Having Separate Sonic Transmitter And Receiver Patents (Class 73/624)
  • Patent number: 9382820
    Abstract: A method for producing a hollow valve of an internal combustion engine may include providing a hollow valve stem, a valve cone, and a valve bottom; pushing the valve cone over the valve stem via a press fit, wherein the valve cone includes an outer surface transitioning to the valve stem to define a testing surface; and welding the valve cone to the valve stem via at least one of a laser beam and an electron beam, wherein the welding occurs such that no melting of the outer surface in the region of the testing surface of the valve cone occurs.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: July 5, 2016
    Assignee: Mahle International GmbH
    Inventors: Peter Kroos, Christoph Luven, Alexander Mueller, Alexander Puck
  • Patent number: 9329155
    Abstract: A technique is provided for determining an orientation of a defect present within a mechanical component using at least one ultrasonic head that applies ultrasonic signals to the mechanical component starting from various measurement points. Echo ultrasonic signals reflected by a point to be analyzed present within the component back to the measurement points are received by the same or a different ultrasonic head. A data processing unit analyzes the received echo ultrasonic signals as a function of a sound emission direction between each measurement ping and the point to be analyzed for determining the orientation of the defect. A distance between the measurement point and the point to be analyzed is calculated for every measurement point as a function of a signal propagation time between the point in time of emitting the ultrasonic signal and the point in time of receiving the echo ultrasonic signal reflected by a defect.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 3, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Matthias Goldammer, Werner Heinrich, Hubert Mooshofer
  • Patent number: 9213019
    Abstract: A method and apparatus for determining a dimension of a defect in a component is disclosed. A linear array of acoustic transducers is used to propagate a focused ultrasonic beam along a first focal line. The focused ultrasonic beam is moved across the defect in a first array direction substantially perpendicular to the first focal line. The dimension of the defect is determined from at least one reflection of the focused ultrasonic beam from the defect as the focused ultrasonic beam moves across the defect.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: December 15, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Robert Vincent Falsetti, Gary Austin Lamberton
  • Patent number: 9161768
    Abstract: A shock wave applicator includes a reflector and a shock wave generator disposed in the reflector at a first focal point. The reflector is at least a portion of an ellipsoidal shape having a long and small axis with the first focal point and a second focal point on a long axis, and the reflector terminates at an edge defining a membrane covered-aperture on plane intersecting the small axis and coincident with the second focal point.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 20, 2015
    Assignee: Sanuwave, Inc.
    Inventors: Iulian Cioanta, Christopher M. Cashman
  • Patent number: 9032799
    Abstract: A nondestructive inspection apparatus according to the present invention has a transmission-side probe configured to emit a first ultrasonic wave toward a test-target fluid, a plate through which a Lamb wave generated by the first ultrasonic wave is propagated when the first ultrasonic wave is propagated, and a reception-side probe configured to measure intensity of a second ultrasonic wave which is emitted from the plate and propagates through the test-target fluid. At this time, the nondestructive inspection apparatus can inspect the test-target fluid without bringing the transmission-side probe configured to emit the first ultrasonic wave and the reception-side probe configured to measure the second ultrasonic wave into contact with the test-target fluid.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 19, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hidetaka Hattori, Hideki Horizono, Masayuki Kanemasu, Shigeyuki Matsubara, Kunihiko Shinoda, Hirotoshi Hujigaki, Susumu Ryuuou
  • Patent number: 8827908
    Abstract: An apparatus for ultrasound imaging of a body, particularly a breast of a patient, includes ultrasonic pulse-emitting and pulse-receiving units, disposed in facing relationship at a predetermined distance from each other on opposite sides of a compartment for receiving the body, ultrasonic pulses emitted by the emitting unit and received by the receiving unit after passing through the body being converted into transmit signals; and an ultrasonic pulse emitting and receiving unit disposed to define a scan plane substantially perpendicular to the coronal plane of the patient and having one or more electro-acoustic transducers, which emit ultrasonic pulses into the body and receive echoes generated by the anatomic structures of the body, the echoes being converted into reflection signals. An acoustic impedance adaptation medium, particularly a liquid, preferably water, is interposed between the emitting unit and/or the receiving unit and/or the emitting and receiving unit and the breast.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 9, 2014
    Assignee: Esaote S.p.A.
