Including Comminution Patents (Class 75/352)
-
Patent number: 12129891Abstract: Provided is a sintered bearing formed mainly of an iron structure (33) and a copper structure (31) which are formed of a partially diffusion-alloyed powder (11) of an iron powder (12) and a copper powder (13). The sintered bearing includes a copper structure (31d) formed of a granular elemental copper powder (13?) having a grain diameter of 45 ?m or less, the ratio of the copper structure (31d) being 10 mass % or less. With this, a further increase in strength of the sintered bearing can be realized.Type: GrantFiled: April 29, 2021Date of Patent: October 29, 2024Assignee: NTN CORPORATIONInventors: Tomonori Yamashita, Yoshinori Ito, Daisuke Takeda, Yuta Ohashi
-
Patent number: 11511393Abstract: A particle diameter distribution of shot media before forming an operating mix is bimodal and substantially continuous, and out of a first particle group corresponding to a first peak and a second particle group corresponding to a second peak, one is an aggregate of particles in a shape having an angular part while the other is an aggregate of particles in a shape configured with a convex curved surface.Type: GrantFiled: January 18, 2019Date of Patent: November 29, 2022Assignee: SINTOKOGIO, LTD.Inventors: Yuto Kato, Hayato Taniguchi
-
Publication number: 20150099117Abstract: Methods for producing nanoparticles of metal alloys and the nanoparticles so produced are provided. The methods include addition of surfactant and cationic metal to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles of zero-valent metal alloys produced by the method include ˜7 nm zero-valent manganese-bismuth useful in fabricating a less expensive permanent magnet.Type: ApplicationFiled: October 4, 2013Publication date: April 9, 2015Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.Inventors: Michael Paul Rowe, Daniel Jeffrey Herrera
-
Patent number: 8979972Abstract: Disclosed herein is a method of manufacturing a metal flake, including the steps of: applying metal ink containing an organic metal compound onto a substrate; calcining the metal ink applied on the substrate to form a thin metal film; separating the formed thin metal film from the substrate; and pulverizing the separated thin metal film. The method of manufacturing a metal flake is characterized in that the thickness and size of metal flakes can be easily adjusted, metal flakes having excellent conductivity and gloss can be obtained, and metal flakes can be mass-produced using environmentally friendly and economical methods.Type: GrantFiled: August 24, 2009Date of Patent: March 17, 2015Assignee: Inktec Co., Ltd.Inventors: Kwang Choon Chung, Hyun Nam Cho, Dong Rip Kim, Ji Hoon Yoo
-
Patent number: 8979973Abstract: A method and a device for recovering hydrogen pulverized powder of a raw-material alloy for rare-earth magnets capable of lowering a possibility that hydrogen pulverized powder after hydrogen was pulverized remains in a recovery chamber and capable of enhancing magnetic properties by reducing an amount of oxygen of an obtained rare-earth magnet, a processing container 50 is carried into a recovery chamber 40 from a processing chamber through a carry-in port after inert gas was introduced into the recovery chamber 40 by inert gas introducing means 12, the raw-material alloy for rare-earth magnets in the processing container 50 is discharged into the recovery chamber 40 after the pressure in the recovery chamber 40 was reduced by evacuating means 33 and thereafter, inert gas is introduced into the recovery chamber 40 by inert gas introducing means 12, and the raw-material alloy for rare-earth magnets is recovered into the recovery container 50 from an discharge port 40a after a pressure in the recovery chamberType: GrantFiled: July 7, 2010Date of Patent: March 17, 2015Assignee: Hitachi Metals, Ltd.Inventors: Shoji Nakayama, Kazuhiro Sonoda, Jyunichi Sanai
-
Publication number: 20150033912Abstract: A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.Type: ApplicationFiled: July 30, 2013Publication date: February 5, 2015Applicant: General Electric CompanyInventors: Laura Cerully Dial, Richard DiDomizio, Matthew Joseph Alinger, Shenyan Huang
-
Publication number: 20150021516Abstract: A negative active material, a lithium battery including the negative active material, and a method of preparing the negative active material. The negative active material includes a silicon-based alloy including Si, Al, and Fe. The silicon-based alloy includes an active phase of silicon nanoparticles and an inactive phase of Si3Al3Fe2 and Si2Fe in a ratios suitable to improve the lifespan of the lithium battery.Type: ApplicationFiled: July 14, 2014Publication date: January 22, 2015Inventors: Seung-Uk Kwon, Young-Ugk Kim, Jae-Hyuk Kim, Yury Matulevich, Yo-Han Park, Chang-Ui Jeong, Soon-Sung Suh, Hee-Young Chu, Duk-Hyoung Yoon
