Directly From Liquid Mass (e.g., By Atomizing, Etc.) Patents (Class 75/355)
  • Patent number: 11559839
    Abstract: A method of producing nanoscale materials comprising the steps of entraining liquid droplets containing at least one nanoparticle precursor within a gaseous stream, and passing said gaseous stream containing said liquid droplets through a non-thermal equilibrium plasma whereby said plasma interacts with said at least one nanoparticle precursor to produce nanoparticles within said droplets without substantial evaporation of the droplets and conveying the thus produced nanoparticles within said gaseous stream downstream of said plasma.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: January 24, 2023
    Assignee: University of Ulster
    Inventors: Davide Mariotti, Paul Maguire
  • Patent number: 10639722
    Abstract: A preparation method for a silver-metal oxide electrical contact material, comprising: (1) mixing a silver-containing precursor solution with a metal oxide precursor solution; (2) reacting a reducing agent with the mixed solution to obtain silver powder coated with a metal oxide precursor; (3) heat treating the silver powder in a non-reducing atmosphere to obtain the silver-metal oxide electrical contact material. A preparation device for a silver-metal oxide electrical contact material, a silver-metal oxide electrical contact material prepared by the preparation method, and an electrical contact prepared by the silver-metal oxide electrical contact material. The electrical contact material prepared by the preparation method is at nanoscale, significantly prolonging electrical endurance of the electrical contact.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 5, 2020
    Assignee: SCHNEIDER ELECTRIC INDUSTRIES SAS
    Inventors: Nan Liu, Yijian Lai, Binyuan Zhao
  • Publication number: 20150107412
    Abstract: A preparation method of silver nanowires is provided. First, droplets of an ethylene glycol solution of silver nitrate is atomized by ultra-sonication and then added into a heated solution containing polyvinylpyrrolidone and sodium chloride to form silver nanowires. Comparing with the method without the ultra-sonication, the above method can increase the yield and the aspect ratio of the silver nanowires.
    Type: Application
    Filed: April 8, 2014
    Publication date: April 23, 2015
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Shiao-Yen Lee, Jui-Chi Lin, Pei-Fen Yang, Ting-Yu Wu, Yi-Hsiang Hsu
  • Publication number: 20140342497
    Abstract: A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Naresh Goel, Carl Cox, David Honecker, Eric Smith, Christopher Michaluk, Adam DeBoskey, Sunil Chandra Jha
  • Publication number: 20130276583
    Abstract: Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor cot pound(s).
    Type: Application
    Filed: November 10, 2011
    Publication date: October 24, 2013
    Applicant: STC.UNM
    Inventors: Zayd Leseman, Claudia Luhrs, Jonathan Phillips, Haytham Soliman
  • Patent number: 7824465
    Abstract: A method for producing a metal powder product involves: Providing a supply of a precursor metal powder; combining the precursor metal powder with a liquid to form a slurry; feeding the slurry into a pulsating stream of hot gas; and recovering the metal powder product.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: November 2, 2010
    Assignee: Climax Engineered Materials, LLC
    Inventor: Steven C. Larink, Jr.
  • Patent number: 7803210
    Abstract: The present invention provides a method for producing nanometer-size spherical particles. The method includes a first step for producing intermediate spherical particles. The intermediate spherical particles include a polycrystalline or single-crystalline region, having a particle size of 1 to 300 ?m. The method of the present invention further includes a second step for producing final spherical particles. The second step uses a swirling plasma gas flow having the central axis thereof, the central axis running through an area between an anode and a cathode of a plasma generator. The intermediate spherical particles are discharged along the axis to subject the intermediate spherical particles to a plasma atmosphere of the area to form the final spherical particles.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: September 28, 2010
    Assignee: Napra Co., Ltd.
