Semiconductor Patents (Class 73/777)
  • Patent number: 10309845
    Abstract: Embodiments of solid-state stress sensors are presented herein. A sensor system may include a substrate, a first layer of sensing material disposed on a first surface of the substrate, and at least three electrodes forming a first and second electrode pair. The at least three electrodes may include a first electrode, a second electrode, and a third electrode. The first electrode may be disposed in a first plane and the second electrode and the third electrode may be disposed in a second plane, the first and second planes associated with a first direction parallel to the first surface. The first and second electrodes may be at least partially offset in the first direction. The first and third electrodes may be at least partially offset in the first direction. The sensor system may be configured to generate an output signal in response to a shear stress within the sensing material.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: June 4, 2019
    Assignees: Silicon Audio, Inc., Board of Regents of the University of Texas System
    Inventors: Neal A. Hall, Donghwan Kim, Randall P. Williams, David P. Gawalt, Bradley D. Avenson, Caesar T. Garcia, Kristofer L. Gleason
  • Patent number: 10288498
    Abstract: A force detection device includes: a substrate; and a force transmission block. The substrate includes: a mesa gauge arranged on a principal plane of the substrate and providing a bridge circuit; a connection region arranged on the principal plane; and a sealing portion surrounding all around the mesa gauge and connected to the force transmission block. The mesa gauge includes: a first mesa gauge extending in a first direction; and a second mesa gauge extending in a second direction and spaced apart from the first mesa gauge. The connection region electrically connects the one end of the first mesa gauge and the one end of the second mesa gauge.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: May 14, 2019
    Inventors: Rie Taguchi, Kentaro Mizuno, Takashi Katsumata
  • Patent number: 10197185
    Abstract: A control valve monitoring system is disclosed. The control valve monitoring system includes at least one sensor connected to one of a valve stem or valve shaft, and the at least one sensor detects a change in mechanical integrity of one of the valve stem or valve shaft. A device for providing data regarding the change in mechanical integrity of one of the valve stem or valve shaft is provided, allowing maintenance of the valve shaft or valve stem to be conducted in an efficient manner.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: February 5, 2019
    Inventors: Kenneth Harold Carder, Shawn W. Anderson
  • Patent number: 10190925
    Abstract: A force sensor includes a leadframe comprising a plurality of electrically conductive leads, a sense die coupled to the leadframe, and an encapsulant disposed over at least a portion of the leadframe and the sense die. The sense die is electrically coupled to the plurality of leads, and the plurality of leads extends from the encapsulant.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 29, 2019
    Assignee: Honeywell International Inc.
    Inventors: Josh M. Fribley, Lamar Floyd Ricks, Richard Wade, Jim Machir, Richard Alan Davis
  • Patent number: 10151649
    Abstract: A printed stretchable strain sensor comprises a seamless elastomeric body and a strain-sensitive conductive structure embedded in the seamless elastomeric body. The strain-sensitive conductive structure comprises one or more conductive filaments arranged in a continuous pattern. A method of printing a stretchable strain sensor comprises depositing one or more conductive filaments in a predetermined continuous pattern into or onto a support matrix. After the depositing, the support matrix is cured to embed a strain-sensitive conductive structure in a seamless elastomeric body.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: December 11, 2018
    Inventors: Jennifer A. Lewis, Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yigit Menguc, David B. Kolesky, Robert J. Wood
  • Patent number: 10088375
    Abstract: A thin film material residual testing structure comprises two groups of structures. The first group of structures comprises an electrostatic driven polysilicon cantilever beam, an asymmetrical cross beam made of thin film material to be tested and having an alignment structure, and a double-end fixed support beam made of the thin film material to be tested. The second group of structures is similar to the structure of the first group with the fixed support beam removed. A residual stress testing method includes separating the loading drive part of force from a residual stress testing structure made of the thin film material to be tested, designing the bending deflection of a control testing structure according to geometrical parameters, extracting the force applied on the residual stress testing structure and utilizing force and deflection to calculate the residual stress of the thin film material to be tested.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: October 2, 2018