-
Publication number: 20140373681Abstract: Provided is a Mo—Si—B-based alloy for a heat-resistant alloy that satisfies, more than conventional, physical properties such as proof stress and hardness adapted to an increase in the melting point of a welding object. A Mo—Si—B-based alloy powder of this invention is such that the full width at half maximum of (600) of Mo5SiB2 in X-ray diffraction peak data is 0.08 degrees or more and 0.7 degrees or less.Type: ApplicationFiled: December 21, 2012Publication date: December 25, 2014Applicant: A.L.M.T. Corp.Inventors: Shigekazu Yamazaki, Ayuri Tsuji, Masahiro Katoh, Seiji Nakabayashi, Akihiko Ikegaya
-
Publication number: 20140369881Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.Type: ApplicationFiled: June 17, 2014Publication date: December 18, 2014Inventors: Miha Zakotnik, Peter Afiuny, Scott Dunn, Catalina Oana Tudor
-
Patent number: 8852499Abstract: The invention concerns a nanocrystalline alloy of the formula: Fe3?xAl1+xMyTz wherein: M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re, Ag and Ni; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, Cl and Na; x is a number larger than ?1 and smaller than or equal to +1 y is a number larger than 0 and smaller or equal to +1 z is a number ranging between 0 and +1 The invention also concerns the use of this alloy in a nanocrystalline form or not for the fabrication of electrodes which in particular, can be used for the synthesis of sodium chlorate.Type: GrantFiled: May 15, 2008Date of Patent: October 7, 2014Assignees: Hydro-Québec, Meeir Technologie Inc.Inventors: Robert Schulz, Sylvio Savoie
-
Patent number: 8834785Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.Type: GrantFiled: July 11, 2011Date of Patent: September 16, 2014Assignee: Climax Engineered Materials, LLCInventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
-
Patent number: 8834596Abstract: A method for pretreating a sintering material using as a material at least two types of iron ore containing coarse grains and fine powder, using a first granulator to make the fine powder stick to coarse grains forming core grains so as to produce S-type granules, and using a second granulator to granulate only fine powder or mainly fine powder to produce P-type granules, which method producing the S-type granules by adjusting an amount of fine powder supplied into said first granulator so that the average stuck thickness of fine powder to the core grains becomes 50 to 300 ?m and supplying the remaining fine powder not supplied to said first granulator to the second granulator.Type: GrantFiled: November 11, 2005Date of Patent: September 16, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Kenichi Yakashiro, Takeshi Imai, Akira Gushima, Tsuneo Ikeda
-
Patent number: 8808468Abstract: The invention relates to a Fe—Si—La alloy having the atomic composition: (La1-a-a?MmaTRa?)1[(Fe1-b-b?CObMb?)1-x(Si1-cXc)x]13(CdNeH1-d-e)y(R)z(I)f Mm representing a mixture of lanthanum, cerium, neodymium and praseodynium in the weight proportion of 22 to 26% La, 48 to 53% Ce, 17 to 20% Nd and 5 to 7% Pr, the said mixture possibly comprising up to 1% by weight of impurities, TR representing one or more elements of the rare earth family other than lanthanum, M representing one or more type d transition elements of the 3d, 4d and 5d layers X representing a metalloid element selected from Ge, Al, B, Ga and In R representing one or more elements selected from Al, Ca, Mg, K and Na, I representing one or two elements selected from O and S, with: 0?a<0.5 and 0?a?<0.2 0?b?0.2 and 0?b?<0.4 0?c?0.5 and 0?d?1 0?e?1 and f?0.1 0.09?x?0.13 and 0.002?y?4 0.0001?z?0.01 the subscripts b, d, e, x and y being such that the alloy further satisfies the following condition: 6.143b(13(1?x))+4.437y[1?0.Type: GrantFiled: December 15, 2008Date of Patent: August 19, 2014Assignee: Aperam Alloys ImphyInventors: Thierry Waeckerle, Herve Fraisse, Mohamed Balli, Patricia De Rango, Daniel Fruchart, Damien Gignoux, Salvatore Miraglia, Mariana Rosca, Miguel Jose Artigas Alava
-
Patent number: 8690985Abstract: A hydrogen storage material is formed by mixing and combining particles of a metal A selected from Mg and Al, particles of a metal B selected from Ni and Cu, and particles of an intermetallic compound A-B of the metal A and the metal B, together. A method of producing the hydrogen storage material includes a step of mixing the particles of the intermetallic compound A-B with the particles of the metal B, a step of adding particles of a hydride A-H of the metal A to the mixture and mixing them together, and a step of dehydrogenating the hydride A-H to convert it to the metal A.Type: GrantFiled: July 25, 2008Date of Patent: April 8, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Tamio Shinozawa, Takanobu Yamada
