And Adding Solid Agent, Slag, Or Flux To Premelted Iron(fe) Or Slag Layer Thereon Patents (Class 75/531)
  • Patent number: 9771626
    Abstract: A method of starting a molten bath-based process for smelting a metalliferous material is disclosed. The method includes using the heat flux of water-cooled elements in lower parts of a smelting vessel to provide an indication of molten bath temperature during at least an early part of the start-up method and adjusting injection rates of oxygen-containing gas and/or carbonaceous material into the smelting vessel to control the molten bath temperature during start-up without exceeding critical heat flux levels and tripping the start-up method.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 26, 2017
    Assignee: Technological Resources Pty. Limited
    Inventors: Carolyn McCarthy, Rodney James Dry
  • Patent number: 7998243
    Abstract: A method of producing steel (1) with a high manganese and low carbon content on the basis of liquid pig iron (2) or liquid steel (3) and slag-forming constituents (4) with the object of preventing existing drawbacks of process route in vessels other than, e.g., electrical arc furnaces (18). With steel produced with a high manganese and low carbon content, in a process, the carbon component is reduced to about 0.7-0.8% by a combined blowing of oxygen (7) through top lances (8) and underbath nozzles (9) after feeding of liquid ferro-manganese (50 and liquid steel (3a) in a FeMn-refining converter (6a), wherein a component of a cold end product from premelt is added as cooling means (10), and wherein the carbon component is reduced to about 0.05-0.1% C by a continuous blowing of oxygen (7) through the underbath nozzles.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: August 16, 2011
    Assignee: SMS Siemag AG
    Inventors: Lutz Rose, Walter Weischedel
  • Patent number: 7914601
    Abstract: A method of cold starting a molten bath-based direct smelting process for producing molten iron in a vessel (3) is disclosed. The method includes a step of preheating the vessel before supplying solid feed materials into the vessel. The method also includes a subsequent step of supplying an oxygen-containing gas and solid feed materials including material for forming slag, iron-containing feed material, and carbonaceous material into the vessel and generating heat and forming a bath of molten material that includes molten iron and molten slag in the vessel. This step includes supplying feed materials to promote formation of molten slag over molten iron in an early stage of developing the molten bath.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: March 29, 2011
    Assignee: Technological Resources Pty. Limited
    Inventors: Iain William Farr, Rodney James Dry
  • Patent number: 7901482
    Abstract: Molten steel is refined in an electric furnace by using iron scrap as a main iron source, and is tapped into a separate refining vessel. Thereafter, metallic-Al containing material and CaO are added onto a bath surface of the molten steel, and an oxygen containing gas is supplied to the molten steel. Thereby, a nitrogen-removal reaction utilizing an AlN formation reaction is caused to proceed. Consequently, even in the case of molten steel having a low carbon content, a low-nitrogen steel can be refined and produced at low costs.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: March 8, 2011
    Assignee: JFE Steel Corporation
    Inventors: Chikashi Tada, Chitoshi Matsumura
  • Patent number: 7655066
    Abstract: The invention relates to titanium oxide containing slag compositions and associated methods for reducing the nitrogen content of metals. The titanium oxide slag compositions can be used to reduce nitrogen content in various molten metals including steel, nickel, copper, iron, and the like. The nitrogen content of the metals can be reduced by contacting the metal with the titanium oxide containing slag composition. The slag compositions are capable of reducing the nitrogen content of steel to less than 20 ppm without the need for specialized high-quality starting materials or processing equipment.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: February 2, 2010
    Assignee: University of Utah Research Foundation
    Inventors: Peng Fan, Weol D. Cho
  • Publication number: 20090038439
    Abstract: The present invention provides a method suitable for manufacturing a steel material for obtaining a steel wire rod with decreased amount of hard nonmetallic inclusions and improved drawability and fatigue property by adequately controlling the conditions of secondary refining and manufacturing conditions in a converter. Converter blowing is performed by taking molten iron, cold iron, and steel scrap as main raw materials to be charged into a converter, the ratio of these components based on all the main raw materials being such that the molten iron takes 96 to 100% (means wt. %, same hereinbelow), the cold iron takes 4% or less, and the steel scrap takes 2% or less, and by setting an average P concentration in all the main raw materials to 0.02% or less, and operations are carried out such that a flow rate of gas for stirring molten steel during secondary refining after completion of the converter blowing is set to 0.0005 Nm3/min or more to 0.
    Type: Application
    Filed: March 26, 2007
    Publication date: February 12, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel Ltd)
    Inventors: Sei Kimura, Tsuyoshi Mimura
  • Patent number: 7422622
    Abstract: A process and apparatus for supplying solid feed materials for a direct smelting process to solids injection lances of a direct smelting vessel is disclosed. The feed materials supply apparatus includes a supply line (L) for conveying iron-containing material and solid carbonaceous material under pressure to solids injection lances (7), and the supply line includes a main feeder line section (15) and a plurality of branch line sections (17) extending from the main feeder line section. Each branch line section is connected to one solids injection lance for supplying iron-containing material and carbonaceous material to that lance. The apparatus further includes an assembly for dispensing iron-containing material under pressure into the main feeder line section of the supply line and an assembly for dispensing carbonaceous material under pressure into the main feeder line section of the supply line.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: September 9, 2008
    Assignee: Technologies Resources Pty Ltd.
    Inventor: David John Leigh
  • Patent number: 7250071
    Abstract: A new austenitic stainless steel containing approximately 0.1-1.0 mass % of Si and not more than approximately 0.003 mass % of Al. Nonmetallic inclusions dispersed in a steel matrix are converted to MnO—SiO2—Al2O3 containing not less than approximately 15 mass % of SiO2 and not more than approximately 40 mass % of Al2O3. During steel making, molten steel is covered with basic slag and heavily deoxidized with a Si alloy whose Al content is controlled to not more than approximately 1.0 mass % in a vacuum or non-oxidizing atmosphere. The austenitic stainless steel sheet can be formed to an objective shape without the occurrence of cracking due to its decrease in susceptibility to cracking and its good formability.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: July 31, 2007
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Junichi Katsuki, Teruyoshi Iida, Takashi Yamauchi, Satoshi Suzuki, Naoto Hiramatsu
  • Patent number: 6679936
    Abstract: A tool or fluxing head for fluxing molten metal that comprises a fluxing gas supply line that communicates with the interior of an inverted plunger cup providing a hollow interior into which refining agents and other additives that are to be introduced into a molten metal can be incorporated. In use, the fluxing head is introduced into a molten metal body with the plunger cup in the inverted position. The inverted plunger cup has a closed top at the point where the gas supply line enters and an open bottom that allows molten metal to enter the inverted cup to make contact with the refining agent or other additive. Apertures are provided in the wall of the inverted plunger cup to allow gas introduced therein to escape therefrom. According to a preferred embodiment, a porous layer is provided at the top of the inverted plunger cup to allow for the escape of gas into the molten metal through the porous layer.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: January 20, 2004
    Assignee: Pyrotek, Inc.
    Inventor: Mark S. Quackenbush
  • Publication number: 20030177864
    Abstract: The present invention provides a method of desulfurizing hot metal, which method utilizes desulfurization slag resulting from a KR hot metal desulfurizing treatment as a desulfurizing agent for hot metal again to reduce hot metal desulfurization costs and the amount of slag generated, thereby solving environmental problems.
    Type: Application
    Filed: December 12, 2002
    Publication date: September 25, 2003
    Inventors: Yoshie Nakai, Hiroshi Shimizu, Toshio Takaoka, Yoshiteru Kikuchi, Shuei Tanaka, Shinichi Wakamatsu, Atsushi Watanabe, Osamu Yamase
  • Patent number: 6517605
    Abstract: A procedure for starting up a direct smelting process for producing iron from a metalliferous feed material in a metallurgical vessel is disclosed. The vessel is of the type which includes a plurality of feed material injection lances/tuyeres (11, 13). The start-up procedure includes the steps of: (a) preheating the vessel; (b) supplying a charge of molten iron to the vessel and forming a molten bath in the vessel, (c) supplying carbonaceous material and flux to the molten bath and injecting oxygen-containing gas through one or more than one feed material injection lance/tuyere and combusting carbon and bath derived gas (if present) and thereby heating the molten bath and generating slag; and (d) suppling metalliferous feed material to the vessel while continuing supply of carbonaceous material and flux and injection of oxygen-containing gas and smelting metalliferous feed material and producing molten iron and thereby completing the start-up procedure.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: February 11, 2003
    Assignee: Technological Resources Pty. Ltd.