    Assignee: Southeast University
    Inventors: Weihua Li, Lei Wang, Lu Zhang, Zaifa Zhou
  • Patent number: 10060815
    Abstract: In a pressure sensor having a configuration in which strain gauges are provided on a diaphragm, a change in sensor characteristic caused by a positional shift of the strain gauges is suppressed, and a change in sensor output in response to a change in temperature is suppressed.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: August 28, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Atsushi Kazama, Junji Onozuka, Hiroshi Onuki, Miho Tobita, Masayuki Hio
  • Patent number: 10048147
    Abstract: A pressure sensor includes a ceramic sensor that is accommodated between a body and a holder. On an end surface of the sensor, plural resistive bodies are printed and fired in a straight line using a thick-film resistive paste material by screen printing.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 14, 2018
    Inventors: Mitsuhiro Saitoh, Yuta Oshima, Takeshi Yamagishi
  • Patent number: 10017380
    Abstract: A micromechanical device that includes a first substrate, at least one first cavity, and a sealed inlet to the first cavity, the inlet extending through the first substrate. The inlet includes a laser-drilled first subsection and a plasma-etched second subsection, the plasma-etched second subsection having an opening to the first cavity, and the inlet in the first subsection being sealed by a molten seal made of molten mass of at least the first substrate. A combined laser drilling and plasma etching method for manufacturing micromechanical devices is also described.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 10, 2018
    Inventors: Jan-Peter Stadler, Jochen Reinmuth
  • Patent number: 9825788
    Abstract: The present disclosure relates in general to devices, systems and methods for wireless communication, and in particular to communication using a proximity integrated circuit card (PICC). Example embodiments include a circuit (100) for a PICC, the circuit comprising an input stage (101), a decoding module (106) and a bias adjustment module (117), the bias adjustment module (117) configured to receive an output code from the decoding module and provide a bias adjustment signal to the input stage (101), the bias adjustment module (117) configured to iteratively tune the bias adjustment signal based on a measurement of the output code, with successive steps tuning the bias adjustment signal by a smaller amount until the output code is within a decoding range.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: November 21, 2017
    Assignee: NXP B.V.
    Inventors: Remco Cornelis Herman Van De Beek, Liang Zhang, LiSong Feng, Juhui Li, Alan Chang
  • Patent number: 9631989
    Abstract: The method of making a flexible elastic conductive material for strain sensor and resistance applications using rubbing-in technology is shown. The thin rubber or any conductive material (substrates) is fixed at strained condition on the solid plate, by rubbing-in technology. Nanopowder of nanomaterials (organic semiconductors, carbon nanotubes, copper doped tin oxide, manganese doped tin oxide) at room temperature are embedded into the rubber conductive material to make built-in structure of conductive flexible elastic substrates that can be used for strain sensors, gages and resistance applications. The resultant product showed good sensitivity, stability and reliability during and after the rubbing-in operation.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: April 25, 2017
    Assignee: King Abdulaziz University
    Inventors: Abdullah Mohamed Asiri, Sher Bahadar Khan, Khasan S Karimov
  • Patent number: 9391261
    Abstract: A structure is provided having a substrate and a direct write deposited lead zirconate titanate (PZT) nanoparticle ink based piezoelectric sensor assembly deposited on the substrate. The PZT nanoparticle ink based piezoelectric sensor assembly has a PZT nanoparticle ink based piezoelectric sensor with a PZT nanoparticle ink deposited onto the substrate via an ink deposition direct write printing process. The PZT nanoparticle ink does not require a high temperature sintering/crystallization process once deposited. The PZT nanoparticle ink based piezoelectric sensor assembly further has a power and communication wire assembly coupled to the PZT nanoparticle ink based piezoelectric sensor. The power and communication wire assembly has a conductive ink deposited onto the substrate via the ink deposition direct write printing process.