-
Publication number: 20140072827Abstract: A mixed powder of an Ni—Al alloy and alumina is produced by heating a first mixed powder, which is prepared by mixing an Ni—Al mixed powder as prepared by mixing an Al powder with Ni in such a manner that Al therein could fall within a range of from 25 atomic % to 60 atomic %, and an alumina powder in a range of from 40% by mass to 60% by mass, in vacuum or in an inert gas atmosphere at a temperature falling within a range of from 600° C. to 1300° C. for at least 1 hour, and then grinding the resulting product.Type: ApplicationFiled: March 27, 2013Publication date: March 13, 2014Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCEInventor: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
-
Publication number: 20130164165Abstract: Disclosed is a method of forming a multi-element thermoelectric alloy. A plurality of binary alloys and milling balls are put in a milling pot to perform a ball-milling process to obtain a multi-element thermoelectric alloy powders. The milling balls have a diameter of 1 mm to 10 mm. The milling balls and the binary alloys have a weight ratio of 1:1 to 50:1. The rotation rate of the ball-milling process is of 200 rpm to 1000 rpm. The ball-milling process is processed for 4 hours to 12 hours.Type: ApplicationFiled: March 29, 2012Publication date: June 27, 2013Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chien-Hsuan Yeh, Ya-Wen Chou, Chia-Hung Kuo
-
Publication number: 20130142690Abstract: A safe and industrially advantageous production method is disclosed for producing a rare earth-Mg—Ni based hydrogen storage alloy which realizes production of a nickel-hydrogen rechargeable battery having excellent cycle characteristics and a large capacity. The method is for producing a rare earth-Mg—Ni based hydrogen storage alloy including element A, Mg, and element B, wherein element A is composed of at least one element R selected from rare earth elements including Sc and Y, and optionally at least one element selected from Zr, Hf, and Ca, and element B is composed of Ni and optionally at least one element selected from elements other than element A and Mg. The method includes first step of mixing an alloy consisting of elements A and B and Mg metal and/or a Mg-containing alloy having a melting point not higher than the melting point of Mg metal, and second step of heat-treating a mixture obtained from first step for 0.5 to 240 hours at a temperature 5 to 250° C.Type: ApplicationFiled: June 24, 2011Publication date: June 6, 2013Applicant: SANTOKU CORPORATIONInventors: Takayuki Otsuki, Toshio Irie
-
Patent number: 8444915Abstract: The invention concerns a method for making a thermoelectric element consisting mainly of a crystalline alloy having a cubic structure, the alloy comprising a first constituent having at least a first element selected among the transition metals, a second constituent having at least one element selected among column XIV, XV or XVI of the periodic table, and a third constituent having at least one constituent selected among rare earths, alkalis, alkaline earths or actinides. The method includes making the alloy in the form of nanopowders by mechanosynthesis. The invention also concerns the thermoelectric material obtained by implementing said method.Type: GrantFiled: April 5, 2006Date of Patent: May 21, 2013Assignee: Centre National de la Recherche Scientifique (CNRS)Inventors: David Berardan, Eric Alleno, Claude Godart, Eric Leroy
-
Publication number: 20130071283Abstract: Titanium alloy complex powder is yielded by hydrogenating titanium alloy raw material to generate hydrogenated titanium alloy, grinding and sifting it to obtain hydrogenated titanium alloy powder, adding ceramic powder selected from SiC, TiC, SiOx, TiOx (here, index x is a real number which is in 1?x?2) and Al2O3, and dehydrogenating the mixture of the hydrogenated titanium alloy powder and the ceramic powder. In addition, consolidated titanium alloy material is obtained by CIP process and subsequent HIP process to the titanium alloy complex powder or by HIP process after filling the titanium alloy complex powder into capsule.Type: ApplicationFiled: May 30, 2011Publication date: March 21, 2013Applicant: TOHO TITANIUM CO., LTD.Inventors: Osamu Kano, Hideo Takatori, Satoshi Sugawara
-
Publication number: 20130039825Abstract: A method for preparation of a getter material on the basis of intermetallic compounds of barium is described. The method comprises preparing a melt of a ternary mixture containing barium, metal and sodium; directionally solidifying the melt to produce a textured ingot; granulating the textured ingot, thereby obtaining granules having open-ended voids extending therethrough; and evaporating the sodium from the granules by applying a thermovacuum treatment to the granules. The textured ingot comprises a getter body made of intermetallic compounds of barium; and open-ended voids within the getter body.Type: ApplicationFiled: September 2, 2010Publication date: February 14, 2013Applicant: FREESPACE MATERIALS LTD.Inventor: Konstantin Chuntonov
