Step At 300 Degrees C Or Greater After Step At Less Than 300 Degrees C Using Nonmetallic Material Which Is Liquid Under Standard Conditions Patents (Class 75/365)
  • Patent number: 5711783
    Abstract: Process for preparing high purity metal powder by reacting one or more volatile alkoxide compounds with a reducing gas.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: January 27, 1998
    Assignee: H.C. Starck, GmbH & Co., KG
    Inventor: Martin Schloh
  • Patent number: 5707420
    Abstract: The copper powder contains at least one substance, which is not soluble in copper, e.g. Al.sub.2 O.sub.3, TiO.sub.2, SiO.sub.2 or B.sub.2 O.sub.3. For the production of this copper powder, a surplus of copper metal granulate is mixed with an ammonium salt and/or ammonium hydroxide, together with a saline solution in an aqueous solution, while a gas containing oxygen is added, and at a pH-value of at least 4. A copper-containing precipitate is produced, which is separated and treated at a temperature in the range from 150.degree. to 500.degree. C. in a reducing atmosphere. During this process, Cu(OH).sub.2 and Cu-oxide are transformed into metallic copper powder, which contains the dispersoid. The dispersoid content of the copper powder is preferably in the range from 0.1 to 5% by weight.
    Type: Grant
    Filed: September 26, 1995
    Date of Patent: January 13, 1998
    Assignee: Norddeutsche Affinerie Aktiengesellschaft
    Inventors: Bernd E. Langner, Peter Stantke, Rene-Holger Wilde
  • Patent number: 5639318
    Abstract: Oxidation resistant particles composed of copper and at least one metal hng a valence of +2 or +3 and having an intermediate lattice energy for the metal in its hydroxide form. The metal is selected from nickel, cobalt, iron, manganese, cadmium, zinc, tin, magnesium, calcium and chromium. In one embodiment, the phases of copper and at least one metal in the particles are separate and the concentration of the metal is greater near the surface of the particles than inwardly thereof. Process for making the oxidation resistant copper particles includes the steps of dissolving a copper salt and a salt of at least one of the metals in a suitable solvent or diluent; forming primary particles of copper and at least one metal in basic form by mixing a base and the salt solution; separating, washing and drying the primary particles; reducing the primary particles to metallic form; and heat treating the particles in metallic form at an elevated temperature.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: June 17, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alan S. Edelstein, Forrest H. Kaatz, Vincent G. Harris
  • Patent number: 5605561
    Abstract: Tantalum powder obtained by adding magnesium powder to tantalum powder which is prepared by reducing potassium tantalum fluoride with sodium metal, without conventional heat-treatment for agglomeration, to remove oxygen present in the tantalum powder, then washing with an acid and drying; an anode body for electrolytic capacitors produced by sintering the tantalum powder; and, an electrolytic capacitor which comprises the anode body incorporated therein. The tantalum powder has a large specific surface area and accordingly, the electrolytic capacitor in which the anode body produced from the tantalum powder is incorporated has an extra high capacity, i.e., a CV ranging from 70000 to 80000. The probability of causing ignition during the production process is substantially reduced and thus the tantalum powder can be handled with safety.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: February 25, 1997
    Assignee: Starck Vtech Ltd.