    Inventors: Shigenobu Sekine, Yurina Sekine
  • Patent number: 7670988
    Abstract: An aerosol-assisted method for synthesis of nanostructured metallic electrocatalysts and the electrocatalysts formed thereby. The electrocatalyst may be formed from metals such as, but not limited to, platinum, platinum group metals, and binary and tertiary compositions thereof such as, for example, platinum-ruthenium and platinum-tin. The resulting unsupported electrocatalyst is homogenous and highly disperse.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: March 2, 2010
    Assignee: STC, UNM
    Inventors: Elise Switzer, Plamen Atanassov, Abhaya Datye
  • Patent number: 7621976
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
  • Publication number: 20090255373
    Abstract: A method for manufacturing noble metal fine particles, by which noble metal fine particles are obtained whose particle diameter and alloy composition are easy to control and whose crystallinity and purity are high, is provided. The method includes the steps of: (1) obtaining a molten mixture containing a noble metal chloride, by insufflating chlorine gas into a mixture of a molten salt of an alkali metal chloride and a noble metal; (2) obtaining a noble metal oxide as a precipitate by adding an alkali metal carbonate to the molten mixture under an inert gas atmosphere; (3) obtaining a mixture containing noble metal oxide fine particles, by pulverizing the noble metal oxide with at least one of an alkali metal carbonate and an alkali earth metal carbonate; and (4) obtaining noble metal fine particles by heating the mixture obtained in step (3) under an atmosphere of gas containing hydrogen, and then treating the heat-treated mixture with acid.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 15, 2009
    Applicant: YAMAMOTO PRECIOUS METAL CO., LTD.
    Inventors: Tsutomu Yamamura, Masayoshi Hoshi, Taro Morimoto, Tsuyoshi Kobayashi, Kazuharu Iwasaki
  • Patent number: 7531022
    Abstract: A liquid for the preparation of powder mixtures on the basis of hard metals, comprising water and an inhibitor, wherein the inhibitor is in the form of at least one of the following materials: polyvinyllactam or wax emulsion, or the inhibitor is in the form of at least one of the following materials: carboxylic acid, amines or their derivatives.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: May 12, 2009
    Assignee: Zschimmer & Schwarz GmbH & Co. KG Chemische Fabriken
    Inventors: Peter Quirmbach, Michael Hölzgen, Alfred Vuin
  • Patent number: 7503958
    Abstract: The present invention is a method to manufacture the SnZnNiCu solder powder through liquid quenching atomizing method, and an atomizing temperature is not less than 500° C., in particular, not less than 900° C. The raw material metal used as raw material of the solder powder comprises 3 to 12% by weight of Zn, 1.0 to 15% by weight of the sum of Cu and Ni, and Sn and inevitable impurities for the rest, to the total amount of raw material. Thereby, high joint strength is achieved and the SnZnNiCu solder powder which can improve joint reliability of solder joint part is provided.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: March 17, 2009
    Assignee: Harima Chemicals, Inc.
    Inventors: Eiichiro Matsubara, Tetsu Ichitsubo, Takaaki Anada, Seishi Kumamoto, Hisao Irie
  • Patent number: 7354471
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 8, 2008
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 7108735
    Abstract: Produce metal particles offering high purity and uniform granular shape and size: by forming a combustion chamber comprising an injector nozzle for mixture gas of oxygen and hydrogen, an ignition device and a material metal feeder in the upper space of a high-pressure water tank filled with inert gas; igniting inside the combustion chamber via the ignition device the injector nozzle for mixture gas of oxygen and hydrogen and melting (vaporize) the material fed by the material metal feeder; and then causing the produced molten metal droplets to contact high-pressure water and let the resulting metallic particles to precipitate in water.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: September 19, 2006
    Assignee: Phild Co., Ltd.