-
Patent number: 8361242Abstract: A powder consists essentially by weight, of 28.00?R?32.00%, where R is at least one rare earth element including Y and the sum of Dy+Tb>0.5, 0.50?B?2.00%, 0.50?Co?3.50%, 0.050?M?0.5%, where M is one or more of the elements Ga, Cu and Al, 0.25 wt %<O?0.5%, 0.15% or less of C, balance Fe.Type: GrantFiled: March 24, 2011Date of Patent: January 29, 2013Assignee: Vacuumschmeize GmbH & Co. KGInventors: Rolf Blank, Matthias Katter, Werner Rodewald, Boris Wall
-
Patent number: 8328899Abstract: The invention relates to a process for the production of metal alloy powders, in particular the invention relates to a process for producing titanium metal alloys from titanium dioxide and aluminium. Optionally the process can also include the use of one or more other oxides (metal or non-metal). The result is at least a Ti—Al alloy powder. If another metal oxide is used the result is a Ti-ternary alloy powder. If SiO2 is used the result is a Ti—Al—Si alloy.Type: GrantFiled: July 20, 2007Date of Patent: December 11, 2012Assignee: Titanox Development LimitedInventors: Gorgees Adam, Jing Liang
-
Patent number: 8257464Abstract: The present invention relates to pulverulent materials suitable for storing hydrogen, and more particularly to a method of preparing such a material, in which: (A) a composite metallic material having a specific granular structure is prepared by co-melting the following mixtures: a first metallic mixture (m1), which is an alloy (a1) of body-centered cubic crystal structure, based on titanium, vanadium, chromium and/or manganese, or a mixture of these metals in the proportions of the alloy (a1); and a second mixture (m2), which is an alloy (a2), comprising 38 to 42% zirconium, niobium, molybdenum, hafnium, tantalum and/or tungsten and 56 to 60 mol % of nickel and/or copper, or else a mixture of these metals in the proportions of the alloy (a2), with a mass ratio (m2)/(m1+m2) ranging from 0.1 wt % to 20 wt %; and (B) the composite metallic material thus obtained is hydrogenated, whereby the composite material is fragmented (hydrogen decrepitation).Type: GrantFiled: February 22, 2007Date of Patent: September 4, 2012Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)Inventors: Jean Charbonnier, Patricia De Rango, Daniel Fruchart, Salvatore Miraglia, Sophie Rivoirard, Natalia Skryabina
-
Publication number: 20120093676Abstract: Disclosed herein is a composite material comprising a metal and nanoparticles, in particular carbon nano tubes as well as a method of producing the same. A metal powder and the nanoparticles are processed by mechanical alloying, such as to form a composite comprising metal crystallites having an average size in the range of 1-100 nm, preferably 10 to 100 nm or in a range of more than 100 nm and up to 200 nm at least partly separated from each other by said nanoparticles.Type: ApplicationFiled: January 28, 2010Publication date: April 19, 2012Applicant: Bayer International SAInventors: Henning Zoz, Michael Dvorak, Horst Adams
-
Patent number: 8088193Abstract: A method for making nanoparticles includes the steps of dipping a metal element in a solution that contains metallic ions or ions with a metal, wherein the metal element has a lower electronegativity or redox potential than that of the metal in the ions, and rubbing the metal element to make nanoparticles. Another method for making nanoparticles includes the steps of dipping a metal element in a solution that contains metallic ions or ions with a metal, wherein the metal element has a lower electronegativity or redox potential than that of the metal in the ions, and applying sonic energy to at least one of the metal element and solution. A further method for making copper nanoparticles includes the step of adding ascorbic acid to a copper salt solution.Type: GrantFiled: December 17, 2007Date of Patent: January 3, 2012Inventors: Taofang Zeng, Chunwei Wu
-
Publication number: 20110252922Abstract: A method is provided for producing a diffusion alloyed powder consisting of an iron or iron-based core powder having particles of an alloying powder containing Cu and Ni bonded to the surface of the core particles, comprising providing a unitary alloying powder capable of forming particles of a Cu and Ni containing alloy, mixing the unitary alloying powder with the core powder, and heating the mixed powders in a non-oxidizing or reducing atmosphere to a temperature of 500-1000° C. during a period of 10-120 minutes to convert the alloying powder into a Cu and Ni containing alloy, so as to diffusion bond particles of the Cu and Ni alloy to the surface of the iron or iron-based core powder. The alloying powder may be a Cu and Ni alloy, oxide, carbonate or other suitable compound that on heating will form a Cu and Ni alloy.Type: ApplicationFiled: December 16, 2009Publication date: October 20, 2011Inventor: Mats Larsson
