Measuring Or Testing System Having Scanning Means Patents (Class 73/618)
  • Patent number: 10288585
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 10197535
    Abstract: A system and method for full-field pulse-echo laser ultrasonic propagation imaging is provided. The full-field ultrasonic propagation imaging system generates ultrasounds on a structure by scanning the structure and emitting laser beams, simultaneously senses ultrasounds propagated through thickness of the structure, and generates a through-the-thickness ultrasonic propagation image. Accordingly, the full-field pulse-echo laser ultrasonic propagation imaging can visualize information on through-the-thickness defects in a full field.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: February 5, 2019
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Jung Ryul Lee
  • Patent number: 10122923
    Abstract: In an aspect, the OIS camera module includes a first unit mounted with a lens, a second unit movably mounted with the first unit along a horizontal direction perpendicular to an optical axis of the lens, and an OIS actuator moving the first unit along the horizontal direction relative to the second unit, wherein the OIS actuator may be lopsidedly arranged at one side about a center of the lens to the horizontal direction.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: November 6, 2018
    Assignee: MDPULSE CO., LTD.
    Inventors: Tae Hoon Jung, Jin Suk Han
  • Patent number: 10008424
    Abstract: A method for measuring and/or acquiring layer thicknesses and voids of one or more layers of a temporary bonded wafer stack on a plurality of measuring points is provided. A sequence of the method includes an arrangement of a measurement means for measuring and/or acquiring the layer thicknesses and voids of the layers of the wafer stack at the measuring points relative to a flat side of the wafer stack. The sequence further includes an emission of signals in the form of electromagnetic waves by a transmitter of the measurement means, and a receiving the signals which have been reflected by the wafer stack by a receiver of the measurement means. The sequence also includes an evaluation of the signals which have been received by the receiver by an evaluation unit.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: June 26, 2018
    Assignee: EV Group E. Thallner GmbH
    Inventor: Markus Wimplinger
  • Patent number: 9743906
    Abstract: An ultrasonic device evaluates the sound velocity of a nail to determine the overall health of a patient and to monitor cosmetological effects of certain products on the nail. The ultrasonic device includes a handhold probe having an piezoelectric transducer encased in cover that emits high-frequency ultrasonic impulses directed towards the nail. The nail reflects returning ultrasonic echoes back to the piezoelectric transducer. The returning ultrasonic echoes vibrate the piezoelectric transducer. A processor of a computer converts the vibrations into electrical pulses. The processor evaluates amplitude values of the electrical pulses to determine the parameters of the human nail, including the thickness, density and elasticity. The parameters are displayed on a display and analyzed by a technician to determine the nail condition. The health of the person or the effect of products on the nail can be determined based on the nail parameters.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: August 29, 2017
    Assignee: University of Windsor
    Inventors: Anna Maeva, Roman Gr. Maev, Liudmila A. Denisova
  • Patent number: 9622718
    Abstract: A wireless ultrasonic diagnostic apparatus (30) including a wireless ultrasonic probe (300) and a diagnostic device (400). The wireless ultrasonic probe (300) includes: a wireless transmission unit (306) which wirelessly transmits echo data (352); and an ultrasound transmission unit (303) which transmits pairing ultrasound (351) including probe information for identifying the wireless ultrasonic probe (300). The diagnostic device (400) includes: an ultrasound reception unit (401) which receives the pairing ultrasound (351); a probe information detection unit (402) which detects the probe information (452) from the pairing ultrasound (351); and a wireless reception unit (406) which determines, using the probe information (452), whether or not received data is the echo data (352) wirelessly transmitted by the wireless ultrasonic probe (300).
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 18, 2017
    Assignee: KONICA MINOLTA, INC.