    Inventor: Paolo Pellegretti
  • Patent number: 8590381
    Abstract: Equipment of the invention provides ultrasonic flaw detection equipment using a volume focusing flaw detection method, the ultrasonic flaw detection equipment described below. That is, this equipment performs internal flaw detection of a material being tested, the material having a virtually circular cross-sectional shape, and transducers 1 . . . 1 are arranged in an arc along a circle exhibited by the material being tested. Array probes 10 . . . 10 are disposed so as to surround the material being tested. An exciting unit enables flaw detection of the material being tested to be performed by vertical and oblique flaw detection methods.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 26, 2013
    Assignee: Krautkramer Japan, Co., Ltd.
    Inventors: Junichi Murai, Dominique Braconnier
  • Patent number: 8584526
    Abstract: Equipment of the invention uses a volume focusing flaw detection method. In a sectional view of a material m being tested, a plurality of transducers 1 . . . 1 of one of array probes 10 are arranged along one side of a rectangular shape of the material being tested, and a plurality of transducers 1 . . . 1 of the other of the array probes 10 are arranged along one of sides adjacent to the one side.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: November 19, 2013
    Assignee: Krautkramer Japan Co., Ltd.
    Inventors: Junichi Murai, Dominique Braconnier
  • Patent number: 8358126
    Abstract: A method of testing for defects in the bottom of an above ground storage tank, the tank bottom having a lip extending outwardly from the tank wall around the circumference of the tank. A special magnetostrictive sensor is designed to be placed on this lip. The sensor is placed over a strip of magnetostrictive material, which generally conforms in length and width to the bottom of the probe, with a couplant being applied between the strip and the lip surface. The sensor is then operated in pulse echo mode to receive signals from defects in the bottom of the tank. It is incrementally moved around the circumference of the tank.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 22, 2013
    Assignee: Southwest Research Institute
    Inventors: Glenn M Light, Alan R Puchot, Adam C Cobb, Erika C Laiche
  • Publication number: 20120227500
    Abstract: A method of generating an axial shear wave in a formation surrounding a wellbore comprising urging a clamp pad into contact with a wall of the wellbore, and applying an axial force to the clamp pad to impart a shear force into the wall of the wellbore to generate a shear wave in the formation.
    Type: Application
    Filed: August 17, 2010
    Publication date: September 13, 2012
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jennifer Market, Paul F. Rodney
  • Patent number: 8225668
    Abstract: An ultrasonic wave propagating method capable of propagating plate waves between a probe and a test piece despite variations in the thickness or the surface angle of a test piece, and an ultrasonic propagating device and an ultrasonic testing device using this method. Ultrasonic waves are propagated between a probe (20) for transmitting or receiving ultrasonic waves and a test piece (100) for propagating plate waves. When propagating ultrasonic waves, a probe that can set an ultrasonic wave incident angle from the probe (20) to the test piece (100) and/or an ultrasonic wave receivable angle from the test piece to the probe in a plurality of states is used. A focal point type probe may be used as the above probe (20).
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 24, 2012
    Assignees: Independent Administrative Institution Japan Aerospace Exploration Agency, Non-Destructive Inspection Company Limited
    Inventors: Hideki Yabushita, Tatsuyuki Nagai, Shigeyuki Matsubara, Norio Nemoto, Hiroshi Miyamoto
  • Patent number: 8150652
    Abstract: Disclosed is a method and system which efficiently and accurately identifies an acoustic wedge by as simple as pressing a button to execute a command for a phased array inspection system, once the wedge is engaged with the system. It is based on the approach to use the time of flight that ultrasonic signals travel in the wedge to measure and calculate critical parameters, such as the wedge acoustic velocity, the wedge or incident angle and the height of the first element of the associated phased array probe above the base of the wedge.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 3, 2012
    Assignee: Olympus NDT
    Inventors: Kirk M. Rager, Jason Habermehl, Fabrice Cancre
  • Publication number: 20110320143
    Abstract: An ultrasonic probe (10) that scans a subject with beams of high frequency sound. The probe (10) includes a transducer (26) to produce high frequency sound waves, a means to steer the sound waves in the proper direction, a printed circuit board (22) with a non-volatile memory (38), a micro electrico-mechanical accelerometer integrated circuit (32) and an outlet connector (19). The accelerometer (32) is configured to detect the movement of the probe (10) in from two to three axes when the probe (10) is rotated or moved in a linear direction to allow the probe (10) to detect images from more than one plane.