-
Patent number: 8034156Abstract: A method for producing a decomposer of an organic halogenated compound comprises subjecting an iron powder produced beforehand to plastic deformation that gives the iron powder particles a flat shape. Further, an iron powder and a copper salt powder are mechanically mixed in a ball mill to produce a copper salt-containing iron particle powder in which the particles of the two powders are joined. In this case, the method for producing the decomposer of an organic halogenated compound is characterized in that the iron powder is mechanically deformed to give the particles a flat shape.Type: GrantFiled: March 22, 2006Date of Patent: October 11, 2011Assignee: Dowa Eco-System Co., Ltd.Inventors: Masami Kamada, Taishi Uehara
-
Patent number: 8025710Abstract: Provided are an ancillary material, used for shape processing, which is capable of shortening a processing time, avoiding a reduction in quality of a shape provided to a workpiece material, and allowing a relatively low manufacturing cost; a processing method using the ancillary material; and a method of manufacturing the ancillary material. The tungsten alloy grains (1) comprise: tungsten of greater than or equal to 80% by mass and less than or equal to 98% by mass; nickel; at least one kind of metal selected from the group consisting of iron, copper, and cobalt; and an inevitable impurity, a maximum diameter thereof is greater than or equal to 0.1 mm and less than or equal to 5.00 mm, and a specific surface area thereof is less than or equal to 0.02 m2/g. The tungsten alloy grains (1, 10), the workpiece material (30), an abrasive (20) are blended in a container (100) and the container is rotated, thereby processing the shape of the workpiece material (30).Type: GrantFiled: November 20, 2006Date of Patent: September 27, 2011Assignee: A.L.M.T. Corp.Inventors: Shinji Kikuhara, Hitoshi Inoue, Noboru Uenishi, Satoshi Umemoto
-
Patent number: 8012452Abstract: The invention relates to a method for preparation of a material adapted to reversible storage of hydrogen, including steps consisting of providing a first powder of a magnesium-based material, hydrogenating the first powder to convert at least part of the first powder into metal hydrides, mixing the first hydrogenating powder with a second powder additive, the proportion by mass of the second powder in the mix obtained being between 1% and 20% by mass, wherein the additive is formed from an alloy with a centred cubic structure based on titatnium, vanadium and at least one other metal chosen from chromium or manganese, and grinding the mix of first and second powders.Type: GrantFiled: April 25, 2007Date of Patent: September 6, 2011Assignee: Centre National de la Recherche ScientifiqueInventors: Daniel Fruchart, Patricia De Rango, Jean Charbonnier, Salvatore Miraglia, Sophie Rivoirard, Nataliya Skryabina, Michel Jehan
-
Publication number: 20110020661Abstract: The invention relates to a Fe—Si—La alloy having the following atomic composition: (La1-a-a?MmaTRa?)1[(Fe1-b-b,CobMb,)1-x(Si1-cXc)x]13(CdNeH1-d-e)y(R)r(I)r, in which Mm is a mixture of lanthanum, cerium, neodymium and praseodymium in a weight proportion of 22 to 26% of La, 48 to 53% of Ce, 17 to 20% of Nd and 5 to 7% of Pr, wherein said mixture may include up to 1 wt % of impurities, TR is one or more elements of the rare earth family other than lanthanum, M is one or more d-type transition element from layers 3d, 4d and 5d, X is a metalloid element selected from Ge, Al, B, Ga and In, R is one or more element selected from Al, Ca, Mg, K and Na, I is one or two elements selected from O and S, with: 0?a<0.5 and 0?a?<0.2; 0?b?0.2 and 0?b?<0.4; 0?c?0.5 and 0?d?1; 0?e?1 and f?0.1; 0.09?x?0.13 and 0.002?y?4; 0.0001?z?0.01; the indicia b, d, e, x and y being such that the alloy further meets the following condition: 6.143b(13(1?x))+4.437y[1?0.0614(d++e)]?1 Eq.1 d*y?0.005 Eq.2.Type: ApplicationFiled: December 15, 2008Publication date: January 27, 2011Applicants: ARCELORMITTAL-STAINLESS & NICKEL ALLOYS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUEInventors: Thierry Waeckerle, Herve Fraisse, Mohamed Balli, Patricia De Rango, Daniel Fruchart, Damien Gignoux, Salvatore Miraglia, Mariana Rosca, Miguel Jose Artigas Alava
-