    Inventor: Yasuhito Watanabe
  • Patent number: 9612226
    Abstract: A method for measuring the degree of fusion involves: a step for creating a dividing pulse amplitude curve by using a probe that emits ultrasound beams; a step for scanning the probe that emits ultrasound beams at a predetermined angle on a surface that has weld beads of multiple welding specimens having different degrees of fusion and for obtaining beam path length information from the dividing pulse amplitude curve and the height of an F echo that returned to the probe after hitting the fused section of a welding site; and a step for obtaining a regression formula expressing the relationship between the beam path length information and the degree of fusion.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 4, 2017
    Assignees: IHI Infrastructure Systems Co., Ltd., IHI Corporation
    Inventors: Yuji Takeda, Takahiro Yamagami, Kunio Yonekura, Hiroaki Hatanaka, Hiroki Kawai, Arisa Yanagihara
  • Patent number: 9176099
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: November 3, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 9038471
    Abstract: A method for ultrasonically inspecting components with wavy or uneven surfaces. A multi-element array ultrasonic transducer is operated with a substantial fluid layer, such as water, between the array transducer and the component surface. This fluid layer may be maintained by immersing the component in liquid or by using a captive couplant column between the probe and the component surface. The component is scanned, measuring the two dimensional surface profile using either a mechanical stylus, laser, or ultrasonic technique. Once an accurate surface profile of the component's surface has been obtained, data processing parameters are calculated for processing the ultrasonic signals reflected from the interior of the component that eliminate beam distortion effects and reflector mis-location that would otherwise occur due to the uneven surfaces.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: May 26, 2015
    Assignee: Babcock & Wilcox Technical Services Group, Inc.
    Inventors: Daniel T. MacLauchlan, Bradley E. Cox
  • Patent number: 9027404
    Abstract: The disclosed embodiments generally relate to non-destructive evaluation methods. More particularly, the disclosed embodiments relate to ultrasonic non-destructive evaluation methods for the evaluation of friction welded bladed discs (“blisks”). In an embodiment, a method for non-destructive evaluation of a bladed disc structure includes identifying a region of interest on the bladed disc structure; positioning an ultrasonic transducer and receiver in the region of interest; scanning the region of interest using the ultrasonic transducer and receiver to produce a scan image; and comparing the scan image against a reference image to determine the presence of an anomaly in the region of interest.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventors: Surendra Singh, Frederick William Vensel, Robert John Hogan, Vincent Chung
  • Patent number: 9017262
    Abstract: Methods and systems for connection to a transducer in ultrasound probes are provided. One connection arrangement includes a connector having a transducer connection portion configured to couple to a transducer of an ultrasound probe and a scan head connection portion configured to extend from a scan head of the ultrasound probe containing the transducer. The transducer connection portion and the scan head connection portion being a single element.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventors: Reinhold Bruestle, Wolfgang Dieter Knoll, Christian Heinrich, Christian Holl
  • Patent number: 9010684
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer, Richard C. Krotzer
  • Publication number: 20150082890
    Abstract: Methods and systems may provide for a system having a flexible substrate, an ultrasonic transducer array coupled to the flexible substrate and a processor coupled to the ultrasonic transducer array. The processor may identify a fingerprint based on a signal from the ultrasonic transducer array. The system may also include an external component having a curved profile, wherein the ultrasonic transducer array is embedded in the external component and includes a read surface that conforms to the curved profile. In one example, the external component includes a button having a function that is separate from identification of the fingerprint.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventors: Mondira D. PANT, Mohamed A. ABDELMONEUM, Tanay KARNIK, Stephen PISENTI, David I. POISNER, Rashed MAHAMEED
  • Publication number: 20150053012
    Abstract: An ultrasonic testing sensor and an ultrasonic testing method are provided which achieve a high sensitivity of three-dimensional ultrasonic testing and a high S/N ratio, do not require development of a sensor for each inspection object, and reduce the cost of developing a sensor. The ultrasonic testing method is performed with the use of the ultrasonic testing sensor while a total length d, extending in a direction parallel to an ultrasonic scanning direction, of ultrasonic elements to be simultaneously excited with a single exciter is controlled to be in a range ensuring that 2d·sin ?=n·?, where ? is a wavelength of an ultrasonic wave, n is an integer of 1 or 2, and ? is an angle at which the ultrasonic wave is incident.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 26, 2015
    Inventors: Yutaka SUZUKI, Hiroaki CHIBA, Takeshi KUDO
  • Patent number: 8943892
