Producing Alloy Patents (Class 75/351)
  • Patent number: 11365464
    Abstract: A method of producing a magnetic powder and a magnetic powder is provided. The method of producing a magnetic powder according to an exemplary embodiment of the present disclosure includes: producing an iron powder by a reduction reaction of iron oxide, producing a magnetic powder using a molded body obtained by press molding a mixture including the iron powder, a rare earth oxide, boron, and calcium at a pressure of 22 MPa or more, and coating a surface of the magnetic powder with ammonium fluoride.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: June 21, 2022
    Inventors: Ingyu Kim, Soon Jae Kwon, Ikjin Choi, Hyounsoo Uh
  • Patent number: 11193185
    Abstract: Process for producing a titanium alloy material, such as a titanium aluminum alloy, are provided. The process includes reduction of TiCl4, which includes a titanium ion (Ti4+), through intermediate ionic states of an AlCl3-based salt solution that includes Ti3+ and an AlCl3-based salt solution that includes Ti2+, which may then undergo a disproportionation reaction to form the titanium aluminum alloy.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: December 7, 2021
    Assignee: General Electric Company
    Inventors: Evan H. Copland, Albert Santo Stella, Eric Allen Ott, Andrew Philip Woodfield, Leon Hugh Prentice
  • Patent number: 11091663
    Abstract: The present invention provides a dispersion liquid containing silver nano-particles that develops excellent conductivity by low-temperature calcining and has silver nano-particles stably and well dispersed in a dispersion solvent, and a method for producing the dispersion liquid containing silver nano-particles.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: August 17, 2021
    Assignee: DAICEL CORPORATION
    Inventors: Kazuki Okamoto, Yuki Iguchi
  • Patent number: 11065688
    Abstract: The invention relates to nano-particles comprising metallic ferromagnetic nanocrystals combined with either amorphous or graphitic carbon in which or on which chemical groups are present that can dissociate in aqueous solutions. According to the invention there is provided nano-particles comprising metal particles of at least one ferromagnetic metal, which metal particles are at least in part encapsulated by graphitic carbon. The nano-particles of the invention are prepared by impregnating carbon containing bodies with an aqueous solution of at least one ferromagnetic metal precursor, drying the impregnated bodies, followed by heating the impregnated bodies in an inert and substantially oxygen-free atmosphere, thereby reducing the metal compounds to the corresponding metal or metal alloy.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 20, 2021
    Assignee: BASF CORPORATION
    Inventors: Leonardus Wijnand Jenneskens, John Wilhelm Geus, Bernard Hendrik Reesink, Pieter Hildegardus Berben, Jacobus Hoekstra
  • Patent number: 10875881
    Abstract: Method for the production of tetrakis(trihydrocarbylphosphane)palladium(0) in organic solvent, whereby 50 to 100% by weight of the organic solvent consist of at least one polar-aprotic solvent, characterised in that a) at least one palladium compound selected from the group consisting of palladium(II) compounds and palladium(IV) compounds that are soluble in the organic solvent is reacted with b) at least one base, selected from the group consisting of alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal-C1-C4-alcoholates, ammonium carbonate, ammonium hydrogen carbonate, alkaline earth metal hydroxides, alkaline earth metal carbonates, alkaline earth metal hydrogen carbonates, alkaline earth metal-C1-C4-alcoholates, and alkylamines with a total of 2 to 12 carbon atoms; c) at least one trihydrocarbylphosphane; and d) at least one organic reducing agent that is different from the remaining components that are used in the method.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: December 29, 2020
    Assignee: HERAEUS DEUTSCHLAND GMBH & CO. KG
    Inventors: Florian Eweiner, Walter Lässig, Richard Walter
  • Patent number: 10763537