    Inventors: Yoshihiro Hirata, Yoshio Ueda, Hiroaki Takase, Kazuaki Suzuki
  • Patent number: 6818041
    Abstract: Magnetic alloy powder for a permanent magnet contains: R of about 20 mass percent to about 40 mass percent (R is Y, or at least one type of rare earth element); T of about 60 mass percent to about 79 mass percent (T is a transition metal including Fe as a primary component); and Q of about 0.5 mass percent to about 2.0 mass percent (Q is an element including B (boron) and C (carbon)). The magnetic alloy powder is formed by an atomize method, and the shape of particles of the powder is substantially spherical. The magnetic alloy powder includes a compound phase having Nd2Fe14B tetragonal structure as a primary composition phase. A ratio of a content of C to a total content of B and C is about 0.05 to about 0.90.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: November 16, 2004
    Assignee: Neomax Co., Ltd
    Inventors: Hiroyuki Tomizawa, Yuji Kaneko
  • Patent number: 6699304
    Abstract: Provided are palladium-containing powders and a method and apparatus for manufacturing the palladium-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications. Powders may have high resistance to oxidation of palladium. Multi-phase particles are provided including a palladium-containing metallic phase and a second phase that is dielectric. Electronic components are provided manufacturable using the powders.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Superior Micropowders, LLC
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 6685762
    Abstract: A process for making particles, the process including generating an aerosol stream which includes droplets of a precursor liquid dispersed in a carrier gas, the precursor liquid including a liquid vehicle and a precursor material, separating the precursor liquid into two portions during the generating step, a first portion exiting the generator in the droplets of the aerosol stream and a second portion exiting as effluent at least a portion of which is recycled to the generator, and also during the generating step adding additional liquid vehicle to at least one of the carrier gas supply, the precursor liquid supply, and the aerosol generator, to at least partially compensate for the tendency of the precursor liquid to become more concentrated in the precursor material over time, and then removing at least a portion of the liquid vehicle from the droplets and forming particles in the aerosol stream.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: February 3, 2004
    Assignee: Superior MicroPowders LLC
    Inventors: James H. Brewster, David E. Dericotte, Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell
  • Patent number: 6494968
    Abstract: Lamellar rare earth-iron-boron-based magnet alloy particles for a bonded magnet, having an intrinsic coercive force (iHc) of not less than 3.5 kOe, a residual magnetic flux density (Br) of not less than 9.5 kG, and a maximum energy product ((BH)max) of not less than 13 MGOe. These particles have an average major axial diameter of 60 to 500 &mgr;m, an average minor axial diameter of 50 to 460 &mgr;m, an average axis ratio (major axial diameter/minor axial diameter) of 1.1 to 10 and an average aspect ratio (major axial diameter/thickness) of 3 to 100. The magnet alloy particles have a residual magnetic flux density (Br) as high as not less than 10 kG, an intrinsic coercive force (iHc) as large as not less than 3.5 kOe and a maximum energy product ((BH)max) as large as not less than 13 MGOe, are used as a material for high-performance bonded magnets.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: December 17, 2002
    Assignee: Toda Kogyo Corporation
    Inventors: Masaaki Hamano, Minoru Yamasaki, Hirotaka Mizuguchi
  • Patent number: 6478844
    Abstract: A method for making a hydrided hydrogen storage alloy powder from component material. In the present method a material is worked at the same time it is hydrided. Working preferably involves comminution of the material.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: November 12, 2002
    Assignee: Energy Conversion Devices, Inc.