    Abstract: A computer-controlled robotic platform with a collapsible lifting arm that positions a non-destructive inspection (NDI) sensor for scanning inside tunnel regions of a composite structure such as an integrally stiffened wing box. The lifting arm of a modified scissor lift mechanism can be collapsed to a very low height to pass through narrow sections of the integrally stiffened wing box, and also extended by more than a factor of three to reach the maximum height of the wing box tunnels. The system performs a vertical position sensing and control process that uses inverse kinematics to enable position control using data from a standard rotational encoder on the motor to determine vertical position. The system produces simulated encoder pulses that represent unit vertical displacements of a distal portion of a modified scissor lift mechanism using a forward kinematics equation in which the rotation angle of a lead screw is an input variable.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Jeffry J. Garvey, James C. Kennedy, James J. Troy
  • Patent number: 8917090
    Abstract: A device for inspecting an annular sealing wiper extending at the surface of a bladed-wheel drum of a rotor. The device includes a carriage including at least two guide wheels and carrying a probe situated in a location such that, when the carriage is in position, the probe is positioned facing an edge of the wiper for inspection and at a determined distance therefrom.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 23, 2014
    Assignee: SNECMA
    Inventors: Sadia Bousquet, Gerard Derrien, Carolina Garcia-Lopez, Jean-Jacques Nedelec
  • Patent number: 8904873
    Abstract: Computers with proper programs generate signals in phased array sequence. In pulsers with delays, signals are fed through a multiplexor into multiple water wedges that are attached to a valve being tested. For a sequential operation of the valves from the open to the closed position, ultrasonic signals are transmitted through fluid contained in the valve and reflected back through piezo-electric crystals to the multiplexor. By summation and merger of the signals, an image can be developed of the operation of the valve to determine if the valve is operating properly. By using multiple water wedges and pass visualization software, the operator can see exactly how the valve is functioning, which information can be stored for inspections or maintenance.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: December 9, 2014
    Assignee: IHI Southwest Technologies, Inc.
    Inventors: Jesse R. Delgado, Hector Diaz
  • Patent number: 8893541
    Abstract: Appliances and methods are disclosed for testing operation of an acoustic device that generates beams of acoustic energy. An imaging array generates electrical signals in response to impinging receipt of acoustic energy. An acoustic-energy direction system is disposed to focus acoustic energy onto the imaging array. A controller is electrically coupled with the acoustic device and with the imaging array. The controller has instructions to generate an image on a display from electrical signals received by the controller from the imaging array. The electrical signals are received by the controller in response to generation of a beam of acoustic energy by the acoustic device. The beam of acoustic energy is directed towards the acoustic-energy direction system. The image provides a representation of the generated beam of acoustic energy.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 25, 2014
    Assignee: Acertara Acoustic Laboratories LLC
    Inventors: James Gessert, G. Wayne Moore
  • Publication number: 20140305216
    Abstract: An automated blade crawler capable of scanning a multiplicity of non-destructive inspection sensors over a surface of an airfoil-shaped body such as a blade component. The blade crawler is movable in a spanwise direction, thereby enabling a sensor array to inspect the surface area on one or both sides of the blade component in one pass. The sensors concurrently output scan imaging data which is multiplexed, the multiplexed being transmitted (via an electrical cable or wirelessly) to data collection and display hardware at an operations control center.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: The Boeing Company
    Inventors: Joseph L. Hafenrichter, Gary E. Georgeson, William Joseph Tapia, Michael D. Fogarty
  • Publication number: 20140305217
    Abstract: A mechanism for adjusting the orientation of an end effector (e.g., a non-destructive inspection sensor) during movement over a contoured surface, comprising: (1) a pneumatic or spring-loaded plunger shaft that facilitates positioning of an end effector onto a highly contoured surface by allowing a wide range of vertical motion; (2) a rocker pivotably coupled to a distal end of the plunger shaft, the rocker being pivotable about a horizontal axis to allow a pair of follower wheels coupled to distal ends of the rocker arms to follow the contoured surface and keep the end effector oriented correctly relative to the surface without tipping over; and (3) a hozzle (i.e., an end effector holder) attached to the rocker for rotation therewith, the end effector being coupled to the hozzle by an elastomeric gasket or a plurality of springs which allow the orientation of the end effector relative to the hozzle to change in response to contact forces.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: The Boeing Company
    Inventors: William Joseph Tapia, Michael D. Fogarty, Joseph L. Hafenrichter, Gary E. Georgeson
  • Patent number: 8850894