    Abstract: The disclosure provides a method a method for generating a heterogeneous carbon-bonded material using an activated carbon support a solution comprising a material precursor and a chemical agent. The material precursor is typically a salt such as SnCl2, and the chemical agent is a substance which thermally decomposes to generate reducing gases. The mixture is heated in an inert, nonreactive atmosphere to generate the reducing gases and remove surface groups from the carbon support, allowing material such as metal from the material precursor to nucleate and directly bond to the sites. The method typically utilizes high specific surface area carbon and may produce a plurality of metal particles having an average diameter of less than about 20 nm dispersed on and strongly bonded to the underlying carbon support.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan Phillips, Claudia C. Luhrs
  • Patent number: 10648058
    Abstract: A system and method of providing metal comprising objects via additive manufacturing techniques using an RES mixture. The RES process mixes a precursor compound and a chemical agent which thermally decomposes to form typically CO, H2, NHx, or some other reducing agent. Using the RES mixture, the additive manufacturing device reproduces an object from a sliced object model file layer-by-layer. Heat is applied to the patterned RES mixture to thermally decompose the chemical agent and reduce the precursor compound to a reduced metal species. This heating and reduction transforms the RES mixture from a general paste having little to no shear strength to an solid form exhibiting a much greater shear strength, allowing layer-by-layer generation of 3D object components.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 12, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Jonathan Phillips
  • Patent number: 10619067
    Abstract: Processes for preparing stabilized metal-containing nanoparticles comprising silver and/or a silver alloy composite by reacting a silver compound with a reducing agent comprising a hydrazine compound at a temperature between about 20° C. and about 60° C. The reaction being carried out by incrementally adding the silver compound or a mixture of the silver compound and a stabilizer to a solution comprising the reducing agent, a stabilizer, and a solvent. Conductive ink compositions containing stabilized metal-containing nanoparticles prepared by such processes.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 14, 2020
    Assignee: XEROX CORPORATION
    Inventors: Ping Liu, Mahya Mokhtari, Tila Tahmoures-Zadeh, Roger Gaynor, Yiliang Wu, Nan-Xing Hu
  • Patent number: 10543536
    Abstract: The present specification relates to a method for fabricating metal nanoparticles.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: January 28, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Kwanghyun Kim, Gyo Hyun Hwang, Sang Hoon Kim, Jun Yeon Cho
  • Patent number: 10418161
    Abstract: Soft magnetic particle powder is soft magnetic particle powder composed of flat soft magnetic particles, and the soft magnetic particle powder has a particle size D10 and a particle size D50 measured with a laser diffraction particle size distribution analyzer satisfying formula below: D10/D50>0.30.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: September 17, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Shotaro Masuda, Hirofumi Ebe, Takashi Habu, Akihito Matsutomi
  • Patent number: 10373749
    Abstract: Soft magnetic particle powder is soft magnetic particle powder composed of flat soft magnetic particles, and the soft magnetic particle powder has a particle size D10 and a particle size D50 measured with a laser diffraction particle size distribution analyzer satisfying formula below: D10/D50>0.30.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: August 6, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Shotaro Masuda, Hirofumi Ebe, Takashi Habu, Akihito Matsutomi
  • Patent number: 10273582
    Abstract: The disclosure provides a method for generating a metallic coating on a substrate using a mixture comprising a precursor compound typically of chromium oxide, a chemical agent typically comprising NHz, and an inert transport fluid. The precursor compound and chemical agent are generally in the form of particulates having mean diameters less than about 100 microns, and the transport fluid is present in an amount sufficient to facilitate application of the mixture to a substrate. The mixture is applied to a substrate and the coated substrate is heated to a temperature exceeding the decomposition temperature of the chemical agent, generating a reducing gas typically comprising CO, Hx, and/or NHx. In a particular embodiment, the precursor compound is CrO2, Cr3O4, CrO, or mixtures thereof, the chemical agent is urea, and the coated substrate is placed in a reactor having an inert atmosphere and subjected to a temperature of about 700° C. for about 5 minutes while maintaining an inert gas flow through the reactor.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: April 30, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Jonathan Phillips
