and reference signals. When the difference between sample autocovariance functions or periodograms of such signals exceeds a preselected threshold value, fault detection signals and/or related diagnostic information are provided as output to a user.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 19, 2013
    Assignee: Clemson University
    Inventors: John R. Wagner, Hany F. Bassily, Robert B. Lund
  • Patent number: 8371151
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 12, 2013
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Patent number: 8371171
    Abstract: There is provided an ultrasonic inspection apparatus using scanning path information with high accuracy at a time of ultrasonic flaw inspection.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: February 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideo Isobe, Takahiro Ikeda, Noriyuki Yamane, Ryoichi Arai
  • Patent number: 8365601
    Abstract: A high-precision corrosion monitoring sensor assembly is provided for permanent mounting on a vessel to measure wall thickness of the vessel. The assembly includes an ultrasonic transducer and a delay line, which are bonded to the vessel wall a first location. The assembly is further bonded to the vessel by an adjustable fixture. The assembly includes a cross-member attached to the ultrasonic transducer, having a pivot pin at each distal end. The pivot pins are attached to a first tower and a second tower, which bond to the outer vessel wall at a second location and a third location. The position of the first and second towers can be adjusted with respect to angle and placement about the pivot pins. Fasteners are attached to the pivot pins and can be tightened to make rigid the fixture, thereby allowing configuration of the assembly for use on flat surfaces and small-diameter pipes.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: February 5, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Ali Minachi, Ghazzay M. Al-Subaii, Ayedh S. Saleh, Erika Laiche, Glenn Light
  • Patent number: 8365600
    Abstract: The invention is a method using ultrasound for non-destructive examination of a test body, whereby ultrasonic waves are coupled into the test body with one ultrasonic transducer or a multiplicity of ultrasonic transducers and the ultrasonic waves reflected inside the test body are received by a multiplicity of ultrasonic transducers and converted into ultrasonic signals. The ultrasonic signals detected in the single measurement periods are individually stored and are accessible for off-line evaluation after termination of the measurements. Application of corresponding reconstruction algorithms permits subsequent synthetization of any desired ultrasonic coupling-in angles and focussing into the volume region of the test body from the stored ultrasonic signals without requiring any additional ultrasonic measurements.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: February 5, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.
    Inventors: Michael Kröning, Dieter Hentschel, Ludwig von Bernus, Andrey Bulavinov, Krishna Reddy
  • Patent number: 8359926
    Abstract: An ultrasonic diagnostic apparatus in accordance with the invention includes: an ultrasonic probe configured to transmit an ultrasonic wave to an object to be tested and receiving an ultrasonic wave from the object; an ultrasonic transmitter/receiver configured to provide a signal that causes the ultrasonic probe to transmit an ultrasonic wave and signal-processing a signal received from the object by the ultrasonic probe; an ultrasonic image constructor configured to construct an ultrasonic image from the signal-processed received signal; an image display for displaying the ultrasonic image; a controller configured to control the ultrasonic transmitter/receiver, the ultrasonic image constructor and the image display to work properly; and a temperature sensor, provided on the ultrasonic probe, configured to sense the temperature of the ultrasonic probe and outputting the sensed temperature to the controller.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: January 29, 2013
    Assignee: Hitachi Medical Corporation
    Inventor: Masa Yamamoto
  • Patent number: 8359924
    Abstract: A method and apparatus for testing a bond interface is provided. An initial wave is transmitted into a first end of a first material. The first material is connected to a second material by an adhesive at a bond interface. The first material is dissimilar to the second material. The initial wave splits into a first wave and a second wave at the bond interface. Parameters are changed so a first wave travels through the first material to the first end of the first material and back to the bond interface in a first amount of time and the second wave travels through the second material to a second end of the second material and back to the bond interface in a second amount of time. The first amount of time is substantially equal to the second amount of time. A tension is obtained in the adhesive at the bond interface.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: January 29, 2013
    Assignee: The Boeing Company
    Inventors: Richard Henry Bossi, Kevin R. Housen
  • Publication number: 20130019685