    Type: Application
    Filed: March 22, 2010
    Publication date: December 29, 2011
    Inventor: Andrew David Hopkins
  • Patent number: 8037763
    Abstract: A rail section weld inspection device [1000] is described for inspecting a rail [10] for internal defects [19,21]. A central ultrasonic (US) probe [1330] transmits at least one US beam [B] through the rail [10] and receiving a reflected signal. At least one angled US probe [1310] transmits at least one US beam [A1-A5] through the rail [10] at an oblique angle at least partially covering the same region as the central probe [1330]. An encoder identifies the location of the US probes [1330] and [1310] along the rail [10] and pairs the locations of the probes with the signals received. The Calculation device [1500] receives the signals from the US probes and uses their different views to create an image of the flaws within the rail [10].
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 18, 2011
    Assignee: ALSTOM Technology Ltd
    Inventors: Jacques L. Brignac, Robert E. Lucas
  • Patent number: 7913563
    Abstract: A transducer for generating acoustic waves more particularly for generating compression waves, comprising an array of transmitter elements and an array of receiver elements, at least one wedge for the array of transmitter elements and the array of receiver elements and preferably an acoustical barrier separating the array of transmitter elements and the array of receiver elements. The pitch of the transmitter array varies along the length of the transmitter array.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: March 29, 2011
    Assignee: Röntgen Technische Dienst B.V.
    Inventors: Frederik Hendrik Dijkstra, Khalid Chougrani, Niels Pörtzgen, Cezar Justino Buque
  • Patent number: 7913562
    Abstract: An economical, flexible, magnetostrictive sensor for use on planar and/or curved structural surfaces, for guided-wave volumetric inspection of the structure. The flexible plate MsS probe includes a flexible strip of magnetostrictive material that is adhered to the base of a flat, flexible, conductor coil assembly. The conductor coil assembly has a core that is composed of a thin flexible strip of metal, a layer of an elastomeric material, and a thin permanent magnet circuit. The flexible core is surrounded by a flat flexible cable (FFC) that is folded and looped over the layers of the core. The exposed conductors at the ends of the FFC are shifted from each other by one conductor and joined so that the parallel conductors in the FFC form a flat, flexible, continuous coil. The entire probe assembly may be bent to match the curved contours of the surface of the structure under investigation.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 29, 2011
    Assignee: Southwest Research Institute
    Inventors: Hegeon Kwun, Albert J. Parvin, Ronald H. Peterson
  • Publication number: 20100307250
    Abstract: A rail section weld inspection device [1000] is described for inspecting a rail [10] for internal defects [19,21]. A central ultrasonic (US) probe [1330] transmits at least one US beam [B] through the rail [10] and receiving a reflected signal. At least one angled US probe [1310] transmits at least one US beam [A1-A5] through the rail [10] at an oblique angle at least partially covering the same region as the central probe [1330]. An encoder identifies the location of the US probes [1330] and [1310] along the rail [10] and pairs the locations of the probes with the signals received. The Calculation device [1500] receives the signals from the US probes and uses their different views to create an image of the flaws within the rail [10].
    Type: Application
    Filed: June 3, 2009
    Publication date: December 9, 2010
    Applicant: ALSTOM Technology Ltd
    Inventors: Jacques L. Brignac, Robert E. Lucas
  • Patent number: 7823451
    Abstract: Ultrasonic testing on a part includes scanning the part while performing pulse echo and through transmission ultrasonic testing on the part; converting pulse echo data into time of flight (TOF) and amplitude channels, and converting through transmission data into a data representation that identifies porosity. The testing further includes analyzing the pulse echo TOF to identify locations of any anomalies in the part, and using loss of back (LOB) at each of the identified locations to discriminate low porosity from other anomalies.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: November 2, 2010
    Assignee: The Boeing Company
    Inventor: Dennis P. Sarr
  • Patent number: 7819010
    Abstract: A device for destruction-free testing of ferromagnetic component walls with respect to elongate defects has a sending transducer that excites ultrasound waves in a wall area of a ferromagnetic component wall magnetized in a predetermined direction of magnetization. The ultrasound waves propagate on a path oriented by the sending transducer. A receiving transducer receives the ultrasound waves at a spacing from the sending transducer. The configuration of the sending transducer and a high frequency emitted by the sending transducer, which high frequency is to be determined based on a thickness of the ferromagnetic component wall, are selected so as to effect excitation of horizontal shear waves of higher order. The path orientation is selected at a slant angle to the predetermined direction of magnetization. The receiving transducer is positioned lateral to the path and is oriented toward a predetermined testing area of the wall section in the path.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 26, 2010
    Assignee: Rosen Swiss AG
    Inventors: George A. Alers, Ronald B. Alers, John J. Boyle, Thomas Beuker
  • Patent number: 7779693