  • Patent number: 10220120
    Abstract: The present invention is an alloy for medical use including an Au—Pt alloy, containing 34 to 36 mass % of Pt with the balance being Au, and having an ?-phase single structure in which a ratio of a peak intensity (X) of a Pt (111) plane to a peak intensity (Y) of an Au (111) plane (X/Y) is 0.01 or less in an X-ray diffraction analysis. The alloy can be produced in such a manner that after the Au—Pt alloy ingot is molten and cast, cold working and a heat treatment for homogenization are performed at least two times on the molten and cast alloy. The alloy of the present invention is an artifact-free material that exhibits excellent compatibility with a magnetic field environment such as an MRI and has magnetic susceptibility of ±4 ppm with respect to that of water.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 5, 2019
    Assignees: TANAKA KIKINZOKU KOGYO K.K., KYOTO UNIVERSITY
    Inventors: Kunihiro Shima, Kenji Goto, Yasushi Masahiro, Asaka Ueno, Hiroo Iwata, Ryusuke Nakai, Tomonobu Kodama
  • Patent number: 10173265
    Abstract: A method for producing small metal alloy nanoparticles of a first metal and a second metal, comprising: mixing, at room temperature in air, a first aqueous solution of first and second metal nanoparticle precursor species in a first molar ratio of the first metal to the second metal; mixing a separate organic ligand into the first aqueous solution; adding a reducing agent to the first aqueous solution; and aging the first aqueous solution for a first period. The method may further comprise characterizing by photoluminescence or other property the metal alloy nanoparticles from the first aqueous solution and/or from a second aqueous solution of first and second metal nanoparticle precursor species in a second molar ratio of the first metal to the second metal.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: January 8, 2019
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Jill Erin Millstone, Christopher Michael Andolina, Andrew Craik Dewar
  • Patent number: 10064891
    Abstract: An assembly of micelle aggregates, wherein each aggregate comprises micelles of an anionic surfactant and nano-sized particles of metallic silver. A product comprising such assemblies for use in treating or preventing bacterial infections.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 4, 2018
    Assignee: OTAGO INNOVATION LIMITED
    Inventors: Carla Joy Meledandri, Donald Royden Schwass
  • Patent number: 10006105
    Abstract: The present invention addresses the problem of providing a novel, solid silver-copper alloy. Provided is a solid silver-copper alloy in which the concentration of copper contained in the silver-copper alloy is 0.1-99.94 wt %, and which has, as the principal constituent thereof, a non-eutectic structure which does not contain a eutectic when the solid silver-copper alloy is at room temperature. This silver-copper alloy can be produced by mixing a fluid containing silver ions and copper ions with a fluid containing a reducing agent, and separating silver-copper alloy particles therefrom. It is preferable to mix the fluid containing the silver ions and copper ions with the fluid containing the reducing agent in a thin-film fluid formed between processing surfaces arranged so as to face one another, capable of approaching toward and separating from one another, and capable of having at least one surface rotate relative to the other.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: June 26, 2018
    Assignee: M. TECHNIQUE CO., LTD.
    Inventors: Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Patent number: 10000852
    Abstract: A method of forming a metal deposit on an ultra-hard material. In an embodiment, the method includes providing a plurality of ultra-hard particles, mixing the ultra-hard particles in a solution with a metal salt, drying the solution to create a mixture of metal salt particles adhered to surfaces of the ultra-hard particles, heating the mixture to convert the metal salt particles into metal deposits on the surfaces of the ultra-hard particles, and HTHP sintering the mixture of ultra-hard particles with the metal deposits to form a polycrystalline ultra-hard material.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: June 19, 2018
    Assignee: SMITH INTERNATIONAL, INC.