    Abstract: A device and a method for ultrasonic testing by means of a local immersion technique of a stringer component section of a flat component are provided. The device includes a test head assembly mounted as moving floatingly by a holding device in the Y-direction longitudinally. The test head assembly includes: a test head that can be connected to an automatically actuated handling device and that can be moved by the handling device along the stringer; a test head holder; and a counter-holder coupled with the test head holder by an actuation element, wherein the actuation element is configured to steer the test head holder and the counter-holder from a closed position to an open position, the test head holder and the counter-holder being mounted floatingly along a guiding rail running in the X-direction transversely to the stringer, and fit, in a force-loaded manner, to each side surface of the stringer.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 7, 2014
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: Walter De Odorico, Roman Koch
  • Patent number: 8844360
    Abstract: A method for checking a mechanical integrity of at least two stabilizing elements includes providing the at least two stabilizing elements that mechanically interconnect blade airfoils of rotor blades of a turbine in a circumferential direction of the turbine in an installed state of the turbine. The at least two stabilizing elements are adjacent to one another and inter-engage to form an engagement section having a material volume of the at least two stabilizing elements in the engagement section. The material volume of the at least two stabilizing elements is scanned, in an automated manner using ultrasound, so as to determine whether cracks are present. The scanning is performed from an outside of the at least two stabilizing elements.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: September 30, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: James Knowles, Peter Schott, Pascal Maibach
  • Publication number: 20140260627
    Abstract: A flaw detection system includes a CMM having a base and one or more transfer members, one or more articulation members connecting the one or more transfer members to the base, and a flaw detection sensor at a distal end, the CMM being configured to measure a location of the flaw detection sensor, and a processor configured to correlate the location of the flaw detection sensor as measured by the CMM with data detected by the flaw detection sensor.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Paul Ferrari, Hyun Kwon Jung, Hogar Tait
  • Patent number: 8830116
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Patent number: 8813567
    Abstract: An inspection scanner [1000] is described that has a low profile construction designed to fit into tight spaces and inspect structures [10] such as weld joints [13]. Wheel frame assemblies [1100, 1200] carry a probe holder assembly [1110] with an ultrasonic (US) array [1400] that emits US beams through the structure [10] and receives reflected sound waves. The probe holder assembly [1110] extends and US beam is angled away to inspect in tight locations. The wheel frame assemblies [1100, 1200] roll on wheels [1140, 1240] that drive an encoder [1250]. Encoder [1250] provides the specific locations for the received sound waves with respect to the weld. The locations and received sound waves are used to reconstruct a signal showing imperfections inside of structure [10]. The wheels [1140, 1240] may be magnetic to hold it to the structure [10] being inspected. A brake system [1600] may be employed to hold the inspection scanner [1000] at a given location.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 26, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Jacques L. Brignac
  • Patent number: 8776625
    Abstract: Disclosed herein is a sonic resonator system and a method of using the system which is useful in therapeutic, cosmetic or aesthetic, diagnostic, exploratory and other medical procedures, particularly where a relatively non-invasive procedure is needed. The sonic resonator system and its method of use provide a controllable high intensity sonic impulse, which may be in the form of a compression or rarefaction wave applied to a given target tissue or anatomical structure, to cause a significant therapeutic or other physiological effect.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: July 15, 2014
    Assignee: Focus-In-Time, LLC
    Inventors: Warren Questo, Claudio Zanelli, Carl W. Hennige, Jason R. Wetsel
  • Patent number: 8770029
    Abstract: A method for ultrasonic testing of an object, the method comprising ultrasonic scanning of a plurality of scan regions of the object; converting ultrasonic echoes of the ultrasonic scanning into a plurality of electrical signals; gating the electrical signals to provide gated signals; and wherein different gating times are used for the electrical signals.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 8, 2014
    Assignee: General Electric Company
    Inventors: Stephan Falter, Roman Koch
  • Publication number: 20140116143
    Abstract: A single channel scanning acoustic microscope that increases the throughput of the acoustic imaging system by connecting a multi-transducer assembly in parallel to a single channel electronic circuit. The single channel scanning acoustic microscope includes multiple transducers configured to generate a time delay for individual ultrasonic waves generated by each transducer, wherein a pulse generator simultaneously sends a pulse signal to the multi-transducer assembly.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 1, 2014
    Applicant: Sonoscan, Inc.