    Type: Grant
    Filed: December 22, 2013
    Date of Patent: July 12, 2016
    Assignee: The Boeing Company
    Inventors: Jeffrey Lynn Duce, Scott Robert Johnston, I-Yeu Shen, Guozhong Cao, Hsien-Lin Huang
  • Patent number: 9322906
    Abstract: This document describes a wireless sensor comprising a MEMS resonator and an antenna directly matched thereto. Also a method of reading the wireless sensor is described. The method comprises illuminating the wireless sensor with electromagnetic energy at a first and second frequencies and receiving an intermodulation signal emitted by the wireless sensor in response to said electromagnetic energy at the first and second frequencies.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 26, 2016
    Assignee: Teknologian tutkimuskeskus VTT Oy
    Inventors: Heikki Seppä, Ville Viikari
  • Patent number: 9222525
    Abstract: A driving force transmission apparatus includes: an electric motor; a multi-disc clutch including outer clutch plates and inner clutch plates that are disposed coaxially with each other so as to be rotatable relative to each other and that are frictionally engaged with each other by being pressed in an axial direction; an input rotary member that rotates together with the outer clutch plates; an output rotary member that rotates together with the inner clutch plates; a cam mechanism that generates cam thrust force for pressing the multi-disc clutch in the axial direction upon reception of torque generated by the electric motor; a strain sensor that detects reaction force against the cam thrust force; and a spring member that is disposed between the cam mechanism and the strain sensor and that buffers an impact transmitted from the cam mechanism to the strain sensor.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: December 29, 2015
    Inventors: Takeshi Yamamoto, Hiroshi Kushino, Kunihiko Suzuki, Noriyuki Fujii, Takashi Hosokawa
  • Patent number: 9127994
    Abstract: A method for manufacturing an integrated circuit includes forming in a substrate a measuring circuit sensitive to mechanical stresses and configured to supply a measurement signal representative of mechanical stresses exerted on the measuring circuit. The measuring circuit is positioned such that the measurement signal is also representative of mechanical stresses exerted on a functional circuit of the integrated circuit. A method of using the integrated circuit includes determining from the measurement signal the value of a parameter of the functional circuit predicted to mitigate an impact of the variation in mechanical stresses on the operation of the functional circuit, and supplying the functional circuit with the determined value of the parameter.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: September 8, 2015
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Christian Rivero
  • Patent number: 9111838
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 18, 2015
    Assignee: Washington University
    Inventors: Stuart A. Solin, Samuel A. Wickline, AKM Shah Newaz, Kirk D. Wallace
  • Patent number: 9088050
    Abstract: Provided is a high-capacity and highly-flexible electrode group for thin batteries, a thin battery including the electrode group, and an electronic device in which the thin battery is incorporated. The electrode group for thin batteries includes: a sheet-like first electrode, a sheet-like second electrode being laminated on each of both surfaces of the first electrode, and an electrolyte layer interposed between the first electrode and the second electrode. The second electrode has a polarity opposite to that of the first electrode. The second electrode has a flexural modulus lower than that of the first electrode. The thin battery includes the electrode group, and a pouch-like housing accommodating the electrode group. The electronic device includes an electronic device main body with flexibility, and the thin battery is incorporated in the electronic device main body.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 21, 2015
    Inventor: Tomohiro Ueda
  • Patent number: 9063016
    Abstract: A system and method is presented for a multi-sensor component for an HVAC system. The multi-sensor component comprises a sensor assembly, having a temperature detector for measuring a temperature of an object or medium, a presence detector to detect the presence of the object or medium against the sensor, and a pressure detector for measuring a pressure of the medium. The temperature, presence and pressure detectors may also be affixed within a single sensor housing. In a heating mode the multi-sensor component is heated by a heater, and in a cooling mode the multi-sensor component cools toward a temperature of the object or medium, and the temperature detector provides temperature data indicative of a temperature response comprising one of a temperature change, a rate of change and a time constant of a thermal decay rate of the multi-sensor component and the presence of the object or medium.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: June 23, 2015
    Assignee: R.W. Beckett Corporation
    Inventors: John Bohan, John Butkowski, Timothy Beight, Christopher Fildes
  • Publication number: 20150135846