    Inventors: Yahua Bao, Qingyuan Liu, Feng Yu, Charles J Claunch
  • Patent number: 9949374
    Abstract: Provided is an electroless plating method for a low temperature co-fired glass ceramic substrate, the method including: a degreasing and activation treatment step of degreasing and activating a surface of a wiring pattern formed of a silver sintered body; a catalyzing step of providing a catalyst onto the surface of the wiring pattern formed of a silver sintered body; and an electroless multi-layered coating plating treatment step. The electroless plating method further includes, between the degreasing and activation treatment step and the catalyzing step, a silver precipitation treatment step of precipitating silver on a glass component present on the surface of the wiring pattern formed of a silver sintered body after the degreasing and activation treatment step, and the catalyzing step includes providing the catalyst also to the silver precipitated in the silver precipitation treatment step.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: April 17, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yohei Takemoto, Shiro Sekino, Yuta Kaihatsu, Hiromi Yamanaka
  • Patent number: 9776249
    Abstract: A process for manufacturing silver nanowires is provided, wherein the recovered silver nanowires have a high aspect ratio; and, wherein the total glycol concentration is <0.001 wt % at all times during the process.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 3, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Wei Wang, Patrick T. McGough, Janet M. Goss, George L. Athens, Jonathan D. Lunn
  • Patent number: 9745202
    Abstract: A method is provided for synthesizing metal cyanometallate (MCM). The method provides a solution of AXM1Y(CN)Z; where “A” is selected from a first group of metals and M1 is selected from a second group of metals. The method adds a material including M2 to the solution to form a liquid phase material that may be either a suspension or a solution. M2 is selected from the second group of metals. The method adds acid to the liquid phase material. The addition of acid to the liquid phase material decomposes the M2 material into M2-ions. Simultaneous with the addition of the acid, a precipitate of ANM1PM2Q(CN)R.FH2O is formed, where N is in a range of 1 to 2. A variation of the above-described synthesis method is also provided.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 29, 2017
    Assignees: Board of Regents, U of Texas System, Sharp Laboratories of America, Inc
    Inventors: Jie Song, Yuhao Lu, Long Wang
  • Patent number: 9725614
    Abstract: Processes for preparing stabilized metal-containing nanoparticles comprising silver and/or a silver alloy composite by reacting a silver compound with a reducing agent comprising a hydrazine compound at a temperature between about 20° C. and about 60° C. The reaction being carried out by incrementally adding the silver compound or a mixture of the silver compound and a stabilizer to a solution comprising the reducing agent, a stabilizer, and a solvent. Conductive ink compositions containing stabilized metal-containing nanoparticles prepared by such processes.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 8, 2017
    Assignee: XEROX CORPORATION
    Inventors: Ping Liu, Mahya Mokhtari, Tila Tahmoures-Zadeh, Roger Gaynor, Yiliang Wu, Nan-Xing Hu
  • Patent number: 9656322
    Abstract: The present invention provides silver nano-particles that are excellent in stability and develop excellent conductivity by low-temperature calcining, a method for producing the silver nano-particles, and a silver coating composition comprising the silver nano-particles. A method for producing silver nano-particles comprising: mixing a silver compound with an aliphatic amine comprising at least a branched aliphatic hydrocarbon monoamine (D) comprising a branched aliphatic hydrocarbon group and one amino group, said branched aliphatic hydrocarbon group having 4 or more carbon atoms, to form a complex compound comprising the silver compound and the amine; and thermally decomposing the complex compound by heating to form silver nano-particles.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 23, 2017
    Assignee: DAICEL CORPORATION
    Inventors: Kazuki Okamoto, Hiroyoshi Koduma
  • Patent number: 9505058
    Abstract: A material for use in a 3D printer. The material may include a plurality of metallic particles and a stabilizing material. The metallic particles may have an average cross-sectional length that is less than or equal to about 100 nm. The stabilizing material may include an organoamine, carboxylic acid, thiol and derivatives thereof, xanthic acid, polyethylene glycols, polyvinylpyridine, polyninylpyrolidone, or a combination thereof.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 29, 2016
    Assignee: XEROX CORPORATION
    Inventors: Yiliang Wu, Marko Saban
  • Patent number: 9422443