    Abstract: A method for nondestructive testing of the pipes for detecting surface flaws is disclosed. With of the method, flaws can be detected and analyzed in near-real-time while the pipe is produced. The data obtained by ultrasound sensors are digitized in a time window following a trigger pulse, and the digitized data are processed in a digital processor, for example a DSP, using wavelet transforms. The evaluated quantity is compared with a reference value, wherein a determined flaw-based signal can be uniquely associated with the flaw located on the pipe surface.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 24, 2010
    Assignee: V & M Deutschland GmbH
    Inventors: Thomas Orth, Stefan Nitsche, Till Schmitte
  • Patent number: 7779694
    Abstract: Disclosed are an ultrasonic testing system and an ultrasonic testing technique for a pipe member capable of detecting minute flaws of several hundreds of microns or less located at positions in the wall thickness inside portion of a welded portion of a seam-welded pipe and the like without omission and further easily setting optimum conditions when the size of the pipe is changed. A transmitting beam, which is focused to the welded portion at an oblique angle, is transmitted using a part of the group of transducer elements of a linear array probe as a group of transducer elements for transmission, a receiving beam, which is focused at the focusing position of the transmitting beam at an oblique angle, is formed using the transducer elements of a portion different from the above group of transducer elements for transmission as a group of transducer elements for reception, and a flaw echo is received from the welded portion.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: August 24, 2010
    Assignee: JFE Steel Corporation
    Inventor: Yukinori Iizuka
  • Patent number: 7751989
    Abstract: A system for inspecting a pipeline having at least two transducers divided into segments, the segments each containing a number of sensors, wherein a maximum number of segments is equal to a number of transducers, an arrangement configured to send, receive and store signals, wherein the arrangement has a number of pulser channels and a number of receiver channels, wherein the arrangement has at least one multiplexing arrangement for multiplexing signals from the arrangement; and a time delay arrangement connected to the arrangement configured to send, receive and store signals. The system may also provide for focal point skewing, near real time coating compensation for proper excitation mode, adjusted time delay capability and the ability to focus beyond changes in geometry.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 6, 2010
    Assignee: FBS, Inc.
    Inventors: Steven E. Owens, Joseph L. Rose, Jason K. Van Velsor, Li Zhang, Michael J. Avioli
  • Patent number: 7710124
    Abstract: A method and apparatus for detecting a predetermined condition of a panel by transmitting a cyclically-repeating energy wave through the material (41) of the panel from first location (43a) to a second location (43b); measuring the transit time of the cyclically-repeating energy wave from the first location to the second location; and utilizing the measured transit time to detect the predetermined condition including the force on, the temperature of, a deformation in, the fatigue condition of, or a fracture in, structural panel, the presence of a force applied to, water on, or breakage in of the panel.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: May 4, 2010
    Assignee: Nexense Ltd.
    Inventors: Arie Ariav, Vladimir Ravitch, David Nitsan
  • Patent number: 7703327
    Abstract: An apparatus and method for inspecting a structure are provided which include receiving probes and area transducers disposed proximate opposite surfaces of a structure under inspection. An area transducer uniformly emits ultrasonic signals over an area which may be scanned by a receiving probe without corresponding movement of the area transducer. An area transducer may be moved over the surface of the structure or repositioned to provide additional inspection area for the receiving probe to scan, including to provide for continuous inspection. Multiple area transducers may be used in sequence to provide for continuous inspection. Multiple receiving probes may be used, independently or collectively as an array, to increase inspection of a structure, taking advantage of the large area of ultrasonic signals emitted by one or more area transducers.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: April 27, 2010
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Michael D. Fogarty, Richard Bossi
  • Patent number: 7600442
    Abstract: A flaw Z with a long probing length inside a probing target is allowed to be probed. The waves other than the probing target waves are removed or reduced, so that the individual difference in the sizing result due to the ability of the measuring personnel is eliminated to improve the precision of the probing. A transmission probe 31 and a receiving probe 32 for transmitting and receiving a wide band ultrasonic wave are included. Each time the positions of the probes 31 and 32 are moved, a received wave Gj(t) is obtained. From a spectrum Fj(f) corresponding to the received wave Gj(t), a narrowband spectrum FAj(f) is extracted. A component wave GAj(t) corresponding to the narrow band spectrum FAj(f) is obtained by inverse Fourier transformation. The component wave GAj(t) is provided for a comparative display using a predetermined sizing coefficient.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: October 13, 2009
    Assignees: H&B System Co., Ltd., The Kansai Electric Power Co., Inc., Kozo Keikaku Engineering Inc.