    Inventors: Igor N. Komsky, Lawrence W. Kessler
  • Publication number: 20140083192
    Abstract: The present application relates to a non-destructive testing system. The non-destructive testing system may include an ultrasonic probe and a hand-held display in communication with the ultrasonic probe. The hand-held display may be configured to display C-scan images or S-scan images.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: York Oberdoerfer, Weiwei Zhang
  • Patent number: 8678121
    Abstract: A system comprising a tractor vehicle, at least one trailer vehicle and a skin between and in contact with the tractor and trailer vehicles. One of the vehicles is disposed in a non-inverted position above the skin and the other is inverted and below the skin. The trailer vehicle comprises one or more magnets, while the tractor vehicle comprises one or more magnets magnetically coupled to each opposing magnet on the trailer vehicle. The vehicles may have mutually opposing permanent magnets in one-to-one relationship. Alternatively, each permanent magnet on the trailer vehicle could be opposed by one or more electro-permanent magnets on the tractor vehicle. The system further comprises means for maintaining the magnetic attraction force within a range as the vehicles move along a portion of the skin having a varying thickness.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: March 25, 2014
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright
  • Patent number: 8679022
    Abstract: An ultrasonic sensor has two or more ultrasonic arrays disposed on a probe surface, and a delay control unit that controls a transmission angle of ultrasonic waves transmitted from the ultrasonic arrays. The ultrasonic arrays have a linear array structure in which a plurality of ultrasonic elements are arranged in a linear scanning direction, and the delay control unit controls the timing for transmitting ultrasonic waves from the ultrasonic elements and controls the transmission angle of the ultrasonic waves transmitted from the ultrasonic arrays. Two of the ultrasonic arrays have linear scanning directions that are different from each other and are arranged in positions that are spaced apart from each other.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Jiro Tsuruno
  • Patent number: 8656783
    Abstract: The disclosed embodiments include a method, system, and device for conducting ultrasound interrogation of a medium. The novel method includes transmitting a non-beamformed or beamformed ultrasound wave into the medium, receiving more than one echoed ultrasound wave from the medium, and converting the received echoed ultrasound wave into digital data. The novel method may further transmit the digital data. In some embodiments, the transmitting may be wireless. The novel device may include transducer elements, an analog-to-digital converter in communication with the transducer elements, and a transmitter in communication with the analog-to-digital converter. The transducers may operate to convert a first electrical energy into an ultrasound wave. The first electrical energy may or may not be beamformed. The transducers also may convert an echoed ultrasound wave into a second electrical energy.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: February 25, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Kevin S. Randall, Jodi Schwartz Klessel, Anthony P. Lannutti, Joseph A. Urbano, Raymond F. Weymer, Jr.
  • Publication number: 20140020469
    Abstract: Appliances and methods are disclosed for testing operation of an acoustic device that generates beams of acoustic energy. An imaging array generates electrical signals in response to impinging receipt of acoustic energy. An acoustic-energy direction system is disposed to focus acoustic energy onto the imaging array. A controller is electrically coupled with the acoustic device and with the imaging array. The controller has instructions to generate an image on a display from electrical signals received by the controller from the imaging array. The electrical signals are received by the controller in response to generation of a beam of acoustic energy by the acoustic device. The beam of acoustic energy is directed towards the acoustic-energy direction system. The image provides a representation of the generated beam of acoustic energy.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 23, 2014
    Applicant: ACERTARA ACOUSTIC LABORATORIES LLC
    Inventors: James Gessert, G. Wayne Moore
  • Publication number: 20140007689
    Abstract: A scanner comprises a scanning array mounted within a rotatable assembly having a first wheel on a first side, a second wheel on a second side and a membrane forming a drum around the array wherein a load path is provided between the wheels to divert load from the membrane such that it can be made thinner.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 9, 2014
    Applicant: Airbus Operations Limited
    Inventors: Andrew Bond-Thorley, Richard Freemantle, Arthur Omahony, Luis Rivera, Alun Williams, Andrew Philpot, Neil Hankinson
  • Publication number: 20140005840
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: THE BOEING COMPANY
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer
  • Patent number: 8607634
    Abstract: A transducer is used to send an ultrasound pulse toward a stone and to receive ultrasound reflections from the stone. The recorded time between a pulse that is reflected from the proximal surface and a pulse that is reflected either from the distal surface of the stone or from a surface supporting the stone is used to calculate the stone size. The size of the stone is a function of the time between the two pulses and the speed of sound through the stone (or through the surrounding fluid if the second pulse was reflected by the surface supporting the stone). This technique is equally applicable to measure the size of other in vivo objects, including soft tissue masses, cysts, uterine fibroids, tumors, and polyps.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 17, 2013
    Assignees: University of Washington, University of British Columbia
    Inventors: Michael Bailey, Joel Teichman, Mathew Sorensen
  • Publication number: 20130298682
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: THE BOEING COMPANY
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Publication number: 20130304251
    Abstract: A computer-controlled robotic platform with a collapsible lifting arm that positions a non-destructive inspection (NDI) sensor for scanning inside tunnel regions of a composite structure such as an integrally stiffened wing box. The lifting arm of a modified scissor lift mechanism can be collapsed to a very low height to pass through narrow sections of the integrally stiffened wing box, and also extended by more than a factor of three to reach the maximum height of the wing box tunnels. The system performs a vertical position sensing and control process that uses inverse kinematics to enable position control using data from a standard rotational encoder on the motor to determine vertical position. The system produces simulated encoder pulses that represent unit vertical displacements of a distal portion of a modified scissor lift mechanism using a forward kinematics equation in which the rotation angle of a lead screw is an input variable.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Jeffry J. Garvey, James C. Kennedy, James J. Troy
  • Patent number: 8578779
    Abstract: An ultrasound scanner (100) which has a plurality of ultrasound transducers (104) directed normal to a scanning surface (106) to scan a workpiece (114), the scanner (100) comprising a couplant filled latex rubber sheath (106) shaped to the surface of a workpiece (114).