    Abstract: A package for a device to be inserted into a solid structure may include a building material that includes particles of one of micrometric and sub-micrometric dimensions. The device may include an integrated detection module having at least one integrated sensor and the package arranged to coat at least one portion of the device including the integrated detection module. A method aspect includes a method of manufacturing the device. A system aspect is for monitoring parameters in a solid structure that includes the device.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 21, 2015
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Alberto Pagani, Bruno Murari, Federico Giovanni Ziglioli, Marco Ronchi, Giulio Ricotti
  • Patent number: 9021887
    Abstract: Micromechanical semiconductor sensing device comprises a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, said piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 5, 2015
    Assignee: Infineon Technologies AG
    Inventors: Franz-Peter Kalz, Horst Theuss, Bernhard Winkler, Khalil Hosseini, Joachim Mahler, Manfred Mengel
  • Patent number: 9016135
    Abstract: A stress sensor (1) for detecting mechanical stress in a semiconductor chip (2) has a Wheatstone bridge formed by four integrated resistors R1 to R4, the resistors R1 and R4 being p-type resistors and the resistors R2 and R3 being n-type resistors.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 28, 2015
    Assignee: Melexis Technologies NV
    Inventors: Samuel Huber, Arnaud Laville, Wouter Leten, Christian Schott
  • Publication number: 20150090043
    Abstract: Embodiments provide a MEMS including a MEMS device and an detector circuit. The MEMS device includes a membrane, wherein a material of the membrane comprises a band gap and a crystal structure with structural elements (unit cells) connected by covalent bonds in two dimensions only. The detector circuit is configured to determine a deformation of the membrane based on a piezoresistive resistance of the material of the membrane.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Inventors: Guenther Ruhl, Max Christian Lemme, Alfons Dehe, Andreas Fischer, Frank Niklaus, Anderson Smith
  • Patent number: 8984954
    Abstract: In one general aspect, an apparatus comprises a material including a non-layered mixture of an elastomeric polymer with a plurality of voids; and a plurality of conductive fillers disposed in the elastomeric polymer. The apparatus may produce an electrical response to deformation and, thus, function as a strain gauge. The conductive fillers may include conductive nanoparticles and/or conductive stabilizers. In another general aspect, a method of measuring compression strain includes detecting, along a first axis, an electrical response generated in response to an impact to a uniform composite material that includes conductive fillers and voids disposed throughout an elastomeric polymer, and determining a deformation of the impact based on the electrical response. The impact may be along a second axis different from the first axis.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 24, 2015
    Assignee: Brigham Young University
    Inventors: Aaron Jake Merrell, David T. Fullwood, Anton E. Bowden, Taylor D. Remington
  • Publication number: 20150075290
    Abstract: Even when a strain sensor chip and an object to be measured are bonded to each other by using a metallic bonding material such as solder, the metallic bonding material shows the creep behavior when used under high temperature environment of, for example, 100° C. or higher, and therefore, the strain detected by the strain sensor chip is gradually reduced, and the strain is apparently reduced. In the strain sensor chip mounting structure which is one embodiment of the present application, a strain sensor chip is fixed onto a surface to be measured of the object to be measured via a metallic bonding material. And, the metallic bonding material is bonded to a metallic film that is formed on a side surface of the strain sensor chip. In this manner, temporal change in a measurement error can be suppressed.
    Type: Application
    Filed: April 23, 2012
    Publication date: March 19, 2015
    Inventors: Hiroyuki Ohta, Kisho Ashida
  • Patent number: 8966991
    Abstract: An apparatus for sensing strain or stress includes a body including magnetic shape-memory alloy (MSMA) material, having a first axis. A first drive coil and first sensor coil are wound around the body about the first axis. The drive coil is coupled to a power source and configured to generate an alternating magnetic field on the body. The first sensor coil is configured to detect changes in inductance of the body due to changes in magnetic permeability of the body with deformation thereof.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: March 3, 2015
    Assignee: Boise State University
    Inventors: Kari Ullakko, Kotaro Sasaki, Peter Müllner
  • Patent number: 8943897
    Abstract: The present disclosure relates to an element for sensing strain, stress or force. The sensing element comprises a substrate, a pair of electrodes on the substrate, and a network of carbon nanotubes for sensing the strain, stress or force within a structure. The network of carbon nanotubes defines at least in part an electrical path between the electrodes of the pair, and the electrical path has a resistance which is altered by the sensed strain, stress or force. Combining a plurality of sensing elements coupled to a common substrate forms a sensing system.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 3, 2015
    Assignee: Societe de Commercialisation des Produits de la Recherche Appliquee—Socpra-Sciences et Genie S.E.C.