    Inventors: Katsuo Iwabuchi, Tadashi Komeya, Hiroshi Oki, Dieter Behrens
  • Patent number: 5584907
    Abstract: There is now provided a method for preparing a powder containing W and Co and/or Ni from APT and a soluble salt of Co(Ni) by a chemical reaction in a water suspension at temperatures from room temperature to the boiling point of the solution whereafter the formed powder is filtered off, dried and reduced to a metallic powder. Additional metals from groups IVa, Va or VIa of the periodic table of the elements are added to the suspension as compounds like oxides, hydroxides, soluble or insoluble salts.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 17, 1996
    Assignee: Sandvik AB
    Inventors: Mamoun Muhammed, Inger Grenthe, Sverker Wahlberg
  • Patent number: 5439502
    Abstract: A method for the manufacture of finely divided silver particles comprising the sequential steps:A. Forming an unsaturated solution of thermally decomposable silver-containing compound in a volatilizable solvent;B. Forming an aerosol from the unsaturated solution and a carrier gas;C. Heating the aerosol to a temperature above the decomposition temperature of the silver compound, but below the melting point of silver metal by which the silver compound is decomposed to form finely divided particles of pure densified silver; andD. Separating the precipitated silver particles from the carrier gas, reaction by-products and solvent voltilization products.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: August 8, 1995
    Assignees: E. I. Du Pont de Nemours and Company, University of New Mexico
    Inventors: Toivo T. Kodas, Timothy L. Ward, Howard D. Glicksman
  • Patent number: 5284614
    Abstract: Doped tungsten powder, or sintered tungsten bodies formed therefrom, having a fine dispersion of oxide particles of at least one metal from the group zirconium, hafnium, lanthanum, yttrium, and rare earth's are formed by the method of this invention. A mixture of a salt solution comprised of a soluble salt of the metal, and a tungsten blue oxide powder is formed. A hydroxide precipitating solution is admixed with the mixture to form a hydroxide precipitate of the metal on the tungsten blue oxide powder. The tungsten blue oxide powder and hydroxide precipitate are heated in a reducing atmosphere to form the tungsten powder having the dispersion of oxide particles. The doped tungsten powder can be consolidated and sintered to form tungsten bodies having a fine dispersion of the metal oxide.
    Type: Grant
    Filed: June 1, 1992
    Date of Patent: February 8, 1994
    Assignee: General Electric Company
    Inventors: Li-Chyong Chen, Stephen L. Dole, Ronald H. Arendt
  • Patent number: 5261942
    Abstract: An improved flaked tantalum powder and process for making the flaked powder are disclosed. The powder is characterized by having a Scott density greater than about 18 g/in.sup.3 and preferably at least about 90% of the flake particles having no dimension greater than about 55 micrometers. Agglomerates of the flaked tantalum powder, provide improved flowability, green strength and pressing characteristics compared to conventional flaked tantalum powders. The improved flaked tantalum powder can be made by preparing a flaked tantalum and then reducing the flake size until a Scott density greater than about 18 g/in.sup.3 is achieved. The invention also provides pellets and capacitors prepared from the abovedescribed flaked tantalum powder.
    Type: Grant
    Filed: March 10, 1992
    Date of Patent: November 16, 1993
    Assignee: Cabot Corporation
    Inventors: James A. Fife, Marlyn F. Getz
  • Patent number: 5196916
    Abstract: This is a highly purified metal comprising one metal selected from the group consisted of titanium, zirconium and hafnium. The highly purified metal has an Al content of not more than 10 ppm. It also has an oxygen content of not more than 250 ppm, each of Fe, Ni and Cr contents not more than 10 ppm and each of Na and K contents not more than 0.1 ppm. The highly purified metal is obtained by either purifying crude metal by the iodide process or surface treating crude metal to remove a contaminated layer existing on the surface thereof and then melting the surface treated material with electron beam in a high vacuum.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: March 23, 1993
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Minoru Obata, Mituo Kawai, Michio Satou, Takashi Yamanobe, Toshihiro Maki, Noriaki Yagi, Shigeru Ando
  • Patent number: 5173108
    Abstract: A method is disclosed for producing an agglomerated molybdenum plasma spray powder with a controlled level of oxygen which comprises forming a relatively uniform mixture of agglomerated powders containing molybdenum dioxide and one or more ammonium-containing compounds of molybdenum wherein the mixture has an oxygen content of greater than about 25% by weight and reducing the mixture in a moving bed furnace at a temperature of from about 700.degree. C. to about 1000.degree. C. for a sufficient time to remove a portion of the oxygen therefrom and form reduced molybdenum powder agglomerates having an oxygen content of no greater than about 25% by weight. The reduction takes place in the direction from the outside surface of the agglometates to the inside surface.