Patent number: 7824507Abstract: A method of producing high strength nanophase metal alloy powder by cryomilling metal powder under conditions which cause the formation of intrinsic nitrides, and of producing high strength metal articles by subjecting the nitrided cryomilled powder to thermo-mechanical processing. The intrinsic nitrides present within the alloy significantly reduce grain growth during thermo-mechanical processing, resulting in formed metal products of high strength and improved ductility.Type: GrantFiled: January 25, 2008Date of Patent: November 2, 2010Assignee: The Boeing CompanyInventors: Thomas J. Van Daam, Clifford C. Bampton
-
Patent number: 7776131Abstract: A manufacturing method for an oxide-dispersed alloy wherein dispersed particles consisting of oxides of one or two or more additive metals are dispersed in a matrix metal, comprising the steps of (a) manufacturing alloy powder or an alloy wire rod consisting of the matrix metal and the additive metal; (b) oxidizing the additive metal in the alloy powder by water to form dispersed particles by introducing the alloy powder or alloy wire rod into a high-energy ball mill with water and by making agitation; and (c) moldedly solidifying the alloy powder or alloy wire rod after oxidation. The present invention is especially useful in manufacturing oxide-dispersed alloys in which the free energy of oxide formation of the matrix metal is higher than water standard free energy of formation, and the free energy of oxide formation of the additive metal is lower than water standard free energy of formation.Type: GrantFiled: August 22, 2005Date of Patent: August 17, 2010Assignee: Tanaka Kikinzoku Kogyo K.K.Inventors: Toru Shoji, Seiichiro Tanaka, Seiji Takeishi, Hideo Segawa
-
Publication number: 20100154589Abstract: Provided is a method of producing a nitride/tungsten nanocomposite powder. The method includes mixing nitride with tungsten or a tungsten alloy, and mechanically alloying the mixture in an inert atmosphere using a milling machine.Type: ApplicationFiled: October 30, 2009Publication date: June 24, 2010Inventors: Soonhyung Hong, Kyongho Lee, Yoochul Shin, Dongju Lee
-
Publication number: 20100150822Abstract: The present invention relates to pulverulent materials suitable for storing hydrogen, and more particularly to a method of preparing such a material, in which: (A) a composite metallic material having a specific granular structure is prepared by co-melting the following mixtures: a first metallic mixture (m1), which is an alloy (a1) of body-centred cubic crystal structure, based on titanium, vanadium, chromium and/or manganese, or a mixture of these metals in the proportions of the alloy (a1); and a second mixture (m2), which is an alloy (a2), comprising 38 to 42% zirconium, niobium, molybdenum, hafnium, tantalum and/or tungsten and 56 to 60 mol % of nickel and/or copper, or else a mixture of these metals in the proportions of the alloy (a2), with a mass ratio (m2)/(m1+m2) ranging from 0.1 wt % to 20 wt %; and (B) the composite metallic material thus obtained is hydrogenated, whereby the composite material is fragmented (hydrogen decrepitation).Type: ApplicationFiled: February 22, 2007Publication date: June 17, 2010Applicant: Centre National De La Recherche Scientifique (C.N. R.S.)Inventors: Jean Charbonnier, Patricia De Rango, Daniel Fruchart, Salvatore Miraglia, Sophie Rivoirard, Natalia Skryabina
-
Publication number: 20100119400Abstract: A silver free high noble dental alloy comprising at least 60 wt. % noble materials, where 40 wt. % of the material is gold; at least 2.5 wt. % gallium, at least about from 2 to 4 wt. % cobalt; and at least from about 0.01 to 0.25 wt. % lithium and/or boron; and a principal balance of palladium is provided. Dental products and methods of manufacturing dental products using such a high noble dental alloys are also provided.Type: ApplicationFiled: November 12, 2009Publication date: May 13, 2010Inventors: Arun Prasad, Paul J. Cascone
-
Publication number: 20100107816Abstract: The invention relates to a method of making metal flakes by low- or high-kinetic milling, also known as mechanical alloying. The object of the invention is to further improve such a known method such that it is also suitable for making metal flakes having improved properties. The object is attained according to the invention in that at least one further alloying additive is provided in addition to a metal base material, and that making the metal flakes is carried out by kinetic milling of the base material together with the at least one alloying additive such that the base material and the alloying additive are mechanically alloyed with each other.Type: ApplicationFiled: October 29, 2009Publication date: May 6, 2010Inventors: Henning ZOZ, David Jaramillo-Vigueras
-