    Inventors: Jacques Beauvais, Patrick Boissy, Jonathan Genest, Annick Sauve
  • Patent number: 8943903
    Abstract: In one embodiment, an apparatus includes a touch sensor that includes a mesh of conductive material configured to extend across a display that includes multiple pixels that each include sub-pixels. The mesh includes multiple first and second lines of conductive material. The first lines are substantially parallel to each other, and the second lines are substantially parallel to each other. Each of the pixels has a first pixel pitch (PPx) along a first axis and a second pixel pitch (PPy) along a second axis that is substantially perpendicular to the first axis. The first pixel pitch is a distance between corresponding features of two adjacent pixels along the first axis, and the second pixel pitch is a distance between corresponding features of two adjacent pixels along the second axis. Each of the sub-pixels has a first sub-pixel pitch (SPPx) along the first axis.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: February 3, 2015
    Assignee: Atmel Corporation
    Inventor: David Brent Guard
  • Patent number: 8943907
    Abstract: In the method for measuring a micromechanical semiconductor component which comprises a reversibly deformable measuring element sensitive to mechanical stresses, which is provided with electronic circuit elements and terminal pads for tapping measurement signals, the measuring element (18) of the semiconductor component (16), for the purpose of determining the distance/force and/or distance/pressure characteristic curve thereof, is increasingly deformed by mechanical action of a plunger (32) which can in particular be advanced step by step. After a or after each step-by-step advancing movement of the plunger (32) by a predetermined distance quantity, the current measurement signals are tapped via the terminal pads (24). The semiconductor component (16) is qualified on the basis of the obtained measurement signals representing the distance/force and/or distance/pressure characteristic curve.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: February 3, 2015
    Assignee: ELMOS Semiconductor AG
    Inventor: Peter Binkhoff
  • Publication number: 20150027231
    Abstract: A mechanical quantity measuring device (semiconductor strain sensor) has a semiconductor chip including a plurality of piezoresistive elements formed on a front surface of a semiconductor substrate, a lead wire unit electrically connected to a plurality of electrodes of the semiconductor chip, and a plate member joined to a rear surface of the semiconductor chip. Further, the plate member includes a first region facing the rear surface of the semiconductor chip and a second region provided adjacent to the first region, and a thickness of the plate member in the first region is made larger than a thickness in the second region.
    Type: Application
    Filed: December 6, 2011
    Publication date: January 29, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Kisho Ashido, Hiroyuki Ohta
  • Publication number: 20150020601
    Abstract: A device for measuring mechanical quantity is provided which reduces the influence of a difference in thermal expansion coefficient between an object to be measured and a base plate metal body, and precisely measures a mechanical quantity such as deformation quantity or strain quantity caused in the object to be measured. The device includes a semiconductor strain sensor module for measuring deformation quantity of the object to be measured, and the module includes a metal body, and a semiconductor strain sensor mounted on the metal body to detect strain of the metal body. The object to be measured is made of a material having a thermal expansion coefficient larger than that of the metal body. Further, the metal body mounted with the semiconductor strain sensor has a structure configured to be fixed to the object to be measured.
    Type: Application
    Filed: March 2, 2012
    Publication date: January 22, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Kentaro Miyajima, Kisho Ashida, Hiroyuki Oota
  • Patent number: 8893557
    Abstract: The fastener tension monitoring system provides for automatic notification when a structural tensile fastener, such as a bolt, is loosened. The system incorporates piezoelectric material in the core of the fastener shank or deposited around the shank. The piezoelectric material communicates electrically with an electrical storage device, a microprocessor, and a transmitter installed on the fastener head. Vibration or other changes in the tensile force developed by the fastener result in electrical impulses being generated by the piezoelectric material, generating electrical energy that is stored in the storage device and used to operate the microprocessor. In the event that an out of tolerance condition is sensed by the microprocessor, the transmitter is activated to send a signal to that effect. A receiver and computer are provided to monitor any such signals. The piezoelectric material may include pyroelectric material as well for the generation of electrical energy due to temperature changes.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 25, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Samir Mekid, Uthman Baroudi
  • Patent number: 8869625