    Type: Grant
    Filed: November 12, 1991
    Date of Patent: December 22, 1992
    Assignee: GTE Products Corporation
    Inventor: David L. Houck
  • Patent number: 5154757
    Abstract: A method for producing pure cobalt metal powder involves the removal of divalent cationic impurities from a trivalent hexamine cobalt chloride solution. This solution is then decomposed to an insoluble cobalt oxide-containing material, from which pure cobalt metal powder is obtained through a chemical reduction process.
    Type: Grant
    Filed: October 28, 1991
    Date of Patent: October 13, 1992
    Assignee: GTE Products Corporation
    Inventors: Michael J. Miller, Thomas A. Wolfe, Michael J. Cheresnowsky, Tai K. Kim
  • Patent number: 5135567
    Abstract: The invention relates to a method for producing metal powders, where the employed raw materials are metal ions in a liquid phase. According to the invention, at a preliminary stage of the method the liquid phase containing metal ions is reduced with hydrogen at an increased pressure and raised temperature in order to produce porous, sponge-like metal powder. The obtained porous, sponge-like metal powder is further processed at a high temperature, for instance by means of plasma, in order to improve the qualities of the metal powder.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: August 4, 1992
    Assignee: Outokumpu Oy
    Inventors: Heikki J. Volotinen, Jyri J. Talja, Pekka A. Taskinen
  • Patent number: 5124008
    Abstract: A method for the extraction of valuable minerals and precious metals from oil sands ore bodies or other related ore bodies that is synergistically unique in the arrangement of processes for production of valuable minerals and precious metals in an economically and environmentally acceptable manner. The oil sands ores from oil sands ore bodies and other related ores from other related ore bodies including overburden and interburden mineral ores are crushed, the hydrocarbons, if any exists in worthwhile quantities, are recovered and the resulting coarse sands, other related ores and fines streams are processed in a definite sequence using known processes to recover the valuable minerals and precious metals values. All reactants and reagents, including water, are recycled in the method and tailings ponds are not required. Heat recovery is used extensively to cogenerate almost all of the process steam and process electrical requirements for the method.
    Type: Grant
    Filed: June 22, 1990
    Date of Patent: June 23, 1992
    Assignee: Solv-Ex Corporation
    Inventors: John S. Rendall, Valentine W. Vaughn, Jr.
  • Patent number: 4927456
    Abstract: A process for producing finely divided spherical iron group based metallic powders comprises forming an aqueous solution containing a source of the appropriate metal sources in a mineral acid, forming a reducible iron group based material from the solution, reducing the material to iron group based metal powder particles, subjecting the metal particles to a high temperature zone to melt a portion of the particles and to form droplets and cooling the droplets to form an essential spherical iron group based metallic powders.
    Type: Grant
    Filed: May 27, 1987
    Date of Patent: May 22, 1990
    Assignee: GTE Products Corporation
    Inventors: Nelson E. Kopatz, Walter A. Johnson, Joseph E. Ritsko
  • Patent number: 4913731
    Abstract: A process for forming particulate tungsten alloys from the individual metal sources comprises forming an aqueous solution containing the individual metals for producing tungsten heavy alloys, producing a solid particulate material from the solution and injecting the particle material into a high temperature zone and retaining such material in the high temperature zone for a time sufficient to at least partially melt the metals that are alloying with tungsten while maintaining the temperature of those metals below the boiling point of the lowest boiling metal in the second component. The prealloyed composite powder contains tungsten grains below about 5 micrometers as a discontinuous phase and has a continuous phase of the tungsten and a second component selected from nickel, iron, copper and mixtures thereof.
    Type: Grant
    Filed: October 3, 1988
    Date of Patent: April 3, 1990
    Assignee: GTE Products Corporation
    Inventors: Nelson E. Kopatz, Walter A. Johnson, Joseph E. Ritsko