    Inventor: Stanford R. Ovshinsky
  • Patent number: 6364928
    Abstract: The present invention relates to a process for manufacturing atomized metal powder in an atomization plant comprising a casting box, a reactor vessel, a powder container and sedimentation equipment. The production process takes place with controlled thermal balance. The invention also relates to an atomization plant, atomized metal powder and the use of the metal powder as coolant in the manufacture of steel.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: April 2, 2002
    Assignee: Rutger Larsson Konsult AB
    Inventors: Rutger Larsson, Erik Axmin
  • Patent number: 6342087
    Abstract: The invention concerns a process for producing low oxygen, essentially carbon free stainless steel powder, which comprises the steps of preparing molten steel which in addition to iron contains carbon and at least 10% of chromium, adjusting the carbon content of the melt to a value which is decided by the expected oxygen content after water atomising; water-atomising the melt and annealing the as-atomised powder at a temperature of at least 1120° C. in a reducing atmosphere containing controlled amounts of water. The invention also concerns a water-atomised powder including 10% by weight of chromium and having a carbon content between 0.2 and 0.7, preferably between 0.4 and 0.6% by weight and an oxygen/carbon ratio of about 1 to 3 and at most 0.5% of impurities, as well as the annealed powder obtained according to the process.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: January 29, 2002
    Assignee: Höganäs AB
    Inventors: Johan Arvidsson, Alf Tryggmo
  • Patent number: 6293989
    Abstract: The present invention relates to a method of producing nanophase WC/TiC/Co composite powder by means of a mechano-chemical process comprising a combination of mechanical and chemical methods. For this purpose, the present invention provides a method of producing nanophase WC/TiC/Co composite powder, said method comprising as follows: a process of producing an initial powder by means of spray-drying from water-soluble salts containing W, Ti, and Co; a process of heating to remove the salts and moisture contained in the initial powder after spray-drying; a process of mechanically ball-milling to grind oxide powder after removing the salts and moisture therefrom, and to homogeneously mix the powder with an addition of carbon; and a process of heating the powder after milling, for reduction and carburization, in an atmosphere of reductive gas or non-oxidative gas.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: September 25, 2001
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Byoung Kee Kim, Gook Hyun Ha, Dong Won Lee
  • Patent number: 6290745
    Abstract: The invention relates to a method and device for producing soft solder powder without pressure, in particular for producing spherical fine metal particles having a grain size ranging from 1-100 microns and a liquidus temperature <250 degrees C.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: September 18, 2001
    Inventors: Jürgen Schulze, Walter Protsch
  • Publication number: 20010004855
    Abstract: There is provided a ball mill having a milling chamber into which metal powder is fed. The ball mill is also provided with milling means for milling metal powder into fine metal powder having a particle size less than a predetermined size. When the ball mill operates, a quantity of heat (Qo) is generated in the milling chamber. The milling chamber is cooled by liquid cooling means and gas cooling means according to the present invention. The liquid cooling means causes cooling liquid to flow along the outside wall of the milling chamber to remove a quantity of heat (Q1) during the ball mill operation. The gas cooling means causes cooling gas to flow through the milling chamber to remove a quantity of heat (Q2) during the ball mill operation. The generated quantity of heat (Qo) can be counterbalanced with the sum of the removed quantities of heat (Q1) and (Q2) so as to prevent the inside of the milling chamber from overheating, so that the ball mill can operate in the condition of Qo/V≧0.
    Type: Application
    Filed: December 22, 2000
    Publication date: June 28, 2001
    Applicant: FUKUDA METAL FOIL & POWDER CO., LTD
    Inventors: Takeshi Fukuda, Kensuke Hidaka, Tamiho Mizutani, Motonori Nishida, Yoshio Kohira
  • Patent number: 5908486
    Abstract: Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: June 1, 1999
    Assignee: Lockheed Martin Idaho Technologies Company
    Inventors: John E. Flinn, Thomas F. Kelly
  • Patent number: 5628046
    Abstract: A process for fabrication of sintered articles from a molybdenum-containing steel alloy by atomization, pressing, and sintering. The melt used for atomization has a molybdenum content determined as a function of the sintering temperature which lies in a range of 1050.degree.-1350.degree. C. The carbon content of the powder mixture is no more than 0.05% by weight and the reduction annealing takes place in a temperature range of 850.degree.-950.degree. C.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: May 6, 1997
    Assignee: Mannesmann Aktiengesellschaft
    Inventors: Norbert Dautzenberg, Karl-Heinz Lindner, Klaus Vossen
  • Patent number: 5567890
    Abstract: An iron-based powder for producing highly resistant components with a small local variation in dimensional change, by powder compacting and sintering. The powder contains, in addition to Fe, 0.5-4.5% by weight Ni, 0.65-2.25% by weight Mo and 0.35-0.65% by weight C, and optionally a lubricant and impurities. The maximum variation in dimensional change is 0.07% for a minimum density of 6.7 g/cm.sup.3.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: October 22, 1996
    Assignee: Hoganas AB
    Inventors: Caroline Lindberg, Bjorn Johansson
  • Patent number: 5480472
    Abstract: A method for forming an electrical contact material comprises the steps of melting a mixture of Cu and Cr into a molten alloy, atomizing the molten alloy into fine particles to obtain alloyed particles. Cr particles in the alloyed powder disintegrate to less than 5 .mu.m in mean particle diameter. The alloyed powder is sintered thereafter and a mean particle diameter of chromium in the sintered article is fined in a range of 2 to 20 .mu.m. An electrical contact material is composed of a copper matrix and chromium particles having a mean particle diameter of 2 to 20 .mu.m. The chromium particles are homogeneously dispersed in the copper matrix.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: January 2, 1996
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Yasushi Noda, Nobuyuki Yoshioka, Nobutaka Suzuki, Toshimasa Fukai, Tetsuo Yoshihara, Koichi Koshiro
  • Patent number: 5464463
    Abstract: Disclosed are heat resistant aluminum alloy powder and alloy including Ni in an amount of from 5.7 to 20% by weight, Si in an amount of from 6.0 to 25% by weight, at least one of Fe in an amount of from 0.6 to 8.0% by weight and Cu in an amount of from 0.6 to 5.0% by weight, and at least one of B in a form of the simple substance in an amount of from 0.05 to 2.0% by weight (or from 0.05 to 10% by weight for the alloy) and graphite particles (especially for the alloy) in an amount of from 0.1 to 10% by weight. The alloy powder and alloy are not only superb in the tensile strength at room temperature and high temperatures but also superior in the sliding characteristic, they can be further upgraded in the wear resistance and the fretting fatigue resistance by dispersing at least one of nitride particles, boride particles, oxide particles and carbide particles in an amount of from 0.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: November 7, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Kunihiko Imahashi, Hirohumi Michioka, Yasuhiro Yamada, Jun Kusui, Akiei Tanaka
  • Patent number: 5462575
    Abstract: A powder metallurgy article formed from a Co--Cr--Mo alloy powder and a method for making the article are disclosed. The Co--Cr--Mo alloy powder contains, in weight percent, about 0.35% max. C, about 1.00% max. Mn, about 1.00% max. Si, about 26.0-30.0% Cr, about 5.0-7.0% Mo, about 3% max. Ni, about 0.25% max. N, about 1.00% max. Fe, about 0.01% max. of oxide forming metals, and the balance is essentially Co. Within their respective weight percent limits C and N are controlled such that they satisfy the relationship:62.866+360.93.times.(%C)+286.633.times.(%N)-682.165.times.(%C).sup.2 -641.702.times.(%N).sup.2 .gtoreq.120.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: October 31, 1995
    Assignee: CRS Holding, Inc.