    Abstract: There is provided a signal processing apparatus including a signal processor for processing a signal to be received from or to be transmitted to a vibrator constituting a probe, and a controller for controlling a signal processing parameter of the signal processor to lower a performance of the signal processor when a motion parameter showing a characteristic of a motion of the probe is large.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 24, 2013
    Applicant: Sony Corporation
    Inventors: Tatsumi Sakaguchi, Noboru Shibuya
  • Publication number: 20130000408
    Abstract: A system incorporating sensor enhanced composite armor structure. The structure has one layer including ceramic tiles and ceramic-material transducers, wherein the ceramic tiles and the transducers fit closely together so that the one layer is ballistically windowless. The structure has other layers composed of armor material stacked with the one layer, the one layer and the other layers forming a plate which as a unit has a set or group of fundamental frequencies. The system includes logic means to analyze only signals resulting from vibrations transmitted from the one transducer to the other transducer through the one layer. The logic means thereby derives a signal fingerprint which characterizes a state of damage to the plate.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: The United States of America as Represented by the Secretary of the Army
    Inventors: Thomas J. Meitzler, Ivan Wong, Thomas P. Reynolds, Samuel E. Ebenstein
  • Patent number: 8328721
    Abstract: A system for the determination of optical coefficients in an object including an ultrasonic scanner for recording first and second pulse echoes before and after the object has been illuminated with a heating light beam from a light source. An evaluation unit determines a map of temperature increase caused by the heating light beam inside the object based on apparent displacements showing up between the second and first pulse echoes.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: December 11, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: David Savery, Ladislav Jankovic, Ajay Anand
  • Patent number: 8322219
    Abstract: An in-line inspection tool is disclosed for inspecting the wall of a pipeline while traveling therethrough. The in-line inspection tool may include a transmitter, a signal generator, one or more receivers, and a decoder. The signal generator may generate a pseudorandom signal, generate an inspection signal, and drive the transmitter with a convolution of the pseudorandom signal and the inspection signal. The transmitter may transmit the convoluted signal to the wall of the pipeline. One or more receivers may receive from the wall of the pipeline a received signal comprising at least one of the convoluted signal and a reflection of the convoluted signal. The decoder may identify the inspection signal within the received signal by cross correlating the received signal and the pseudorandom signal.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 4, 2012
    Assignee: Pure Technologies Ltd.
    Inventor: Philip M. Hoyt
  • Publication number: 20120297881
    Abstract: A device is disclosed that, in an illustrative embodiment, includes an input line, a main gain component, a first local gain component, and a second local gain component. The main gain component, the first local gain component, and the second local gain component each have a communicative connection with the input line. The main gain component is configured for applying a main gain to an ultrasonic wave signal received via the input line, thereby providing a main gain signal. The first local gain component is configured for applying a first local gain to a portion of the ultrasonic wave signal within a first signal gate, and thereby providing a first local gain signal. The second local gain component is configured for applying a second local gain to a portion of the ultrasonic wave signal within a second signal gate, and thereby providing a second local gain signal.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: General Electric Company
    Inventors: Norbert Ewald Steinhoff, Alexander Franz Freund, Markus Manfred Stahlberg
  • Patent number: 8316712
    Abstract: Inspecting for fracture hazards by detecting a presence of at least one flaw development process in an equipment under inspection, the flaw development process being corrosion product nucleation and development, pitting, plastic deformation development, and/or micro-cracking. Detecting the presence of the flaw development process includes (a) determining at least one characteristic acoustic emission (AE) signature associated with a respective flaw development process, and (b) measuring an AE from each of a plurality of locations within the equipment. Presence of the respective flaw development process is identified only when the measured AE conforms to the characteristic AE signature within a predetermined tolerance. A fracture hazard is determined to exist only when (a) a quantity of the identified flaw development processes exceeds a first predetermined threshold and/or (b) a magnitude of at least one of the identified flaw development processes exceeds a second predetermined threshold.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 27, 2012
    Assignee: Margan Physical Diagnostics Ltd.