    Abstract: Silver nanoparticle-containing ink which develops excellent conductivity by low-temperature calcining and has silver nano-particles stably and well dispersed in a dispersion solvent. Method for producing the silver nanoparticle-containing ink, by: mixing a silver compound with amines comprising an aliphatic hydrocarbon monoamine (A) comprising one amino group and an aliphatic hydrocarbon group having 6 or more carbon atoms in total; and further comprising at least one of: an aliphatic hydrocarbon monoamine (B) comprising one amino group and an aliphatic hydrocarbon group having 5 or less carbon atoms in total; and an aliphatic hydrocarbon diamine (C) comprising two amino groups and an aliphatic hydrocarbon group having 8 or less carbon atoms in total; to form a complex compound comprising the silver compound and the amines; thermally decomposing the complex compound by heating to form silver nano-particles; and dispersing the silver nano-particles in a dispersion solvent containing an alicyclic hydrocarbon.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 23, 2016
    Assignee: DAICEL CORPORATION
    Inventors: Yuki Iguchi, Kazuki Okamoto
  • Patent number: 9330821
    Abstract: Methods for preparing magnetic nanoparticles comprising metal, metal carbide, metal nitride, metal sulfide, metal phosphide, metal oxide or a mixture thereof are disclosed. Methods for preparing magnetic nanoparticles having a core comprising metal, metal carbide, metal nitride, metal sulfide, metal phosphide, or a mixture thereof and a metal oxide shell are also disclosed. The methods comprise the solution-phase decomposition of a precursor at elevated temperature then exposure of the reaction mixture to an oxidizing medium, such as air.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 3, 2016
    Assignee: BOUTIQ SCIENCE LIMITED
    Inventors: Richard David Tilley, Soshan Cheong, Jintian Ren
  • Patent number: 9308585
    Abstract: Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 12, 2016
    Assignee: STC.UNM
    Inventors: Zayd Leseman, Claudia Luhrs, Jonathan Phillips, Haytham Soliman
  • Patent number: 9278392
    Abstract: Methods for producing nanoparticles of metal alloys and the nanoparticles so produced are provided. The methods include addition of surfactant and cationic metal to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles of zero-valent metal alloys produced by the method include ˜7 nm zero-valent manganese-bismuth useful in fabricating a less expensive permanent magnet.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: March 8, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Daniel Jeffrey Herrera
  • Patent number: 9251938
    Abstract: A method of synthesizing magnetic nanoparticles comprising soft magnetic phases is provided, wherein the method comprises degassing a first mixture at a temperature in a range from about 80° C. to 130° C. The first mixture comprises a solvent, a compound comprising iron, cobalt, or combinations thereof dissolved in the solvent, and an organic component comprising a fatty acid or an amine. Degassing the first mixture is followed by adding a capping ligand to the first mixture under inert atmosphere to form a second mixture; adding a reducing agent to the second mixture at a temperature in a processing temperature range from about 250° C. to about 350° C. to form a third mixture; and incubating the third mixture at a temperature within the processing temperature range to form nanoparticles comprising a soft magnetic phase.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Binil Itty Ipe Kandapallil, Robert Edgar Colborn, Peter John Bonitatibus, Jr., Francis Johnson
  • Patent number: 9187810
    Abstract: The invention relates to a cermet body essentially free from nitrogen where the binder phase is Co in an amount of from about 5 to about 25 vol % Co, further comprising TiC and WC in amounts so that the atomic Ti:W ratio is from about 2.5 to about 10. The cermet body further comprising Cr in an amount such that the atomic Cr:Co ratio is from about 0.025 to about 0.14. The cermet body is free from nucleated of Ti—W—C cores. The invention also relates to a method of making a cermet body.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 17, 2015
    Assignee: Sandvik Intellectual Property AB
    Inventors: Gerold Weinl, Malin Mårtensson
  • Patent number: 9034073
    Abstract: A method for making a metal-based nano-composite material is disclosed. In the method, a semi-solid state metal-based material is provided. The semi-solid state metal-based material is stirred and nano-sized reinforcements are added into the semi-solid state metal-based material to obtain a semi-solid state mixture. The semi-solid state mixture is heated to a temperature above a liquidus temperature of the metal-based material, to achieve a liquid-metal-nano-sized reinforcement mixture. The liquid-metal-nano-sized reinforcement mixture is ultrasonically processed at a temperature above the liquidus temperature by conducting ultrasonic vibrations to the liquid-metal-nano-sized reinforcement mixture along different directions at the same time.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 19, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen-Zhen Li, Shi-Ying Liu
  • Publication number: 20150122335
    Abstract: Disclosed are an ink composition for manufacturing a light absorption layer including metal nano particles and a method of manufacturing a thin film using the same, more particularly, an ink composition for manufacturing a light absorption layer including copper (Cu)-enriched Cu—In bimetallic metal nano particles and Group IIIA metal particles including S or Se dispersed in a solvent and a method of manufacturing a thin film using the same.