    Inventor: Gregory J. Del Corso
  • Patent number: 5435825
    Abstract: Disclosed herein is an aluminum matrix composite powder comprising 1 to 40% by weight of ceramic particles dispersed in a matrix of aluminum-silicon alloy. The matrix of the composite may further comprise at least one of Cu, Mg and transition metals.The aluminum matrix composite is prepared by a rapid solidification.In the aluminum matrix composite, the ceramic particles are very uniformly dispersed in the matrix, thereby the improvement of mechanical properties of product prepared therefrom can be obtained.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: July 25, 1995
    Assignee: Toyo Aluminum Kabushiki Kaisha
    Inventors: Jun Kusui, Fumiaki Nagase, Akiei Tanaka, Kohei Kubo, Takamasa Yokote
  • Patent number: 5421854
    Abstract: A method for the manufacture of finely divided particles of palladium, palladium oxide or mixtures thereof comprising the sequential steps:A. Forming an unsaturated solution of thermally decomposable palladium-containing compound in a thermally volatilizable solvent;B. Forming an aerosol consisting essentially of finely divided droplets of the solution from step A. dispersed in an inert carrier gas;C. Heating the aerosol to an operating temperature above the decomposition temperature of the palladium-containing compound, but below the melting point of palladium metal by which finely divided particles of palladium, palladium oxide or mixtures thereof are formed and densified; andD. Separating the particles of palladium, palladium oxide or mixtures thereof from the carrier gas, reaction by-products and solvent volatilization products.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: June 6, 1995
    Assignees: E. I. Du Pont de Nemours and Company, University of New Mexico
    Inventors: Toivo T. Kodas, Shirley W. Lyons, Howard D. Glicksman
  • Patent number: 5387294
    Abstract: A hard surfacing alloy which has a Rockwell C hardness of greater than about 50 and which includes tungsten carbide, chromium carbide and bi-metallic chromium and tungsten carbide crystals which are precipitated in the alloy. Alloys of the present invention in their nominal composition comprise from about 12% to about 20% tungsten; from about 13% to about 30% chromium; an effective amount of carbon for forming carbides with the tungsten and chromium and include effective amounts of fluxes and melting point depressants and the like. The balance of the composition is nickel. The alloys include precipitated carbide crystals of chromium, tungsten and bi-metallic mixtures thereof which are interspersed through the hard surfacing alloy and are metallurgically bonded in the metal matrix of the alloy. The alloys have extremely low porosities and therefore are suitable for glass plunger and other applications where low porosity is essential.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: February 7, 1995
    Assignee: Wall Comonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 5352269
    Abstract: A process is described for the production of composite powders with ultrafine microstructures. The process involves three coordinated steps:1) preparation and mixing of an appropriate starting solution;2) spray drying to form a chemically homogeneous precursor powder; and3) fluid bed thermochemical conversion of the precursor into the desired nanophase composite powder.Both spray drying and fluid bed conversion are scaleable technologies, and together provide the means for producing bulk quantities of nanophase composite powders at low manufacturing cost. Processing parameters are controlled to ensure maintenance of chemical and microstructural uniformity at the nanoscale (less than 0.1 micron) level.Spray conversion processing is a versatile technology, which can be applied to a variety of metal--metal (e.g. W--Cu), ceramic-metal (e.g. WC--Co), and ceramic--ceramic (e.g. Al.sub.2 O.sub.3 --SiO.sub.2) nanophase composite powders ceramic-metal (e.g. WC--Co), and ceramic--ceramic (e.g. Al.sub.2 O.sub.3 --SiO.
    Type: Grant
    Filed: July 9, 1991
    Date of Patent: October 4, 1994
    Inventors: Larry E. McCandlish, Bernard H. Kear, Swarn J. Bhatia
  • Patent number: 5312476
    Abstract: A non-amalgamated zinc alloy powder for use in an alkaline cell which consists of elements component selected from among the following combinations (1) to (3):(1) 0.01 to 0.5% by weight of bismuth, 0.01 to 0.5% by weight of indium, not less than 0.005% by weight to less than 0.01% by weight of calcium,(2) not less than 0.005% by weight to less than 0.01% by weight of calcium, 0.01 to 0.5% by weight of bismuth, 0 to 0.5% by weight of aluminium, and(3) 0.01 to 0.5% by weight of lead, 0.01 to 0.5% by weight of indium, 0 to less than 0.01% by weight of calcium, 0.01 to 0.5% by weight of aluminium, the balance being zinc and containing 1 ppm or less of iron, and which can greatly suppress the evolution of hydrogen gas and maintain the discharge performance on a practical level, and the method to produce the same.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: May 17, 1994
    Assignees: Matsushita Electric Industrial Co., Ltd., Mitsui Mining & Smelting Co., Ltd.
