Abstract: This method is for producing granular metallic iron in which the relation between the mass ratio (mass %) of the volatile matter content contained in a carbonaceous reducing agent and the average gas flow rate (m/s) of the ambient gas in a heating furnace fulfills expression (1). Mass ratio of volatile matter content??4.62×average gas flow rate+46.7 . . .
Abstract: A rotary hearth furnace for treating metal oxide materials comprises a hearth mounted for rotary movement within an enclosure. One or more fuel burners are positioned above the hearth. The burners are operably fired to heat the furnace so that heat radiates toward the hearth. One or more oxygen nozzles are positioned between the hearth and the burners in a manner that avoids substantial contact between the oxygen and the briquettes, thereby creating a quiescent zone immediately above the briquettes, with the quiescent zone being sufficient to minimize reoxidation of the reduced briquettes, and minimize entrainment of particulate matter from the briquettes.
Abstract: A method for producing a substantially metallic iron-containing product from iron oxide. The metallic iron produced according to the invention is non-pyrophoric and may be safely shipped and handled without additional process steps. The method of the invention is simple, economical, and produces high quality metallic product which may be used as a feed for Electric Arc Furnace (EAF), Blast Furnaces and Cupolas among other applications.
Abstract: Method and system for producing metallic nuggets includes providing reducible mixture (e.g., reducible micro-agglomerates; reducing material and reducible iron bearing material; reducible mixture including additives such as a fluxing agent; compacts, etc.) on at least a portion of a hearth material layer. In one embodiment, a plurality of channel openings extend at least partially through a layer of the reducible mixture to define a plurality of nugget forming reducible material regions. Such channel openings may be at least partially filled with nugget separation fill material (e.g., carbonaceous material). Thermally treating the layer of reducible mixture results in formation of one or more metallic iron nuggets. In other embodiments, various compositions of the reducible mixture and the formation of the reducible mixture provide one or more beneficial characteristics.
Type:
Grant
Filed:
December 7, 2005
Date of Patent:
April 13, 2010
Assignee:
Nu-Iron Technology, LLC
Inventors:
Iwao Iwasaki, Michael J. Lalich, Robert C. Beaudin, Richard F. Kiesel, Andrew J. Lindgren, Rodney L. Bleifuss
Abstract: A furnace sidewall structure of a rotary hearth furnace for making direct reduced iron which is agglomerated iron ore or waste iron oxide containing a reducing agent on a rotary hearth by heating or for heating at least one steel piece, wherein the rotary hearth furnace includes an outer furnace sidewall and an inner furnace sidewall, wherein at least one of the outer furnace sidewall and the inner furnace sidewall is polygonal. The furnace sidewall structure can be prepared with lower manufacturing costs relative to conventional circular profile rotary hearth furnace with respect to the furnace sidewall. The production thereof is easy with respect to manufacturing and with respect to the fact that the dimensional accuracy of the manufactured furnace sidewall can be easily adjusted. Also, there is associated a shorter installation/construction work period and a reduction in the installation/construction cost.
Abstract: Using diversified raw materials as mixed oxide ore, steel scrap, iron sulfide ores steel and steel alloys are produced. Elements not required in steel composition are separated and recovered as individual elements. Liquid steel is cooled by performing endothermic gaseous reaction in direct contact with steel and cast in required forms. Continuously cast products go directly to rolling process with appropriate finishing treatments. CO2, N2, H2S and SO2 produced in the mill are gainfully utilized. Direct water is not used in steel making process. All by-products are gainfully utilized and pollution problems are solved.
Abstract: A rotary hearth furnace for reducing a feed material is disclosed. The rotary hearth furnace includes a rotating hearth disposed in an enclosure and mounted for rotary movement. The enclosure includes an annular inner wall, an annular outer wall and a roof. The enclosure is sealed to the hearth and divided into a plurality of zones including at least a loading zone, a process zone and a discharge zone. The furnace further includes a plurality of burners positioned in at least the outer wall of the enclosure to provide a controlled temperature within the rotary hearth furnace and a flue positioned within the reduction zone of the furnace between the preheat zone and the discharge zone to exhaust combustion gases from the burners and gases resulting from the processing of the feed material. Said flue contains space for combustion and settling of the unburned particulates.
Type:
Grant
Filed:
February 21, 2001
Date of Patent:
May 21, 2002
Assignee:
Maumee Research & Engineering, Inc.
Inventors:
Franklin G. Rinker, Deane A. Horne, James Alan Thornton
Abstract: A process of reduction of iron ore and/or waste oxides in the form of agglomerate containing carbonaceous reductant on the hearth of a furnace includes providing a bed of agglomerates on the hearth of a furnace, the bed having a height of at least about 40 mm and having at least four layers of agglomerates. The carbonaceous reductant contains sufficient volatile matter, the volatile matter having a weight of at least about 10% of the weight of the reductant. The bed of agglomerates is heated with a radiant heat source having a temperature of at least about 1450° C. to cause the top of the bed to reach a temperature in the range of 1530° C. to 1500° C. to reduce iron oxides in the iron ore and/or waste oxides to metallic iron.
Abstract: Raw materials, including a metal oxide and a carbonaceous material, are supplied into a rotary hearth furnace. Then, the raw materials are heated and reduced by burners, which are arranged to cause a strong stirring action for an atmosphere around the raw materials, in an early reducing period that is defined as a period during which 70-80% of a total amount of a flammable gas generated from the raw materials is generated. In a latter period subsequent to the early reducing period, the raw materials are heated and reduced by burners arranged to cause a weak stirring action for an atmosphere around the raw materials, whereby a metal is manufactured. With the present invention, productivity can be improved and the fuel consumption per unit product can be reduced.
Abstract: A process for beneficiating particulate titanium-bearing ore containing iron oxides is disclosed. The first step of the process entails prereducing the ore to convert about 20-90 percent of the iron oxides in the ore to metallic iron. Next, the prereduced ore is introduced into a mechanical reduction kiln and contacted with HCl and particulate carbonaceous reducing material. The turning and cascading of the materials in the kiln, in the presence of HCl and the reducing material, converts at least some remaining iron oxide in the ore to metallic iron and causes metallic iron to be liberated from the ore grains. Particulate metallic iron having a particle size of at least 50 microns is thereby formed. Finally, the particulate iron is separated from the ore.
Type:
Grant
Filed:
January 26, 1996
Date of Patent:
August 26, 1997
Assignee:
E. I. Du Pont de Nemours and Company
Inventors:
James William Reeves, Bo Harry Zander, Aake Sandor Ericson
Abstract: Apparatus for treating iron ore, comprising an elongate and generally cylindrical inclined kiln mounted for rotation about its longitudinal axis. A drive motor is coupled to the kiln to rotate the latter about that axis. A moving grate is positioned at the upper end of the kiln to feed iron ore pellets into the kiln while the latter is rotating. Port-defining means are provided in the generally cylindrical wall of the kiln to enable gaseous material to be fed into the interior of the kiln at at least one position between the ends thereof. The port-defining means are of such a construction that they are open when they are underneath the iron ore in the kiln. Gaseous oxidizing material feed means are connected to the port-defining means to feed such oxidizing material thereto, whereby oxidizing gaseous material is passed through the iron ore in the kiln when the apparatus is in use so as to raise the temperature of the iron ore, by oxidation thereof, and cause the latter to be indurated.
Abstract: Metal-containing ores are extracted by a process and apparatus which avoid contaminating the product with fuel gas components. In a rotary kiln, a heat shock-resistant ceramic pipe is subjected to indirect high temperature heating, thereby allowing the extraction reaction to be conducted without heat producing fuel gases.