    Type: Application
    Filed: January 6, 2015
    Publication date: May 7, 2015
    Inventors: Seokhee YOON, Seokhyun YOON, Taehun YOON
  • Patent number: 9017448
    Abstract: The invention relates to a composition for synthesizing bimetallic nanoparticles, wherein the composition contains a first organometallic precursor and a second organometallic precursor having different decomposition rates and contained within an ionic liquid solution. The invention also relates to a method for synthesizing bimetallic nanoparticles, in which the composition is transformed under a hydrogen gas pressure between 0.1 and 10 MPa at a temperature between 0 and 150° C. until a suspension of bimetallic nanoparticles is obtained. The resulting nanoparticles are useful in diverse fields including the fields of catalysis and microelectronics.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 28, 2015
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, CNRS—Centre National de la Recherche Scientifique, Universite Claude Bernard Lyon 1, CPE Lyon
    Inventors: Philippe Arquilliere, Paul-Henri Haumesser, Inga Helgadottir, Catherine Santini
  • Publication number: 20150099117
    Abstract: Methods for producing nanoparticles of metal alloys and the nanoparticles so produced are provided. The methods include addition of surfactant and cationic metal to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles of zero-valent metal alloys produced by the method include ˜7 nm zero-valent manganese-bismuth useful in fabricating a less expensive permanent magnet.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Daniel Jeffrey Herrera
  • Publication number: 20150098856
    Abstract: An aqueous emulsion for use in aqueous milling of hard material powder components in an aqueous slurry. The aqueous emulsion includes an oxidation inhibitor in an amount between about 0.3 weight percent and about 1.2 weight percent of the hard material powder components in the aqueous slurry. The aqueous emulsion also includes a paraffin wax in an amount between about 0.25 weight percent and about 0.75 weight percent of the hard material powder components in the aqueous slurry for vacuum dried powder and in an amount about up to 2.75 weight percent of the hard material powder components in the aqueous slurry for spray dried powder. The aqueous emulsion also includes myristic acid in an amount between about 0.10 weight percent and about 0.50 weight percent of the hard material powder components in the aqueous slurry. The balance of the aqueous emulsion is water.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 9, 2015
    Inventors: Sivaraman Gopalrao, Raghavan Rengarajan, Ramesh S. Rao, Alam Rukhsar
  • Publication number: 20150082945
    Abstract: A process for producing refractory metal alloy powders includes the steps of blending at least one powder with at least one solvent and at least one binder to form a slurry; forming a plurality of agglomerates from the slurry; screening the plurality of agglomerates; sintering the plurality of agglomerates; and melting said plurality of agglomerates to form a plurality of homogenous, densified powder particles.