Patent number: 7699905Abstract: A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles.Type: GrantFiled: May 8, 2006Date of Patent: April 20, 2010Assignee: Iowa State University Research Foundation, Inc.Inventors: Iver E. Anderson, Robert L. Terpstra
-
Publication number: 20100075133Abstract: There are provided a surface coating material for a molten zinc bath member with improved zinc corrosion resistance, a production method thereof, and a molten zinc bath member. The surface coating material comprises WC powder particles and a binder metal. The binder metal comprises Co and a metal element electrochemically nobler than Co and constitutes an alloy structure having a single phase.Type: ApplicationFiled: April 4, 2008Publication date: March 25, 2010Applicant: SANYO SPECIAL STEEL CO., LTD.Inventors: Hiroki Ikeda, Katsu Yanagimoto
-
Publication number: 20100064851Abstract: A method for kneading a carbon nanomaterial with a metal material and manufacturing a composite-metal-forming material. A semi-molten metal material obtained by heating the metal material to a temperature of a region where a solid and a liquid are both present is kneaded with the carbon nanomaterial, and the composite metal material is obtained. The composite metal material is heated to the solution temperature of the metal material, and a solution treatment is performed, whereby the composite-metal-forming material is obtained.Type: ApplicationFiled: September 18, 2008Publication date: March 18, 2010Inventors: Taku Kawano, Tomoyuki Sato, Atsushi Kato, Masashi Suganuma, Keita Arai, Daisuke Shiba
-
Publication number: 20100068526Abstract: Material in particle or powder form containing carbon nano tubes (CNT), where in the material for example a metal is laminated in layers of a thickness of 10 nm to 500,000 nm alternating with layers of CNT in a thickness from 10 nm to 100,000 nm. The material is produced by mechanical alloying i.e. by repeated deformation, breaking and welding of metal particles and CNT particles, preferably by milling in a ball mill containing a milling chamber and milling balls as the milling bodies and a rotary body to generate high energy ball collisions.Type: ApplicationFiled: October 10, 2007Publication date: March 18, 2010Inventors: Horst Adams, Michael Dvorak
-
Publication number: 20100015003Abstract: The invention relates to a process for the production of metal alloy powders, in particular the invention relates to a process for producing titanium metal alloys from titanium dioxide and aluminium. Optionally the process can also include the use of one or more other oxides (metal or non-metal). The result is at least a Ti—Al alloy powder. If another metal oxide is used the result is a Ti-ternary alloy powder. If SiO2 is used the result is a Ti—Al—Si alloy.Type: ApplicationFiled: July 20, 2007Publication date: January 21, 2010Applicant: TITANOX DEVELOPMENT LIMITEDInventors: Gorgees Adam, Jing Liang
-
Patent number: 7621976Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.Type: GrantFiled: December 21, 2006Date of Patent: November 24, 2009Assignee: Cabot CorporationInventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
-
Publication number: 20090277302Abstract: The purpose of the present invention is to separate excess coppers leached out in a lead-free solder bath and recover tin with high efficiency. An element X for forming a (CuX)6Sn5 compound between copper and tin in molten lead-free solders is added to separate out a (CuX)6Sn5 compound. Tin is recovered by binding the (CuX)6Sn5 compound by passing thereof through a multi-perforated plate, further generating swirling currents to precipitate and separate the bound (CuX)6Sn5 compounds and removing thereof.Type: ApplicationFiled: July 20, 2009Publication date: November 12, 2009Applicant: Nihon Superior Sha Co., Ltd.Inventor: Tetsuro Nishimura
-
Publication number: 20090260482Abstract: An earth-boring drill bit having a bit body with a cutting component formed from a tungsten carbide composite material is disclosed. The composite material includes a binder and tungsten carbide crystals comprising sintered pellets. The composite material may be used as a hardfacing on the body and/or cutting elements, or be used to form portions or all of the body and cutting elements. The pellets may be formed with a single mode or multi-modal size distribution of the crystals.Type: ApplicationFiled: February 24, 2009Publication date: October 22, 2009Applicant: Baker Hughes IncorporatedInventors: David A. Curry, James L. Overstreet, Jimmy W. Eason
-