    Inventors: Toyohide Uemura, Tomotaka Motomura, Tomiko Yamaguchi, Junichi Asaoka, Shuji Tsuchida
  • Patent number: 5302182
    Abstract: The method for preparing metal powders with a narrow particle size distribution includes providing a disintegrator with a working chamber containing counter-rotating disks equipped with teeth designed to impart high tangential velocities to particles contacting the teeth, introducing a metal melt as a liquid stream with a composition substantially corresponding to the final metal powder composition into the working chamber of the disintegrator, counter-rotating the disks, whereby the liquid stream of metal entering the chamber is broken up into small beads, which leave the surface of the teeth with high velocities, and whereby subsequent contact of the beads with the teeth of the disks further break up the liquid beads until the bead solidifies by heat loss to the disks and collecting a fine metal powder of narrow particle size distribution at the exit end of the working chamber.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: April 12, 1994
    Assignee: Technalum Research, Inc.
    Inventors: Igor V. Gorynin, Boris V. Farmakovsky, Alexander P. Khinsky, Karina V. Kalogina, Alfredo Riviere V., Julian Szekely, Navtej S. Saluja
  • Patent number: 5238482
    Abstract: Prealloyed high-vanadium, cold work tool steel particles are provided for use in the powder-metallurgy production of tool steel articles. The particles are of a cold work tool steel alloy having an MC-type vanadium carbide dispersion of a carbide particle size substantially entirely less than 6 microns and in an amount of 18.5 to 34.0% by volume. The particles are produced by atomizing a molten tool steel alloy at a temperature above 2910.degree. F. and rapidly cooling the atomized alloy to form solidified particles therefrom. The particles have the MC-type vanadium carbide dispersion therein.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: August 24, 1993
    Assignee: Crucible Materials Corporation
    Inventors: William Stasko, Kenneth E. Pinnow
  • Patent number: 5141571
    Abstract: A hard surfacing alloy which has a Rockwell C hardness of greater than about 50 and which includes tungsten carbide, chromium carbide and bi-metallic chromium and tungsten carbide crystals which are precipitated in the alloy. Alloys of the present invention in their nominal composition comprise from about 12% to about 20% tungsten; from about 13% to about 30% chromium; an effective amount of carbon for forming carbides with the tungsten and chromium and include effective amounts of fluxes and melting point depressants and the like. The balance of the composition is nickel. The alloys include precipitated carbide crystals of chromium, tungsten and bi-metallic mixtures thereof which are interspersed through the hard surfacing alloy and are metallurgically bonded in the metal matrix of the alloy. The alloys have extremely low porosities and therefore are suitable for glass plunger and other applications where low porosity is essential.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: August 25, 1992
    Assignee: Wall Colmonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 4997477
    Abstract: Producing finely divided U.sub.3 Si by supercooling a melt of uranium and silicon at a high cooling rate of 10.sup.3 to 10.sup.7 .degree. C./sec.
    Type: Grant
    Filed: November 14, 1989
    Date of Patent: March 5, 1991
    Assignee: Korea Advanced Energy Research Institute
    Inventors: Il H. Kuk, Chang K. Kim, Chong T. Lee
  • Patent number: 4985400
    Abstract: The invention relates to a process for producing superconductive ceramics wherein, first, a liquid alloy melt is made of metals; this is carried out at a temperature at which the melt is chemically homogeneous. The melt is subsequently atomized with an inert gas or with oxygen. In the first case, a powder develops which is oxidized in a further step whereas in the second case the oxide powder is a direct result. By means of sintering, for example, the oxide powder can be pressed to superconductive bodies of any desired form.
    Type: Grant
    Filed: September 7, 1989
    Date of Patent: January 15, 1991
    Assignee: Leybold Aktiengesellschaft
    Inventor: Alok Choudhury