    Inventors: Masayuki Hirose, Masashi Kameyama, Nobuki Dohi, Mitsuo Okumura, Hong Zhang
  • Patent number: 7484413
    Abstract: There is provided a non-destructive inspection device having an actuating portion and at least one inspecting portion. The inspecting portion(s) are magnetically coupled to the actuating portion so that the inspecting portion(s) may be moved into limited-access areas to inspect features of a structure. The inspecting portion(s) each include at least one inspection sensor that transmits and/or receives signals that, when processed, indicate defects in the features of the structure. The inspection sensor of the inspecting portion is moveable relative to the housing of the inspecting portion to enable inspection of relatively larger areas of the structure being inspected. The inspection sensors may be moved, relative to the housing of the inspecting portion, manually and/or automatically.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: February 3, 2009
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Michael D. Fogarty
  • Patent number: 7480574
    Abstract: The invention is directed to a system and method for detecting defects in a manufactured object. These defects may include flaws, delaminations, voids, fractures, fissures, or cracks, among others. The system utilizes an ultrasound measurement system, a signal analyzer and an expected result. The signal analyzer compares the signal from the measurement system to the expected result. The analysis may detect a defect or measure an attribute of the manufactured object. Further, the analysis may be displayed or represented. In addition, the expected result may be generated from a model such as a wave propagation model. One embodiment of the invention is a laser ultrasound detection system in which a laser is used to generate an ultrasonic signal. The signal analyzer compares the measured ultrasonic signal to an expected result. This expected result is generated from a wave propagation model. The analysis is then displayed on a monitor.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 20, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Marc Dubois, Peter W. Lorraine, Robert J. Filkins
  • Patent number: 7448270
    Abstract: Ultrasonic systems and methods for inspecting a channel member through a skin or panel are provided. The channel member may be a stiffener for an aircraft component such as a trapezoidal stringer attached to a skin of an aircraft fuselage. Transducers of the system are disposed on a side of the skin opposite the channel member. Ultrasonic waves generated on a first side of a skin propagate through the skin, across a channel member attached to a second side of the skin, and through the skin again to be received on the first side of the skin. Times of flight are measured for the collection of time-gated data. A two dimensional C-scan is generated for identifying flaws and irregularities in a structure by way of single-side ultrasonic non-destructive inspection (NDI).
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: November 11, 2008
    Assignee: The Boeing Company
    Inventor: Jeffrey R. Kollgaard
  • Patent number: 7313959
    Abstract: Apparatus, systems, and methods for inspecting a structure are provided which use magnetically coupled probes disposed proximate opposite surfaces of a structure to locate, move, position, and hold a pulse echo ultrasonic transducer of one of the probes for non-destructive inspection, such as measuring a remote bondline thickness of a joint of a composite sandwich structure. The pulse echo ultrasonic sensor is included in a tracking probe, and the position of the tracking probe and pulse echo ultrasonic sensor are controlled by movement and positioning of a magnetically coupled driven probe in a leader-follower configuration. The tracking probe may be initially placed in a remote location using a detachable, and possibly deformable, placement rod.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: January 1, 2008
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Michael Fogarty
  • Publication number: 20070266790
    Abstract: Both a system and method for detecting the presence or absence of internal discontinuities or inhomogeneities in a fired or green ceramic honeycomb structure is provided. The system includes a membrane disposed over a surface of the honeycomb structure, at least one ultrasonic transmitter that engages the membrane and transmits ultrasonic waves into the honeycomb structure, a translation assembly connected to the ultrasonic transmitter for sliding said transmitter across said membrane in a predetermined pattern, and an ultrasonic receiver that receives a modulated response from the ultrasonic waves transmitted into the honeycomb structure. The membrane is preferably plastic sheet material, such as polyester, having a temporary adhesive on one side and a thickness that is about one-quarter of the wavelength of the ultrasonic waves in order to avoid attenuation of the modulated response.