    Type: Application
    Filed: August 9, 2012
    Publication date: March 26, 2015
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: James F. Myers, Scott Ohm
  • Publication number: 20150068646
    Abstract: The claimed invention provides a wet chemical method to prepare manganese bismuth nanoparticles having a particle diameter of 5 to 200 nm. When annealed at 550 to 600K in a field of 0 to 3T the nanoparticles exhibit a coercivity of approximately 1T and are suitable for utility as a permanent magnet material. A permanent magnet containing the annealed MnBi nanoparticles is also provided.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul ROWE
  • Publication number: 20150040726
    Abstract: A titanium base alloy powder is formed by subsurface reduction of a chloride vapor with a molten alkali metal or molten alkaline earth metal to form reaction products comprising pre-alloy particles and a salt of the alkali metal or the alkaline earth metal. A majority of the pre-alloy particles have a composition of at least 50% by weight of titanium, about 5.38% to 6.95% by weight of aluminum, and about 3% to 5% by weight of vanadium. The pre-alloy particles are recovered from the reaction products to produce a titanium base alloy powder containing less than about 200 ppm alkali or alkaline earth metal.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Applicant: Cristal Metals Inc.
    Inventors: Lance E. Jacobsen, Adam Benish
  • Patent number: 8940197
    Abstract: A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony James Wigglesworth
  • Publication number: 20150020647
    Abstract: The present invention addresses the problem of providing a method for producing microparticles. Composite microparticles are separated by mixing at least two kinds of fluids to be processed in a thin film fluid that is formed between approachable and separable opposing processing surfaces that relatively rotate, wherein the fluids to be processed are a metal fluid comprising at least two kinds of metal elements that are dissolved in a solvent in the form of metal and/or metal compound and a fluid for separation containing at least one kind of separating substance for separating a composite substance comprising the at least two kinds of metal elements. The molar ratio between the at least two kinds of metal elements contained in the resulting microparticles is controlled by controlling the circumferential speed of the rotation at a confluence where the metal fluid and the fluid for separation merge at this time.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 22, 2015
    Inventors: Shiho Aoyagi, Masakazu Enomura
  • Publication number: 20150024204
    Abstract: The present invention relates a process of preparing a nanopowder by using a natural source starting material wherein the nano powder is a nano metal or nano alloy or nano metal oxide or nano metal carbide or nano compound or nano composite or nanofluid. The nano product produced by the process has novel properties such as enhanced hardness, antibacterial properties, thermal properties, electrical properties, abrasive resistant, wear resistant, superior frictional properties, sliding wear resistance, enhanced tensile strength, compression strengths, enhanced load bearing capacity and corrosion properties.
    Type: Application
    Filed: January 9, 2013
    Publication date: January 22, 2015
    Inventor: Sudhakara Sastry AMANCHI BALA
  • Publication number: 20140360315
    Abstract: When a ribbon is cast by heating raw materials to prepare a molten R-T-B-based alloy and supplying the molten alloy to a chill roll to solidify the molten alloy, the temperature of the molten alloy is adjusted in accordance with at least one of the arithmetic mean roughness Ra and the mean spacing of profile irregularities Sm of the surface of the chill roll, thereby controlling the spacing between adjacent R-rich phases in a crystal structure of resulting alloy flakes to a desired value. This makes it possible to inhibit variations in the crystal structure of the resulting alloy flakes that may occur due to wear of the chill roll. In adjusting the temperature of the molten alloy in accordance with at least one of the arithmetic mean roughness Ra and the mean spacing of profile irregularities Sm, it is preferred that the molten alloy temperature be adjusted using the equation: ?t=?7×(|?Ra|×|?Sm|)0.5/? where ?t is an amount of adjustment of the molten alloy temperature (° C.
    Type: Application
    Filed: January 23, 2013
    Publication date: December 11, 2014
    Inventor: Hideo Sasaki
  • Patent number: 8906130
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 9, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: William John Crim Jarosinski, Vladimir Belov
  • Publication number: 20140342177
    Abstract: A method of synthesis to produce a conductive film including cupronickel nanowires. Cupronickel nanowires can be synthesized from solution, homogeneously dispersed and printed to make conductive films (preferably <1,000 ?/sq) that preferably transmit greater than 60% of visible light.