    Inventors: Gregory Muravin, Boris Muravin, Ludmila Lezvinsky, Itzik Mizrahi
  • Patent number: 8312771
    Abstract: The disclosed embodiments include a method, system, and device for conducting ultrasound interrogation of a medium. The novel method includes transmitting a non-beamformed or beamformed ultrasound wave into the medium, receiving more than one echoed ultrasound wave from the medium, and converting the received echoed ultrasound wave into digital data. The novel method may further transmit the digital data. In some embodiments, the transmitting may be wireless. The novel device may include transducer elements, an analog-to-digital converter in communication with the transducer elements, and a transmitter in communication with the analog-to-digital converter. The transducers may operate to convert a first electrical energy into an ultrasound wave. The first electrical energy may or may not be beamformed. The transducers also may convert an echoed ultrasound wave into a second electrical energy.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: November 20, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Kevin S. Randall, Jodi Schwartz Klessel, Anthony P. Lannutti, Joseph A. Urbano, Raymond F. Weymer, Jr.
  • Publication number: 20120285248
    Abstract: Provided is a photoacoustic apparatus capable of recognizing variation in reception characteristic among a plurality of receiving elements that detect an acoustic wave in the photoacoustic apparatus, with a simple configuration unique to the photoacoustic apparatus. A photoacoustic apparatus includes a detecting unit including a plurality of receiving elements configured to detect an acoustic wave that is generated when an analyte is irradiated with light; a signal processing unit configured to acquire information about the inside of the analyte from a detected signal acquired from the detecting unit; an optical absorber configured to absorb the irradiation light; and a reception characteristic calculation unit configured to calculate reception characteristic information of the plurality of receiving elements on the basis of detected signals when the plurality of receiving elements receive an acoustic wave that is generated from the optical absorber.
    Type: Application
    Filed: December 8, 2010
    Publication date: November 15, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yoshiaki Sudo, Akira Sato
  • Patent number: 8307711
    Abstract: Apparatus for inspection of a fluid comprising: a channel portion, the channel portion having a channel inlet and a channel outlet separate from the channel inlet; a piezoelectric sensor element provided at a sensor position of the channel and arranged to contact fluid flowing through the channel portion from said channel inlet to said channel outlet, the apparatus being configured to determine a difference value being a value corresponding to a difference between a resonant frequency of oscillation of said piezoelectric element at a given moment in time and a reference resonant frequency.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: November 13, 2012
    Assignee: University of Leeds
    Inventors: Simon Biggs, David Harbottle
  • Patent number: 8302479
    Abstract: The intensity of first reflected ultrasonic waves reflected from an end of a first electrode tip is measured while the electrode tip is separated from a workpiece. The intensity of second reflected waves reflected from the end of the electrode tip is measured while the electrode tip contacts with the workpiece. Based on the above intensities, an intensity ratio (reflectance) and the fraction of the waves entering the workpiece are determined from the following equations: reflectance=(intensity of second reflected waves)/(intensity of first reflected waves) fraction of waves entering the workpiece=1?reflectance. From a predetermined correlative relationship between a contact area of a region enabling ultrasonic waves to be incident on the workpiece and the determined fraction of the entering waves, a ratio (contact area ratio) is determined between a total area of the region and a contact area of the region contacting with the workpiece.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kaoru Shibata, Noriaki Shigematsu, Mitsutaka Igaue, Yushi Aoki, Noriko Kurimoto
  • Publication number: 20120272738
    Abstract: Embodiments contemplate methods and devices for conducting ultrasound interrogation of a medium. An ultrasound echo wave may be received at a first transducer element of a transducer array in a handheld probe. The ultrasound echo wave may also be received at a second transducer element of the transducer array. The ultrasound echo wave may also be received at a third transducer element of the transducer array. The handheld probe may process into digital data the ultrasound echo wave received at the first transducer element and the ultrasound echo wave received at the second transducer element. The processing may preclude data representative of the ultrasound echo wave received at the third transducer element from being included in the digital data. The processing may include reducing the digital data and the reduced digital data may be transmitted to a location relatively remote from the handheld probe.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Applicant: PENRITH CORPORATION
    Inventors: Jodi Schwartz Klessel, Kevin S. Randall, Joseph A. Urbano
  • Patent number: 8297122