    Type: Application
    Filed: February 21, 2007
    Publication date: November 22, 2007
    Inventors: Natarajan Gunasekaran, Zhiqiang Shi
  • Patent number: 7272529
    Abstract: A method and apparatus is provided to analyze a dual wall structure having at least one hollow core therein and having the same unknown material sound velocities in walls and in post as well. A transducer is located in at least two different positions with respect to the structure, whereby the transducer propagates an ultrasonic wave toward the dual wall structure. A portion of the ultrasonic wave is reflected back to the transducer. One wave traverses a portion of the dual wall structure that has a core filled with a medium having a known material acoustic property. A second wave traverses a portion of the post that has an unknown material sound velocity. From time of flight measurements of the above mentioned waves, the wall thickness and core shift, if any, can be determined.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 18, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Robert J. Hogan, James A. Hall, Surendra Singh
  • Patent number: 7201056
    Abstract: Provided is a device for measuring at least one parameter of an extruded flat conductor cable in a water bath that follows the extruder. The device distinguishes itself in that the flat conductor cable is guided with one of its flat sides essentially perpendicular across an ultrasonic head arranged in a water bath and that the ultrasonic head is a displaceable ultrasonic head that can be displaced crosswise to the longitudinal direction, or the ultrasonic head is a stationary ultrasonic element row that extends crosswise to the longitudinal direction of the flat conductor cable. This device allows measuring the total width of the flat conductor cable, such that different parameters can be determined.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: April 10, 2007
    Assignee: Zumbach Electronic AG
    Inventors: Erhard Bracher, Frédéric Guerne
  • Patent number: 7094989
    Abstract: A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: August 22, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Timothy R. McJunkin, John A. Johnson, Eric D. Larsen, Herschel B. Smartt
  • Patent number: 6999881
    Abstract: A method of detecting and locating noise sources each emitting respective signals Sj with j=1 to M, detection being provided by a sound wave or vibration sensors each delivering a respective time-varying electrical signal si with i in the range 1 to N, wherein the method steps include: (a) taking the time-varying electrical signals delivered by the sensors, each signal si(t) delivered by a sensor being the sum of the signals Sj emitted by the noise sources; (b) amplifying and filtering the time-varying electrical signals as taken; (c) digitizing the electrical signals; (d) calculating a functional; and (e) minimizing the functional relative to the vectors nj for j=1 to M so as to determine the directions of vector nj of the noise sources.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 14, 2006
    Assignee: Metravib R.D.S.
    Inventors: Alfred Permuy, Joël Millet
  • Patent number: 6978690
    Abstract: An apparatus for the internal inspection of pipes and tubes or the like, comprising an ultrasonic measuring head and a cable coupled to the measuring head, which cable can be coupled outside the pipe or tube to be measured to a device processing the measuring data, the apparatus being provided at its distal end but behind the measuring head, with a reel for winding the cable on and off.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: December 27, 2005
    Assignee: A. Hak Industrial Services B.V.
    Inventors: Siemen Roelof Van der Heide, Leonardus Johannes Gruitroij, Joost Martinus Hermanus Parent, Christiaan Willem Schomper
  • Patent number: 6959589
    Abstract: An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Yee Soong, Arthur G. Blackwell
  • Patent number: 6925856
    Abstract: A non-contact method for measuring viscosity and surface tension information of a liquid in a first liquid containment structure. The steps of the method include oscillating a free surface of the liquid in the liquid containment structure; detecting wave characteristics of the oscillating free surface; and analyzing the wave characteristics. The oscillating step may be performed by propagating an acoustic wave from an acoustic wave emitter, through said liquid containment structure, towards the free surface. The detecting step may be performed by delivering a series of acoustic pulses at the free surface and detecting acoustic reflections from the free surface as the oscillating free surface relaxes. The analyzing step can be performed by comparing the wave characteristics with a candidate liquid wave characteristics. Prior knowledge and behavior of the selected candidate liquid can thus be imputed to the source or sample liquid. The sample liquid can be one of photoresist, solder or a biological compound.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 9, 2005
    Assignee: EDC Biosystems, Inc.
    Inventor: Roger O. Williams
  • Patent number: 6898978
    Abstract: An apparatus for making pulsed acoustic measurements to determine particle size in a sample (1) such as a colloid. The apparatus includes two electrodes (2) between which an electric voltage is applied to the sample. The voltage is applied in short pulses. The applied voltage generates an acoustic signal, such as a sound wave (5), in the sample which is detected with a transducer (3) after the wave (5) has passed through a delay element (4). The delay element (4) is used to introduce enough of a time delay between the application of the voltage pulse and sound wave (5) reaching the transducer so that the received wave's signal can be isolated from any signal generated in the transducer (3) by the applied voltage. The delay element (4) and the transducer (3) are arranged into a geometry, or, alternatively, the delay element (4) is shaped, so that any reflections of the sound wave (5) from the sidewalls of the delay element (4) are deflected away from the transducer (3).
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: May 31, 2005
    Assignee: Colloidal Dynamics Pty Ltd.
    Inventors: Richard O'Brien, David W. Cannon
  • Patent number: 6848313
    Abstract: The invention concerns a method and a device for inspecting pipelines, in particular for detecting defects in pipelines by means of ultrasound. Towards this end, measuring sensors transmit ultrasound signals during passage through a pipeline. The signals reflected on boundary regions of a pipeline wall, e.g. surfaces or defects, are then measured and evaluated. The invention is characterized in that partial regions of the measuring sensors (virtual sensors) formed of a plurality of neighboring sensor elements irradiate ultrasound signals into the pipe wall at at least one radiation angle which is inclined with respect to the normal to the pipe wall and the signals reflected at boundary regions of the pipe wall are received by same and/or other partial regions of the respective measuring sensors, wherein defects in the pipe wall are determined by evaluation of the acoustical signals reflected by different boundary regions.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 1, 2005
    Assignee: PII Pipetronix GmbH
    Inventors: Wolfgang Krieg, Achim Hugger
  • Patent number: 6826490
    Abstract: A transducer calibration apparatus and method for transforming both previously established transducer parameters for a transducer calibrated to a first target object material and measured transducer parameters for the transducer monitoring a second different target object material into a calibration parameter and transforming the output of the transducer and thus, the use of the transducer, from the first target object material used to calibrate the transducer to the second different target object material being subsequently monitored by the transducer by linearizing the output of the transducer into gap values as a function of the calculated calibration parameter and then, generating alarms based on the linearized output of the transducer exceeding established limits and using the alarms to automatically shut down a machine being monitored by the transducer and/or automatically annunciate machine problems to personnel.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: November 30, 2004
    Assignee: Bentley Nevada, LLC
    Inventors: Roger A. Hala, Ingrid M. Foster
  • Patent number: 6792809
    Abstract: A self-aligning turbine disc inspection apparatus (30) for positioning a non-destructive examination sensor (38) proximate the disc web surface (20) of a turbine rotor assembly (10). The apparatus supports the sensor at a proper height above a support surface (34) while simultaneously providing passive freedom of movement in X, Y and theta directions so that the sensor is free to follow the slight movements of the web surface as the rotor assembly is rotated on a test stand. The freedoms of movement are provided by a first sled (52) rolling on a base (42), by a theta alignment assembly (62) rotating on the first sled, and a second sled (54) sliding on the theta alignment assembly. A vertical drive assembly (48) attached to the second sled provides a selectable height. The sensor may be moved across the disc web surface by a motorized slide (82) attached to a head assembly (46) attached to the vertical drive assembly.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: September 21, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Charles C. Moore
  • Patent number: 6792808
    Abstract: An ultrasonic inspection method includes exciting a first set of transducers in an array to introduce ultrasonic energy into a component, generating a number of echo signals using a second set of transducers in the array as receive elements, and processing the echo signals. The first and second sets of transducers are exclusive of one another, and the first and second sets of transducers are interleaved.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: September 21, 2004
    Assignee: General Electric Company
    Inventors: Thomas James Batzinger, Li Wei, John Broddus Deaton, Jr.
  • Patent number: 6766693
    Abstract: Averaged guided wave inspection method for a throttle cable is disclosed. Access to the engine end of the throttle cable is obtained and a transducer is applied to an end of the ribbon cable. The transducer generates an ultrasonic guided wave in the cable. The ultrasonic guided wave propagates down the entire length of the cable and reflects back from any discontinuity in the cross section of the ribbon cable. By determining the time needed for the reflected wave to travel back to the receiver, the location of any defect along the length of the cable can be determined. By moving the ribbon cable and transducer to different positions with respect to the sheath of the throttle cable, repeating the prior steps and averaging, unwanted noise caused by external influences is eliminated.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: July 27, 2004
    Assignee: Southwest Research Institute
    Inventors: Glenn M. Light, Ali Minachi, Kevin M. Carpenter
  • Publication number: 20040118210
    Abstract: An ultrasonic inspection instrument for detecting a crack and performing sizing in the depth direction of the crack. By a transmitter element array and a receiver element array included in a common sensor, focus points between focused acoustic fields are electronically scanned in a range including a location where half the sum of the transmitting angle of ultrasonic waves to an inspection-target material and the receiving angle of diffraction echoes from the inspection-target material is 30 degrees, so that a tip portion of the crack is detected from the received diffraction echoes. Thus, the detectability of the ultrasonic inspection instrument for detecting diffraction waves in a subject to be inspected and performing crack inspection is stabilized and kept high.