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: November 12, 2013
    Assignee: Airbus Operations Limited
    Inventor: Andrew Bond-Thorley
  • Patent number: 8539838
    Abstract: An ultrasonic diagnostic imaging system produces an extended field of view (EFOV) image. A 3D imaging probe is moved along the skin of a patient above the anatomy which is to be included in the EFOV image. As the probe is moved, images are acquired from a plurality of differently oriented image planes such as a sagittal plane and a transverse plane. As the probe is moved the image data of successive planes of one of the orientations is compared to estimate the motion of the probe. These motion estimates are used to position a succession of images acquired in one of the orientations accurately with respect to each other in an EFOV display format. The display format may be either a 2D EFOV image or a 3D EFOV image.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: September 24, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Yangmo Yoo, James Jago, Jing-Ming Jong, Robert Randall Entrekin, Martin Anderson, Lars Jonas Olsson
  • Publication number: 20130220018
    Abstract: Systems and methods for inspecting a hole in a laminated structure. An exemplary system includes a transducer assembly configured to direct sound waves substantially parallel to a surface of the hole. The system further includes a controller that collects A-scan data for multiple rotational positions of the transducer assembly as the transducer assembly is rotated within the hole. The controller processes the A-scan data for the multiple rotational positions of the transducer assembly to generate B-scan data, and displays the B-scan data.
    Type: Application
    Filed: April 16, 2013
    Publication date: August 29, 2013
    Applicant: THE BOEING COMPANY
    Inventor: THE BOEING COMPANY
  • Patent number: 8490492
    Abstract: The invention relates to a process for the destruction-free testing of metallic pipes, in particular seamlessly produced steel pipes, in which method the entire length of the pipe is scanned following the circumference precisely and in this case, in addition to the wall thickness (WD) and the external diameter (Da) being determined, the inner and outer surfaces of the pipe are examined for faults, the faults determined in this process are compared with a predefined permissible reference fault depth RFT (RFT=fault threshold of×% of the nominal wall thickness), the pipes are sent to reworking means if the fault threshold is exceeded, and a requisite minimum wall thickness (WDmin) has to be present in the reworked region after the processing has been carried out.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 23, 2013
    Assignee: V & M Deutschland GmbH
    Inventors: Andreas Groos, Stefan Nitsche
  • Patent number: 8459120
    Abstract: A method and apparatus for ultrasonic inspection of one or more parts, in which one or more parts to be inspected are transferred from a parts carrier to a scan nest that is located in the scanning station. The parts are restrained in the scan nest and then scanned. A pick and place mechanism is used to transfer the parts to be inspected between the parts carrier the scan nest. The inspection path may be altered if a missing part is detected. In one embodiment, a first gas flow port located on the pick and place mechanism or on the transducer holder is used to blow ultrasonic coupling fluid from the front surface of the parts in the scan nest after they have been scanned. In a further embodiment, two or more scan nests are used for parallel operation.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Sonix, Inc.
    Inventors: Paul Ivan John Keeton, Sushma Kalavagunta
  • Patent number: 8453508
    Abstract: A computer with a proper program generates a phased array sequence of signals. In a pulser with delays, the signals are fed through a multiplexor into a water wedge that is attached to a valve being tested. For a sequential operation of the valves from the open to the closed position, ultrasonic signals are transmitted through the fluid contained in the valve and reflected back through piezo-electric crystals to the multiplexor. By summation and merger of the signals, an image can be developed of the operation of the valve to determine if the valve is operating properly. By use of the water wedge, the top plate of the valve appears to disappear because the water wedge has the same refractive angle as the fluid contained in the valve.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 4, 2013
    Assignee: IHI Southwest Technologies, Inc.
    Inventors: Jesse R. Delgado, Hector Diaz
  • Publication number: 20130126738
    Abstract: For examining objects, in particular for inspecting persons for suspicious items, devices having a scanning system for scanning the object and having an evaluating system are known. An optical marking system is provided, which indicates the position of an item classified as suspicious on the object itself or in a mirror image of the object by means of visible light.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 23, 2013
    Applicant: SMITHS HEIMANN GMBH
    Inventor: SMITHS HEIMANN GMBH
  • Patent number: 8408062
    Abstract: A scanning device (36) is useful for scanning a body, especially a stud (10), from a bore (13) which extends through the body or stud (10) and is accessible from the outside. The scanning device (36) includes a probe (15) which is fastened on a cylindrical rod (14) and can be inserted into the bore (13) for scanning the body or stud (10), which probe, by displacing the rod (14) in its longitudinal direction is longitudinally displaceable in the bore (13), and by rotating the rod (14) around its cylinder axis (34) is rotatable around the bore axis. A compact and light construction, and flexible applicability, are achieved by a compact, controllable drive unit (20), through which the rod (14) extends and which longitudinally displaces and/or rotates the rod (14) depending upon selection, for displacing and rotating the rod (14).
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 2, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventor: Markus Wiesendanger
  • Patent number: 8369990
    Abstract: A robot platform is provided, which is intended in particular for remotely controlled and/or autonomous inspection of technical facilities, in particular in power stations, and comprises at least a drive mechanism configured to move the robot platform, an inspection device configured to inspect the technical facility and a communication device for exchanging measurement and/or control data. Particular flexibility in use and extended areas of use are achieved in that the robot platform is modular and the communication device operates in accordance with a uniform standard.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 5, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Wolfgang Zesch, Markus Wiesendanger
  • Patent number: 8347724
    Abstract: An inspection scanner [1000] is described that has a low profile construction designed to fit into tight spaces and inspect structures [10] such as weld joints [13]. Wheel frame assemblies [1100, 1200] carry a probe holder assembly [1110] with an ultrasonic (US) array [1400] that emits US beams through the structure [10] and receives reflected sound waves. The probe holder assembly [1110] extends and US beam is angled away to inspect in tight locations. The wheel frame assemblies [1100, 1200] roll on wheels [1140, 1240] that drive an encoder [1250]. Encoder [1250] provides the specific locations for the received sound waves with respect to the weld. The locations and received sound waves are used to reconstruct a signal showing imperfections inside of structure [10]. The wheels [1140, 1240] may be magnetic to hold it to the structure [10] being inspected. A brake system [1600] may be employed to hold the inspection scanner [1000] at a given location.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: January 8, 2013
    Assignee: ALSTOM Technology Ltd
    Inventor: Jacques L. Brignac
  • Publication number: 20120325004
    Abstract: An apparatus for pipeline inspection is provided. The apparatus comprising a body comprising a longitudinal axis a sensor unit in association with the body, wherein the sensor unit comprises an array of ultrasonic sensors configured to inspect a pipe wall and a skid comprising an outer surface configured to run adjacent to, or in contact with, the pipe wall, wherein the array of ultrasonic sensors are arranged at a stand off from the outer surface of the skid, and a mechanism configured to bias the outer surface of the skid into contact with the pipe wall, and to move the sensor unit between a first radial position and a second radial position in response to changes in pipe diameter.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 27, 2012
    Inventors: William HERRON, Robert PALMA
  • Publication number: 20120304773
    Abstract: A method and apparatus to detect a defect in a three-dimensional integrated structure by ultrasound scanning and to non-destructively detect the presence of a void that can occur in a process in a through silicon via (TSV) arranged in a board, such as a silicon wafer. To avoid measurement by ultrasound scanning over a board surface from being impeded by an object, such as a (solder) bump, scattering ultrasound, one or more TSVs belonging to a test element group (TEG) are selected from among a plurality of TSVs such that physical obstruction in the vicinity of the TEG.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Applicant: International Business Machines Corporation
    Inventors: Akihiro Horibe, Fumiaki Yamada