    Abstract: A device can have an electrostatic MEMS actuator and a capacitive sensor in electrical communication with the electrostatic MEMS actuator. The capacitive sensor can be configured to determine a capacitance of the electrostatic MEMS actuator while a force is being applied to the electrostatic MEMS actuator as the electrostatic MEMS actuator is being actuated. The device can be used to construct a keyboard having tactile feedback, for example.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: October 28, 2014
    Assignee: DigitalOptics Corporation MEMS
    Inventor: Roman C. Gutierrez
  • Patent number: 8853805
    Abstract: A test structure for measuring strain in the channel of transistors. A method of correlating transistor performance with channel strain.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: October 7, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Jayhoon Chung, Catherine Beth Vartuli, Guoda Lian
  • Patent number: 8850897
    Abstract: A sensor and method of sensing dimensional changes, stress changes or pressure changes on a substrate uses a sensor in the following manner. Temporarily and non-destructively attach a piezoresistant sensor to a surface. The piezoresistant sensor has an electrically conductive elastic body having at least one pair of opposed ends, and the elastic body contains conductive nanotubes homogeneously distributed therein. The elastic body has at least one surface with two opposed ends and electrodes at each of the opposed ends. A current is passed through the elastic body between the two electrodes. The current passing through the elastic body is sensed (e.g., a voltmeter). A mechanical step is performed with or on the substrate, and the sensor measures changes in the current between the electrodes, indicating strain or pressure on the sensor.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 7, 2014
    Assignee: 7-Sigma Incorporated
    Inventors: Wade R. Eichhorn, Kristian G. Wyrobek
  • Patent number: 8844367
    Abstract: A measurement unit for tensile or compressive stress can includes a CCD camera for detecting an interference light, the interference light being formed with a measurement beam from a measured region and a reference beam from a reference mirror. A first objective lens can have the reference mirror. An image processing apparatus can measure the three-dimensional shape of the measured region from the position of the first objective lens at which the interference light provides the maximum contrast and can measure the distance between two gauge points on the basis of the three-dimensional shape. When strain is generated on a micromaterial, the strain against the measured tensile stress is measured on the basis of the tensile stress and the distance between the two gauge points.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: September 30, 2014
    Assignee: Kumamoto University
    Inventors: Kazuki Takashima, Masaaki Otsu, Mitsuhiro Matsuda, Hiroaki Kurahara, Hidetaka Maeda, Tadahiro Yonekura
  • Publication number: 20140283618
    Abstract: According to one embodiment, a semiconductor device includes a substrate, a semiconductor substrate, an insulating gate field-effect transistor, and a strain gauge unit. The semiconductor substrate is placed on the substrate and has first and second regions. The insulating gate field-effect transistor is provided in the first region of the semiconductor substrate. The strain gauge unit has a long metal resistor, a first insulating film and a second insulating film. The long metal resistor is provided inside of an upper surface of the semiconductor substrate in the second region of the semiconductor substrate. The first insulating film is provided between the semiconductor substrate and the metal resistor and extends up to the upper surface of the semiconductor substrate. The second insulating film is provided above the first insulating film across the metal resistor.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 25, 2014
    Inventors: Takaaki Yasumoto, Naoko Yanase, Ryoichi Ohara, Shingo Masuko, Kenya Sano, Yorito Kakiuchi, Takao Noda, Atsuko IIda
  • Patent number: 8839677
    Abstract: Embodiments relate to stress sensors and methods of sensing stress. In an embodiment, a stress sensor comprises a vertical resistor. The vertical resistor can comprise, for example, an n-type resistor and can have various operating modes. The various operating modes can depend on a coupling configuration of terminals of the resistor and can provide varying piezo-coefficients with very similar temperature coefficients of resistances. Comparisons of resistances and piezo-coefficients in differing operating modes can provide a measure of mechanical stresses acting on the device.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Udo Ausserlechner, Mario Motz
  • Patent number: 8826742
    Abstract: A pressure sensor including: a MEMS resonator; a sweeping unit which sweeps a frequency of an excitation signal in a predetermined direction of sweeping, over a predetermined frequency range including a resonance frequency f0 of a vibrator in the MEMS resonator, while outputting the excitation signal to the MEMS resonator; an integrating unit which inputs a vibrating-state information signal as a characteristic amount indicative of a vibrating state of the vibrator from the MEMS resonator while the sweeping unit sweeps the frequency, integrates a plurality of the vibrating-state information signals at different frequencies of the excitation signal, and outputs the integrated value; and a conversion unit adapted to determine a pressure acting on the MEMS resonator, based on the integrated value.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: September 9, 2014
    Assignee: Panasonic Corporation
    Inventor: Kunihiko Nakamura
  • Publication number: 20140238144
    Abstract: The invention concerns a pressure transducer comprising a deflecting membrane, said membrane comprising two piezoresistors (10, 11) of different types, said piezoresistors being arranged such that a same stress or a same strain is applied on said piezoresistors and said piezoresistors (10, 11) yield changes in resistance, wherein a piezoresistor of a first type (10) is positioned such that its current direction is perpendicular to the stress direction (trans verse) and a piezoresistor of a second type is parallel to the stress direction (longitudinal), allowing, when a tensile stress is applied to the transducer, said piezoresistor of the first type to increase its resistance and said piezoresistor of the second type to decrease the resistance; or when a compressive stress is applied to the transducer, said piezoresistor of the first type to decrease its resistance and said piezoresistor of the second type to increase the resistance; wherein said piezoresistor of the first type (10) has a specific width and a
    Type: Application
    Filed: October 18, 2012
    Publication date: August 28, 2014
    Applicant: Ecole Poyltechnique Federale de Lausanne (EPFL)
    Inventor: Terunobu Akiyama
  • Patent number: 8813573
    Abstract: A micromechanical component includes: an adjustable element connected to a holder at least via a spring; a first sensor device with at least one first piezo-resistive sensor element, which first sensor device provides a first sensor signal relating to a first mechanical stress, the first piezo-resistive sensor element being situated on or in an anchoring region of the spring; and a second sensor device with at least one second piezo-resistive sensor element, which second sensor device provides a second sensor signal relating to a second mechanical stress, the second piezo-resistive sensor element being situated on or in an anchoring region of the spring.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: August 26, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Frederic Njikam Njimonzie, Wolfram Schock, Joerg Muchow, Zoltan Lestyan
  • Patent number: 8789426
    Abstract: A system and method employing a piezoelectric sensor for quasi-static force measurement substantially free of drift and with improved low-frequency response. The output signal from the sensor is sampled and integrated using digital techniques that include a drift compensation algorithm. The algorithm continually monitors the sensor output and estimates bias errors that will cause the output to drift.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 29, 2014
    Assignee: Purdue Research Foundation
    Inventors: Steven D. Pekarek, Kevin A. Rosenbaum
  • Patent number: 8783113
    Abstract: A pressure sensor of the MEMS and/or NEMS type is disclosed, including: at least one first deformable cavity (20) to receive pressure variations from an ambient atmosphere, this first deformable cavity being made in a first substrate and including at least one mobile or deformable wall (25), arranged at least partially in the plane parallel to the first substrate, called plane of the sensor, pressure variations from an ambient atmosphere being transmitted to said cavity, a detector (24, 24?) for detecting a displacement or deformation, in the plane of the sensor, of said mobile or deformable wall, under the effect of a pressure variation of the ambient atmosphere.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 22, 2014
    Assignee: Commissariat à{grave over ( )} l'énergie atomique et aux énergies alternatives
    Inventors: Philippe Robert, Arnaud Walther
  • Patent number: 8757001
    Abstract: A force sensor system includes a substrate, a cover, a sensor, and a spherical force transfer element. The cover is coupled to the substrate, and has an inner surface, an outer surface, an opening extending between the inner and outer surfaces, and a wall structure extending from the inner surface that defines a sensor cavity between the inner surface and the substrate. The sensor is mounted on the substrate, is disposed within the sensor cavity, and is configured to generate a sensor signal representative of a force supplied to the sensor. The spherical force transfer element is disposed partially within the sensor cavity, is movable relative to the cover, extends from the opening in the cover, and engages the sensor. The spherical force transfer element is adapted to receive an input force and is configured, upon receipt of the input force, to transfer the input force to the sensor.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 24, 2014
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Ian Bentley, Mohammed Abdul Javvad Qasimi
  • Patent number: 8746075
    Abstract: A flexible substrate has a major surface and a sensor attached to and aligned with the major surface of the substrate. The sensor may have an elastic body containing conductive nanotubes homogeneously distributed therein to form a conductive path and at least two electrodes in electrical connection with the conductive path. Balloons and flexible elements used in medical procedures are particularly useful.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 10, 2014
    Assignee: 7-Sigma, Inc.
    Inventors: Wade R. Eichhorn, Richard Duda, Kristian G. Wyrobek, Ahmet Serdar Sezen
  • Patent number: 8726736
    Abstract: A method for determining, in a first semiconductor material wafer having at least one through via, mechanical stress induced by the at least one through via, this method including the steps of: manufacturing a test structure from a second wafer of the same nature as the first wafer, in which the at least one through via is formed by a substantially identical method, a rear surface layer being further arranged on this second wafer so that the via emerges on the layer; measuring the mechanical stress in the rear surface layer; and deducing therefrom the mechanical stress induced in the first semiconductor material wafer.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: May 20, 2014
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Mohamed Bouchoucha, Pascal Chausse, Laurent-Luc Chapelon
  • Patent number: 8725431
    Abstract: A tactile sensor unit is provided, which includes a substrate; a coat formed on the substrate; and a cantilever beam structure having one end fixed to the substrate and curved to rise in such a direction that the other end of the cantilever beam structure is farther from the substrate than the one end. The tactile sensor unit detects a load applied to the coat. The cantilever beam structure is capable of resonating at a first resonant frequency and a second resonant frequency which is different from the first resonant frequency. The tactile sensor unit further includes a computation section for calculating a directional component of the load based on a change ratio of the first resonant frequency obtained in accordance with a change in the load and a change ratio of the second resonant frequency obtained in accordance with the change in the load.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 13, 2014
    Assignee: National University Corporation Kyoto Institute of Technology
    Inventor: Kaoru Yamashita
  • Patent number: 8714023
    Abstract: This disclosure provides systems, methods and apparatus for assessing a surface using a piezoelectric element. In one aspect, the method includes applying a device to the surface, wherein the device includes at least one piezoelectric element and at least one EMS device, wherein the EMS device includes a conductive first layer separated from a conductive second layer, and wherein the piezoelectric element is electrically coupled to the EMS device such that a force applied to the piezoelectric element results in a voltage applied across the first and second layers.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 6, 2014
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventor: Jeffrey B. Sampsell
  • Patent number: 8707796
    Abstract: A strain monitoring system including an array of semiconductor strain gauges. Each strain gauge in the array of strain gauges includes a lithographically fabricated 4-resistor bridge for providing a voltage potential corresponding to the strain in the bridge and thin film transistors to provide addressability to each 4-resistor bridge in the array. After completion of the array of strain gauges, in preferred embodiments the array of strain gauges are transferred to polyimide film which is in turn bonded to a surface region of the component to be tested for strains. Each bridge provides voltage signals corresponding to the strain to which the material under the bridge is being subjected. In preferred embodiments control and data acquisition function are separated from the semiconductor strain gage array. Preferred embodiments the system are utilized to monitor strains on components of aircraft, especially light weight robotic aircraft.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 29, 2014
    Inventors: Terrisa Duenas, Shiv Joshi, Cesar Del Solar
  • Patent number: 8695433
    Abstract: A mechanical-quantity measuring device capable of measuring a strain component in a specific direction with high precision is provided. At least two or more pairs of bridge circuits are formed inside a semiconductor monocrystal substrate and a semiconductor chip, and one of these bridge circuits forms a n-type diffusion resistor in which a direction of a current flow and measuring variation of a resistor value are in parallel with a <100> direction of the semiconductor monocryastal silicon substrate, and an another bridge circuit is composed of combination of p-type diffusion resistors in parallel with a <110> direction.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hiromi Shimazu, Hiroyuki Ohta, Yohei Tanno
  • Publication number: 20140096616
    Abstract: A method of manufacturing a flexible display device for sensing bending that includes forming a lower electrode layer, which includes a plurality of lower electrodes spaced apart from each other on a substrate, forming an insulation layer on the lower electrode layer, forming holes in the insulation layer to expose at least a part of each of the plurality of lower electrodes, and forming an upper electrode layer, which includes a plurality of upper electrodes that are spaced apart from each other on the insulation layer and that fill the holes in the insulation layer. At least two conductive units including the lower electrode layer, the insulation layer, and the upper electrode layer are formed to face each other on a substrate of a non-display unit that is arranged near a boundary of the display device.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 10, 2014
    Inventors: Jae-Hyeon JEON, Tae-Jin KIM, Hae-Kwan SEO