Noble Gas Or Inert Gas Not Otherwise Identified Patents (Class 75/546)
  • Patent number: 9234252
    Abstract: A method for controlling A-shaped segregation of steel ingot. The method includes: 1) controlling a content of phosphorus in liquid steel at less than or equal to 0.005 wt. % upon tapping from an electric furnace, preventing steel slag from entering a ladle, controlling content of harmful elements at less than or equal to 100 ppm; and adding between 3 and 15 kg of calcium oxide and less than or equal to 0.5 kg of aluminum to each ton of the liquid steel; 2) pre-deoxidizing the liquid metal using vacuum carbon deoxidation; 3) de-sulfurizing, controlling content of oxygen, and controlling the content of sulfur in the liquid steel at less than or equal to 0.005 wt. %; and 4) performing vacuum degasification, controlling the total oxygen content at less than or equal to 15 ppm; and casting the steel in the presence of inert gas or in vacuum.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: January 12, 2016
    Assignee: INSTITUTE OF METAL RESEARCH CHINESE ACADEMY OF SCIENCES
    Inventors: Dianzhong Li, Paixian Fu, Hongwei Liu, Lijun Xia, Yiyi Li
  • Publication number: 20020174746
    Abstract: A steel charge and slag forming material is heated in a ladle to form molten steel covered by a slag containing silicon, manganese and calcium oxides. The steel is stirred by injection of an inert gas such as argon or nitrogen to cause silicon/manganese deoxidation and desulphurization to produce a silicon/manganese killed molten steel. Stirring of the molten steel by the inert gas injection while in contact with slag high in calcium oxide generates low free oxygen levels in the steel and desulphurization to sulphur levels below 0.009%. The slag may subsequently be thickened by lime addition to prevent reversion of sulphur back into the steel and oxygen may be injected into the steel to increase its free oxygen content to produce a steel that is readily castable in a twin roll caster.
    Type: Application
    Filed: April 2, 2002
    Publication date: November 28, 2002
    Inventors: Clay Gross, Rama Ballav Mahapatra, Walter N. Blejde, Steve Leonard Wigman
  • Patent number: 5749939
    Abstract: A multiple stage process for obtaining Ni units from Ni laterite ores and sulfur-bearing Ni concentrates during production of nickel-alloyed iron, nickel-alloyed steel or nickel-alloyed stainless steel in a reactor equipped with top- and bottom-blowing means. Dried Ni laterite ore is charged into an iron/slag bath mixture containing dissolved carbon and a metalloid reductant such as aluminum or silicon. The laterite ore is melted while heat is generated by oxidation of the metalloid and carbon in the reactor. After the laterite ore is melted, top-blowing of pure oxygen and bottom-blowing of an oxygen-containing gas are ceased. Bottom injection of an inert stirring gas is begun. A sulfur-bearing Ni concentrate and aluminum are added to the bath.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: May 12, 1998
    Assignee: Armco Inc.
    Inventor: David M. Kundrat
  • Patent number: 5743938
    Abstract: A method of decarburizing refining molten steel containing Cr in such a manner that oxygen gas, inert gas or a mixture of inert gas and oxygen gas is blown to the surface of bath of molten steel containing Cr in a refining chamber and to a position below the surface of the steel bath. Inert gas is blown to the surface of the steel bath, and oxygen gas, the inert gas or a mixture of oxygen gas and inert gas is blown below the surface of the steel bath in a portion of or all of an overall period in which the concentration of C in the molten steel is in a range of 1 wt % and 0.05 wt %. Slag and molten steel are stirred so as to cause Cr.sub.2 O.sub.3 in the slag and C in the molten steel to positively take part in a reaction represented by expression (1) below:Cr.sub.2 O.sub.3 +3C.fwdarw.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: April 28, 1998
    Assignee: Kawasaki Steel Corporation
    Inventors: Hiroshi Nishikawa, Masaru Washio, Naoki Kikuchi
  • Patent number: 5575829
    Abstract: A process for obtaining Ni units from sulfur-bearing nickel concentrate during refining a nickel-alloyed steel or a stainless steel. Sulfur of the concentrate is transferred to and held within the slag by controlling slag composition and temperature, degree of mixing of the slag with the bath by an inert gas and aluminum level in the bath. The extent of desulfurization by the slag, the slag weight and the steel sulfur specification determine the amount of concentrate that can be added to the bath. The ratio of the slag weight to the iron bath weight should be in the range of 0.10-0.30 and the bath temperature is maintained between 1550.degree.-1700.degree. C. The slag basicity is controlled between 1.0 and 3.5, the composition of Al.sub.2 O.sub.3 in the slag is maintained between 15-25 wt. % and the composition of MgO is maintained between 12-20 wt. %.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: November 19, 1996
    Assignee: Armco Inc.
    Inventor: David M. Kundrat
  • Patent number: 5085691
    Abstract: The invention contemplates smelting in a steelmaking unit a carbon-containing semiproduct, tapping it into a ladle, supplying to the ladle slag-forming materials, a reducer and thermally pretreated oxide materials containing alloying elements. The supply of said oxide materials is started after the tapping of the carbon-containing semiproduct in an amount of minimum 0.25 and maximum 0.5 by mass thereof, is carried out during the tapping of this semiproduct and completed before completing the tapping of the carbon-containing semiproduct. The supply of a reducer is carried out after the supply of said oxide materials and is completed before the end of the tapping of the carbon-containing semiproduct.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: February 4, 1992
    Inventors: Anatoly Y. Nakonechny, Manat Z. Tolymbekov, Alexandr G. Ponomarenko, Vladimir N. Radchenko, Alexandr A. Bulyanda, Vladimir G. Mizin, Gennady Z. Gizatulin, Jury F. Vyatkin