    Abstract: A method for processing ultrasonic response signals collected from a plurality of measurement locations along a weld of a test sample to determine the presence of defects in the weld may include filtering an ultrasonic response signal from each measurement location to produce a plurality of filtered response signals for each measurement location, wherein each filtered response signal corresponds to specific types of defects. Thereafter, a plurality of energy distributions may be calculated for the weld based on the plurality of filtered response signals for each measurement location. The plurality of energy distributions may be compared to corresponding baseline energy distributions to determine the presence of defects in the weld.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: October 30, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Ifeanyi Charles Ume, Tsun-Yen Wu, Matthew Rogge
  • Patent number: 8296084
    Abstract: Method and apparatus for vibrometry, gauging, condition monitoring and feedback control of robots, using one or more ultrasonic probes (100) that are non-contact and form a focused beam. The ultrasonic probe is driven by a pulser-receiver (120) controlled by a computer. The probe has a substantially spherical transducer surface (75) that forms the focused beam within a gas or a liquid. The curvature of the transducer surface determines the focal length (25) and the extent of the focal region (50) of the beam. For greatest lateral accuracy, measurements are made within the focal length, where beam is narrowest. Diameter (80) of the probe determines the size of the beam, which can be chosen to satisfy a particular application. The focused beam has acoustic depth of field (85), which is the furthest distance from the probe to a surface (90) that can return a measurable echo to a pulse emitted by the probe.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: October 23, 2012
    Inventor: Robert Hickling
  • Patent number: 8291766
    Abstract: In a method and device for ultrasonic testing of a workpiece, a multiplicity of ultrasonic testing pulses are launched into the workpiece from a test surface thereof. At least two ultrasonic testing pulses are launched into the workpiece to be tested at launching points that are spaced apart from one another by a test step width measured along the test surface. A single measured value (?) assigned to a local point located in the workpiece is calculated on the basis of the received signals assigned to the at least two ultrasonic testing pulses.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: October 23, 2012
    Assignee: Intelligendt Systems & Services GmbH
    Inventors: Günter Engl, Friedrich Mohr, Michael Kröning, Krishna Mohan Reddy
  • Patent number: 8286492
    Abstract: The different advantageous embodiments provide a transducer unit, a testing system, and a method for testing a structure. The transducer unit comprises a first segment configured to generate a first electrical signal in response to detecting a plurality of waves propagating in a structure. The transducer unit also comprises a second segment configured to generate a second electrical signal in response to detecting the plurality of waves propagating in the structure.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: October 16, 2012
    Assignee: The Boeing Company
    Inventors: Hoon Sohn, Chulmin Yeum, Jeong-Beom Ihn
  • Patent number: 8282561
    Abstract: An imaging system is disclosed that uses piezoelectric markers. The piezoelectric fields in combination with ultrasound reflections can be used to construct an image of an otherwise difficult to detect feature within a subject's body. In one embodiment, the invention includes a piezoelectric marker, including at least one piece of piezoelectric material, an ultrasound transducer connected to an ultrasound pulser and a receiver, a computer sequencing control connected to the receiver and the ultrasound pulser, a display connected to the computer sequencing control and electrodes connected to the computer sequencing control via amplification circuitry.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: October 9, 2012
    Assignee: Arizona Board of Regents
    Inventor: Bruce Towe
  • Patent number: 8281661
    Abstract: A method of detecting a fracture as it occurs in a component during a manufacturing process includes positioning an acoustic sensor in acoustic communication with the component. A manufacturing process is performed while the acoustic sensor remains in acoustic communication with the component. A signal indicative of acoustic emissions from the component during the manufacturing process is provided to a controller where it is determined whether the component has fractured based on the signal.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 9, 2012
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Keith G. Olivier, Thomas Custer
  • Patent number: 8281659
    Abstract: A multi-sine vibration testing method includes coupling a vibratory excitation source and a sensor to a test structure, then providing a reference signal to the excitation source, wherein the reference signal comprises a first sinusoidal waveform having a first frequency and a second sinusoidal waveform having a second frequency different from the first frequency. The first frequency and the second frequency each sweep between a corresponding start value and a corresponding end value, and the frequency response is measured from each of the sensors while providing the reference signal.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 9, 2012
    Assignee: ATA Engineering, Inc.
    Inventor: Kevin Napolitano
  • Patent number: 8285498
    Abstract: The subject of the invention is a method for detection and automatic identification of defects in rolling bearings applicable in diagnosing rolling bearings and detecting damage in a very early stage of its occurrence. The inventive method in which the vibrations of a bearing in operation are measured, the measured analogue signals are converted to digital data which are filtered and next shock pulses are detected, whereupon defects present in the tested bearing or bearings are identified, characterized in that the detection of shock pulses is done using shock pulse likelihood ratio (Ms).
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 9, 2012
    Assignee: ABB Research Ltd.
    Inventors: Kari Saarinen, Jaroslaw Nowak
  • Patent number: 8279705
    Abstract: According to one embodiment, a reception unit generates reception beam data set groups based on echo signals. Each of the reception beam data set groups includes reception beam data sets respectively corresponding to reception beams associated with parallel signal processing. Each of the reception beam data sets is generated based on echo signals from transducers associated with a corresponding reception position. A scanning control unit sets the spatial arrangement of the reception beams. The reception beams are arranged at unequal intervals. A synthesizing unit generates synthetic beam data sets associated with reception positions based on the reception beam data set groups. Each of the synthetic beam data sets is obtained by synthesizing reception beam data sets associated with the same reception position. An image generation unit generates ultrasonic image data based on the synthetic beam data sets.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 2, 2012
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Jaeho Choi, Shunji Terasawa
  • Patent number: 8272269
    Abstract: The present invention relates to a method for examining a medium (19), comprising the following steps of: transmitting a measurement input signal (4) comprising at least one measurement frequency, wherein the measurement input signal (4) is coupled into a medium (19); receiving a measurement output signal (9) emerging from the medium (9); transmitting a counter measurement input signal (13) comprising at least one counter measurement frequency, wherein the counter measurement frequency essentially corresponds to the measurement frequency, and wherein the counter measurement input signal (13) is coupled into the medium (19) simultaneously and in an opposite direction to the measurement input signal (4); receiving a counter measurement output signal (16) emerging from the medium (19); calculating a Doppler correction by comparing the counter measurement input signal (13) with the counter measurement output signal (16) in terms of the counter measurement frequency and by comparing the measurement input signal (4
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: September 25, 2012
    Assignee: Wittenstein AG
    Inventor: Miroslaw Wrobel
  • Publication number: 20120227499
    Abstract: The internal state of a tube system is detected and monitored by coupling multiple inspection modules to the tube system. Each inspection module injects a signal into the tube system and detects reflections of the signals. The distance between the module and the fault causing a reflection is determined by analyzing the timing between the transmitted signal and detected reflection, along with a known propagation speed of the signals. The location of faults is determined by comparing the distance calculations from two or more inspection modules. Monitoring can be performed over time to identify the development or changes of faults. Monitoring can be done while tube system is active without disrupting the flow of material through the active tube system.
    Type: Application
    Filed: November 17, 2010
    Publication date: September 13, 2012
    Inventors: Noam Amir, Tal Pechter
  • Patent number: 8256296
    Abstract: A method for processing ultrasonic response signals collected from a plurality of measurement locations along a weld to determine the presence of a defect in the weld may include filtering an ultrasonic response signal from each of the measurement locations to produce a filtered response signal for each of the measurement locations. Thereafter, an ultrasonic energy for each of the measurement locations is calculated with the corresponding filtered response signal. The ultrasonic energy for each measurement location is then compared to the ultrasonic energy of adjacent measurement locations to identify potential defect locations. When the ultrasonic energy of a measurement location is less than the ultrasonic energy of the adjacent measurement locations, the measurement location is a potential defect location. The presence of a defect in the weld is then determined by analyzing fluctuations in the ultrasonic energy at measurement locations neighboring the potential defect locations.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 4, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Ifeanyi Charles Ume, Renfu Li, Matthew Rogge, Tsun-Yen Wu
  • Patent number: 8256295
    Abstract: A speed-of-sound measurement apparatus includes a wave transmission module for transmitting an ultrasonic wave to a front surface of a subject's body, a plurality of wave reception modules which each receives the ultrasonic wave from the subject's body and outputs a waveform signal corresponding to the received ultrasonic wave, a presumed propagation time calculating module for calculating a propagation time from when the ultrasonic wave is transmitted by the wave transmission module to when the ultrasonic wave arrives at each of the wave reception modules after propagating along the front surface of the subject's body or inside the subject's body, based on a presumed value of speed-of -sound in the subject's body and a front surface shape of the subject's body, a validity index value calculating module for finding a validity index value to be an index of validity of the propagation time based on the waveform signals outputted by at least two of the plurality of wave reception modules, and a speed-of-sound de
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 4, 2012
    Assignee: Furuno Electric Company, Ltd.
    Inventors: Ryoichi Suetoshi, Dorian Cretin, Atsushi Uodome
  • Publication number: 20120216617
    Abstract: Methods, systems and computer program products for nondestructive ultrasound imaging are provided. An example method defines a plurality of subarrays, each comprising a plurality of ultrasound transducer elements. The method transmits a plurality of ultrasound beams from each of the plurality of subarrays, each ultrasound beam being transmitted at a preset beamsteering angle. Subsequent to each transmit, the method receives, at the array, a plurality of ultrasound reflections corresponding to the plurality of ultrasound beams. For each point to be imaged, the method selects one set of received element data for each of the plurality of subarrays. The selected set of element data corresponds to an ultrasound beam having a focal point closest to the point to be imaged. Finally, the method reconstructs a point to be imaged based on the selected received element data, and constructs an ultrasound image by repeating this process for each point to be imaged.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 30, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ralph Thomas Hoctor, Stephen Eric Zingelewicz
  • Patent number: 8250922
    Abstract: An apparatus for identifying the modulus of elasticity of logs includes a device (2) equipped for detecting at least one log (T) eigenfrequency (natural frequency) and with a plurality of supports (10) able to move by rotating between a pick up position, in which they are located at a loading station (7), and a release position in which they are located at an unloading station (8) which is on the opposite side of a supports (10) axis of rotation relative to the loading station (7). A method for identifying the modulus of elasticity of logs includes the steps of picking up a log (T) while it is fed along a first direction (A1) on a first conveyor line (102); subjecting the log (T) to a step of detecting at least one natural frequency; and a step of releasing the log (T) on a second conveyor line (103) defining a second feed direction (A2) which is transversal to the first conveying direction (A1).
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: August 28, 2012
    Assignee: Microtec S.R.L.
    Inventor: Federico Giudiceandrea
  • Patent number: 8250923
    Abstract: An ultrasonic inspection method and ultrasonic inspection apparatus is capable of inspecting a weld line and of detecting a circumferential crack and an axial crack that are present in the weld line. An ultrasonic probe is placed on the surface of a structure and transmits an ultrasonic wave. The ultrasonic wave is transmitted at an angle in an X?-Z plane. The direction of a normal to the surface is defined as an X axis. The direction in which the weld line extends is defined as a Y axis. The direction perpendicular to the X axis and the Y axis is defined as a Z axis. An axis obtained by rotating the X axis around the Z axis is defined as an X? axis. A control mechanism performs signal processing of signals reflected from the defect or defects to detect the defect or defects and to measure the length of the defect or defects.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: August 28, 2012
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazuya Ehara, Naoyuki Kono, Masahiro Miki, Yoshio Nonaka