    Type: Application
    Filed: December 6, 2012
    Publication date: November 20, 2014
    Applicant: DUKE UNIVERSITY
    Inventor: Benjamin Wiley
  • Publication number: 20140335442
    Abstract: Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).
    Type: Application
    Filed: October 1, 2013
    Publication date: November 13, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyung Chul HAM, Shin Ae Song, Seong Cheol Jang, Yong Min Kim, Jonghee Han, Hyoung-Juhn Kim, Tae Hoon Lim, Suk Woo Nam, Sung Pil Yoon, Chang Won Yoon, Yeong Cheon Kim
  • Publication number: 20140334963
    Abstract: A titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein and a method of making same is disclosed. Ti power of Ti alloy powder has dispersed within the particles forming the powder titanium boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: Cristal Metals Inc.
    Inventors: Lance Jacobsen, Adam Benish
  • Publication number: 20140301892
    Abstract: The present invention addresses the problem of providing a novel, solid silver-copper alloy. Provided is a solid silver-copper alloy in which the concentration of copper contained in the silver-copper alloy is 0.1-99.94 wt %, and which has, as the principal constituent thereof, a non-eutectic structure which does not contain a eutectic when the solid silver-copper alloy is at room temperature. This silver-copper alloy can be produced by mixing a fluid containing silver ions and copper ions with a fluid containing a reducing agent, and separating silver-copper alloy particles therefrom. It is preferable to mix the fluid containing the silver ions and copper ions with the fluid containing the reducing agent in a thin-film fluid formed between processing surfaces arranged so as to face one another, capable of approaching toward and separating from one another, and capable of having at least one surface rotate relative to the other.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 9, 2014
    Applicant: M. TECHNIQUE CO., LTD.
    Inventors: Masaki Maekawa, Daisuke Honda, Masakazu Enomura
  • Patent number: 8852315
    Abstract: An improved method of reducing a mixed metal oxide composition comprising oxides of nickel, cobalt, copper and iron in a hydrogen atmosphere to produce a mixture of the respective metals, the improvement wherein the atmosphere further comprises water vapor at a concentration, temperature and time to effect selective reduction of the oxides of nickel cobalt and copper relative to the iron oxide to produce the metallic mixture having a reduced ratio of metallic iron relative to metallic nickel, cobalt and copper.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 7, 2014
    Assignee: CVMR Corporation
    Inventors: Walter Curlook, Dimitri S. Terekhov, Sergiy Kotvun, Olujide Babatunde Olurin, Nanthakumar Victor Emmanuel
  • Publication number: 20140283650
    Abstract: A method of manufacturing a powder having a high surface area is provided. According to the method of manufacturing a powder having a high surface area, a metal electrolyte in which metal ions of different kinds of first metals are dissociated is prepared. Subsequently, a metal alloy powder formed of the first metals is formed by soaking a second metal having a higher reducing power than the first metals in the metal electrolyte to induce a first spontaneous substitution reaction. Therefore, it is possible to form a powder having an improved specific surface area.
    Type: Application
    Filed: October 23, 2012
    Publication date: September 25, 2014
    Applicant: Research & Business Foundation Sungkyunkwan University
    Inventors: Chan-Hwa Chung, Myung Gi Jeong
  • Patent number: 8840701
    Abstract: Disclosed are methods of making multi-element, finely divided, metal powders containing one or more reactive metals and one or more non-reactive metals. Reactive metals include metals or mixtures thereof from titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), vanadium (V), nickel (Ni), cobalt (Co), molybdenum (Mo), manganese (Mn), and iron (Fe). Non-reactive metals include metals or mixtures such as silver (Ag), tin (Sn), bismuth (Bi), lead (Pb), antimony (Sb), zinc (Zn), germanium (Ge), phosphorus (P), gold (Au), cadmium (Cd), berrylium (Be), tellurium (Te).
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: September 23, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: William J. Borland, Howard David Glicksman
  • Patent number: 8834785
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn