Interlaced Teeth Patents (Class 73/862.329)
  • Patent number: 11591969
    Abstract: The present disclosure is directed to a turbine engine (10) defining an axial direction and a radial direction. The turbine engine includes a fan or propeller assembly (14) comprising a gearbox; an engine core (20) comprising one or more rotors, wherein at least one of the rotors defines an axially extended annular hub; and a flexible coupling shaft (100) defining a first end and a second end along the axial direction, wherein the first end is connected to the engine core and the second end is connected to the gearbox, and further wherein the flexible coupling shaft extends from the one or more rotors to the gearbox in the axial direction and inward of the hub in the radial direction.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: February 28, 2023
    Assignee: GE AVIO S.R.L.
    Inventors: Marco Garabello, Paolo Altamura, Gian Mario Bragallini, Alessio Gargioli, Jan Biskupski
  • Patent number: 9752942
    Abstract: A non-contacting torquemeter capable of measuring torque in a rotating shaft with improved accuracy in the presence of relative motion between a rotating shaft and a transducer assembly is provided. The non-contacting torquemeter has improved robustness and reliability, and is able to self-calibrate. The non-contacting torquemeter is able to provide accurate torque measurements using a single transducer assembly positioned at a single azimuthal position on a rotating shaft.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: September 5, 2017
    Assignee: LORD Corporation
    Inventors: Mark R. Jolly, Russell E. Altieri, Charles J. Allred, Michael Hamel, Stephen C. Southward
  • Patent number: 9347843
    Abstract: A sensor for measuring a torque angle. The sensor includes a magnet, a first stator, a second stator, a first collector, a second collector, and a magnetic sensing element. The first stator includes a first horizontal ring section located on a first plane, and a plurality of first teeth extended from the first horizontal ring section, the plurality of teeth located on a second plane. The second stator includes a second horizontal ring section located on the second plane, and a plurality of second teeth extended from the second horizontal ring section, the plurality of second teeth located on the second plane. The first collector is located proximate the first horizontal ring section and the second collector is located proximate the second horizontal ring section. The magnetic sensing element is magnetically coupled to the first collector the second collector.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: May 24, 2016
    Assignee: BOURNS, INC.
    Inventor: Roland Franz
  • Patent number: 7267016
    Abstract: A sensitizing ring for sensors having a reduced manufacturing cost and an improved profile shape manufacture with a diameter of 120 mm or less. The sensitizing ring of the present invention is used to measure the rate of rotation and position of a rotating element. The sensitizing ring of the present invention is usable in more applications, especially in the automotive industry. The sensitizing ring comprises a body, a plurality of teeth provided on an outer periphery thereof, and a plurality of gaps interposed between the teeth. The body is made of a polymeric material interspersed with a ferromagnetic material. Alternately, the body is made of a polymeric material having a coating layer of ferromagnetic material. In a further embodiment, the body includes ferromagnetic material in the polymeric material forming the teeth but does not include ferromagnetic material in the polymeric material forming the gaps.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 11, 2007
    Assignee: Sabo Industria e Comercio Ltda
    Inventor: Orlando Da Mota Pavan
  • Patent number: 7246531
    Abstract: A first shaft and a second shaft are connected coaxially. A torsion bar converts a torque applied between two shafts into a torsion displacement. A multipolar magnet is fixed to the first shaft. One set of magnetic yokes is fixed to the second shaft and disposed in a magnetic field generated by the multipolar magnet. The magnetic yokes are opposed to each other via an air gap in an axial direction. A magnetic sensor is provided for detecting the density of magnetic flux generated in the air gap. A non-magnetic spacer is disposed between the magnetic yokes as a means for positioning the magnetic yokes. The spacer and the magnetic yokes are integrated by resin molding.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: July 24, 2007
    Assignees: DENSO CORPORATION, NIPPON SOKEN, INC.
    Inventors: Naoki Nakane, Shigetoshi Fukaya
  • Patent number: 7134329
    Abstract: The present invention provides a torque detecting apparatus that includes a drive plate that is elastically deformable in response to an applied torque, strain gauges, and a torque detecting circuit, and the torque detecting apparatus can accurately detect torque transmitted from an engine output element of a vehicle having an automatic transmission to a torque converter input element.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: November 14, 2006
    Assignee: Hyundai Motor Company
    Inventor: Kyoung Pyo Ha
  • Patent number: 6983664
    Abstract: The rotation angle detecting device includes a target of a spur gear shape made rotatable together with a rotary member and having a plurality of teeth of magnetic members protruding at a substantially equal pitch in the circumferential direction of the axis of the rotary member, and magnetic sensors arranged at positions to confront the teeth for outputting output signals according to the rotation of the rotary member. This device detects the angle of rotation of a rotary member with the output signals from the magnetic sensors. In the target of the spur gear shape, moreover, the two circumferential end portions of the crests of all the teeth are formed into angular portions.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: January 10, 2006
    Assignee: Koyo Seiko Co., Ltd.
    Inventor: Yoshitomo Tokumoto
  • Patent number: 6973991
    Abstract: A driving control unit (21b) of a controller (21) determines which of an input shaft (32) and an output shaft (33) in a steering shaft (3) is dynamically superior and when the output shaft (33) is dynamically superior to the input shaft (32), a motor (6) is driven so that torque resulting in a time integral value smaller than a time integral value of relative torque between the input shaft (32) and the output shaft (33) is generated in a backward assist direction.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: December 13, 2005
    Assignee: Koyo Seiko Co., Ltd.
    Inventors: Yoshitomo Tokumoto, Mahito Shiba, Kenichi Kotaka, Naoki Maeda
  • Patent number: 6782766
    Abstract: The present invention is an apparatus for obtaining an indication of torque, axial alignment and axial location for a shaft rotating about an axis of rotation. A first set of detectable elements are operably connected to the shaft and positioned parallel to the axis of rotation. A second set of detectable elements parallel to the axis of rotation are interlaced in a sensing plane with said first set of detectable elements. The second set of detectable elements have a variable relative position with respect to the first set of detectable elements. A third set of detectable elements are positioned laterally to the first set of detectable elements and the second set of detectable elements in an alignment plane parallel to the sensing plane. The third set of detectable elements are positioned at an offset angle to the axis of rotation.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 31, 2004
    Assignee: GasTOPS Ltd.
    Inventor: James R. Parkinson
  • Patent number: 6701792
    Abstract: A torque sensing device adapted for use in an electric power assisted steering system is provided. In one embodiment, the device comprises first and second shafts interconnected by a torsion bar, a bushing disposed about the torsion bar and frictionally engaged with one of the shafts, and a stator/sensing device assembly. One of the shafts defines a projection while the other shaft defines a recess. The recess receives the projection and allows a limited degree or rotational movement of the projection within the recess. A plurality of magnets is disposed circumferentially about bushing. As a result of the frictional engagement with one of the shafts, the bushing rotates independently of the stator assembly. A sensing device, such as a Hall effect sensor, is positioned within a clearance between first and second poles within the stator and detects relative rotation of the bushing, which is indicative of rotation of the frictionally engaged shaft, within the stator.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: March 9, 2004
    Assignee: Visteon Global Technologies, Inc.
    Inventor: John Laidlaw