Publication number: 20090249920Abstract: The present invention provides an amorphous alloy powder and magnetic powder cores exhibiting excellent high frequency properties and a method for making themof. The composition of said alloy powder by atomic percentage satisfies the following formula: (Fe1-xMx)100-a-b-cPaTbDc, wherein M represents at least one element of Co and Ni; T is over three elements selected from Al, C, B and Si, D is at least one element of Sn, Cr, Mn, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd and Au; the subscripts x, a, b, and c satisfy the relationships 0.01?x?0.16, 8?a?15, 10?b?25 and 0.5?c?6. The said amorphous alloy powder is made by atomization method and a magnetic powder core comprises a molded article of mixture of the said alloy powder and an insulating material. A method of making the amorphous alloy powder core includes the steps of screening, insulating, compacting, annealing and spray painting.Type: ApplicationFiled: May 26, 2009Publication date: October 8, 2009Inventors: Zhichao Lu, Caowei Lu, Deren Li, Ko Sun, Shaoxlong Zhou
-
Publication number: 20090226340Abstract: A method of making a degradable alloy includes adding one or more alloying products to an aluminum or aluminum alloy melt; dissolving the alloying products in the aluminum or aluminum alloy melt, thereby forming a degradable alloy melt; and solidifying the degradable alloy melt to form the degradable alloy. A method for manufacturing a product made of a degradable alloy includes adding one or more alloying products to an aluminum or aluminum alloy melt in a mould; dissolving the one or more alloying products in the aluminum or aluminum alloy melt to form a degradable alloy melt; and solidifying the degradable alloy melt to form the product. A method for manufacturing a product made of a degradable alloy includes placing powders of a base metal or a base alloy and powders of one or more alloying products in a mould; and pressing and sintering the powders to form the product.Type: ApplicationFiled: February 24, 2009Publication date: September 10, 2009Applicant: SCHLUMBERGER TECHNOLOGY CORPORATIONInventor: Manuel Marya
-
Publication number: 20090208364Abstract: The invention concerns a method for making a thermoelectric element consisting mainly of a crystalline alloy having a cubic structure, the alloy comprising a first constituent having at least a first element selected among the transition metals, a second constituent having at least one element selected among column XIV, XV or XVI of the periodic table, and a third constituent having at least one constituent selected among rare earths, alkalis, alkaline earths or actinides. The method includes making the alloy in the form of nanopowders by mechanosynthesis. The invention also concerns the thermoelectric material obtained by implementing said method.Type: ApplicationFiled: April 5, 2006Publication date: August 20, 2009Applicant: Centre National de la Recherche Scientifique (CNRS)Inventors: David Berardan, Eric Alleno, Claude Godart, Eric Leroy
-
Publication number: 20090193935Abstract: The present invention relates to the a method for manufacturing high strength ultra-fine/nano-structured aluminum/aluminum nitride or aluminum alloy/aluminum nitride composites using mechanical milling or mechanical alloying process which is conducted in the nitride-forming atmosphere such as nitrogen gas (N), ammonia gas (NH) or mixed gas including both gases, subsequent heat treatment process, and hot consolidation process. Also, high strength ultra-fine/nano-structured Al/ALN or Al alloy/ALN composite materials fabricated by the method of present invention have superior mechanical strength and heat resistance to those fabricated by conventional powder metallurgy process or liquid processes.Type: ApplicationFiled: May 30, 2006Publication date: August 6, 2009Applicant: Dynamaterials Co., Inc.Inventors: Kwang Seon Shin, Seung Hoon Yu
-
Publication number: 20090175752Abstract: An electrosurgical forceps has at least the tip of one blade member formed of a composite material having aligned elongated particles of nickel interspersed in a matrix of silver particles. The tip can be provided as a tip member attached, such as by brazing, to the body of the blade member, or the entire blade member can be formed of the silver/nickel composite material. In another embodiment, the tip or blade member is formed of a dispersion strengthened silver or copper composite material.Type: ApplicationFiled: March 5, 2009Publication date: July 9, 2009Applicant: Kirwan Surgical Products, Inc.Inventors: John P. Ariola, JR., Lawrence T. Kirwan
-
Patent number: RE40717Abstract: The present invention relates to a method of making a cemented carbide with submicron WC grain size with a powder metallurgical technique including milling, pressing and sintering. The method includes milling all components except WC for about three hours, then adding the WC powder and milling for about ten additional hours. In this way a cemented carbide powder with acceptable low compacting pressure is obtained.Type: GrantFiled: July 12, 2006Date of Patent: June 9, 2009Assignee: Sandvik Intellectual Property ABInventor: Mats Waldenstrom