    Type: Application
    Filed: October 30, 2003
    Publication date: June 24, 2004
    Inventors: Masahiro Tooma, Naoyuki Kono, Masahiro Koike, Hirokazu Adachi, Takao Shimura, Makoto Senoo, Tetsuya Matsui
  • Patent number: 6684696
    Abstract: A filling-level measuring device, specifically a filling-level radar system, comprises a transmitter (1), a receiver (2) for an echo of a signal emitted by the transmitter (1), and an evaluation circuit (3) for estimating the filling level. The transmitter (1) and the receiver (2) are suitable for operation with a plurality of frequencies on the part of the emitted signal and the echo.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: February 3, 2004
    Assignee: Vega Grieshaber, KG
    Inventor: Daniel Schultheiss
  • Patent number: 6626042
    Abstract: A system for monitoring the flow of a fluid such as water in a pipe, including a remote pressure sensor operably connected to the pipe for sensing the pressure of the fluid at the location of the pressure sensor. An acoustic transmitter is placed proximate the remote pressure sensor for transmitting the output of the sensors by an acoustic signal transmitted through the fluid in the pipe to an acoustic receiver that generates a control signal in response thereto control a pressure control valve for adjusting the pressure in the pipe in response. The system is intended for a water distribution networks that include a plurality of pipes, with a remote pressure sensor, transmitter, receiver and control device for at least some of the plurality of pipes.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: September 30, 2003
    Assignee: Honeywell International Inc.
    Inventor: Vladimir Havlena
  • Patent number: 6595061
    Abstract: Ultrasonic energy in the form of guided waves (plate waves or Lamb waves) is launched into the wall of a container. The guided wave propagates around the circumference of the container from a transmitting transducer to a receiving transducer. Analysis of the received waves determines the presence of corrosion pitting and MIC nodules on the container inner wall, as well as the existence of foreign objects in intimate contact with the container wall. The guided waves are created with wideband transducers excited at certain frequencies that depend on the material and geometry of the part being measured. The guided wave ultrasonic energy is maximized with a shaped tone burst pulse at the specified frequency rather than an electrical spike commonly used to excite transducers in standard ultrasonic search units.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: July 22, 2003
    Assignee: Digital Wave Corporation
    Inventors: Michael R. Gorman, Steven M. Ziola
  • Patent number: 6550334
    Abstract: An ultrasonic detecting apparatus includes a transmitting element for emitting an ultrasonic wave toward a surface to be probed inside a sample from a surface of the sample at a predetermined angle. The ultrasonic detecting apparatus also includes a receiving element for receiving the ultrasonic wave reflected from the surface of the sample. The transmitting element and the receiving element are separated from each other on a single pedestal and are movable on the surface of the sample in a direction perpendicular to the surface to be probed. A distance between the transmitting element and the receiving element is arbitrarily changeable.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: April 22, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaru Kodama, Kiyotaka Iwatsubo, Nobuhiko Nishimura, Toshihiko Imamoto, Masaaki Fujita
  • Patent number: 6484584
    Abstract: A method for the concurrent ultrasonic inspection of partially completed welds is disclosed and which includes providing a pair of transducers which are individually positioned on the opposite sides of a partially completed weld to be inspected; moving the transducers along the length of and laterally inwardly and outwardly relative to the partially completed weld; pulsing the respective transducers to produce an ultrasonic signal which passes through or is reflected from the partially completed weld; receiving from the respective transducers ultrasonic signals which pass through or are reflected from the partially completed welds; and analyzing the ultrasonic signal which has passed through or is reflected from the partially completed weld to determine the presence of any weld defects.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: November 26, 2002
    Assignee: Bechtel BWXT Idaho, LLC
    Inventors: John A. Johnson, Eric D. Larsen, Karen S. Miller, Herschel B. Smartt, Timothy R. McJunkin
  • Patent number: 6422082
    Abstract: A method for quality control testing of a laser shock peening process of a production workpiece includes (a) ultrasonically scanning at least a portion of a laser shock peened surface on the workpiece wherein a region having deep compressive residual stresses imparted by the laser shock peening process extends into the workpiece from the laser shock peened surface, (b) digitizing a signal derived from the scanning and forming a digitized image of intensity values from the scanning, (c) calculating at least one statistical function value for a plurality of points of the digitized image of the workpiece based on the intensity values, and (d) comparing the statistical function value to a pass or fail criteria for quality assurance of the laser shock peening process or accepting or rejecting the workpiece.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: July 23, 2002
    Assignee: General Electric Company
    Inventor: Ui Won Suh