    Inventors: Cecil Peter Bates, Peter Damian Burke
  • Patent number: 6387153
    Abstract: A procedure for holding production of molten metal in a direct smelting process is disclosed. In situations where it is necessary to hold metal production and there is a continuing available supply of oxygen-containing gas and solid carbonaceous material, the hold procedure includes the steps of stopping supply of metalliferous feed material, continuing to inject oxygen-containing gas and solid carbonaceous material into the vessel and generating heat within the vessel to maintain the temperature of the molten bath above a temperature at which the bath freezes. In situations where it is necessary to hold production and there is a continuing supply of oxygen-containing gas but no available solid carbonaceous material, the hold procedure includes the steps of stopping supply of metalliferous feed material and injecting oxygen-containing gas and gaseous or liquid combustible material into the vessel and generating heat within the vessel to maintain the bath temperature.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: May 14, 2002
    Assignee: Technological Resources Pty Ltd
    Inventor: Peter Damian Burke
  • Patent number: 6383253
    Abstract: Alloying and/or reducing powder is pumped directly into the steel melt at a pressure of at least 20 bar, preferably at least 40 bar, with at most 20% of a fluidizing agent and the powder is discharged from the delivery line by a plunger extending across the cross section thereof.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: May 7, 2002
    Assignee: Egon Evertz KG (GmbH & CO)
    Inventors: Ralf Evertz, Stefan Evertz
  • Patent number: 6267799
    Abstract: A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterized by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterized by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: July 31, 2001
    Assignee: Technological Resources Pty. Ltd.
    Inventors: John Alexander Innes, Robin John Batterham, Rod James Dry
  • Patent number: 6261338
    Abstract: An arrangement wherein a coherent jet is established proximate to a powder injection system and the coherent jet not only provides for gas delivery but also serves to improve the efficiency of the delivery of powder from the powder injection system.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: July 17, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: William John Mahoney, John Erling Anderson
  • Patent number: 6241805
    Abstract: A method is provided for improving the efficiency of a basic oxygen furnace operation and/or regulating its rate of molten iron consumption to accommodate interruptions in downstream production. The method comprises the steps of combining a wet scrubber sludge with hot slag to provide a slag/sludge mixture, commencing a steelmaking operation of the basic oxygen furnace (BOF), and introducing the slag/sludge mixture into the BOF during the steelmaking operation so that the BOF produces a desired quantity and quality of steel in a manner that is more efficient than without the slag/sludge mixture. Also provided is a system for improving the efficiency of a BOF operation. The system comprises a mixer and an introduction mechanism. The mixer is connected to a source of wet scrubber sludge and a source of hot slag. The mixer is adapted to combine the wet scrubber sludge with the hot slag to provide a slag/sludge mixture.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: June 5, 2001
    Assignee: Bethlehem Steel Corporation
    Inventors: John D. Lynn, Colvin W. Smith
  • Patent number: 6238453
    Abstract: A process for producing stainless steels, particularly special steels containing chromium and chromium-nickel, in a smelting arrangement having at least two vessels, for supplying a steel foundry. A charge having mostly iron-containing raw scrap materials and partially carbon-containing alloy carriers is melted in a first vessel. At a temperature of 1460° C., the melt is decarburized by the injection of oxygen so as to reduce the carbon content to less than 0.3%. The melt is heated to a tapping temperature of between 1620° C. to 1720° C. and the carbon content is subsequently reduced to 0.1%. A second charge is melted in a second vessel simultaneously with the decarburizing of the first charge in the first vessel.
    Type: Grant
    Filed: July 31, 1998
    Date of Patent: May 29, 2001
    Assignee: Mannesmann AG
    Inventors: Lutz Rose, Hartmut Vorwerk, Horst Kappes, Klaus Ulrich
  • Patent number: 6235082
    Abstract: With a method for producing liquid metal from charging substances containing ore and of fluxes, the ore is directly reduced to sponge metal in at least one reduction zone (5, 7, 8), the sponge metal is melted along with fluxes in a melt-down gasifying zone (11) under the supply of carbon carriers and an oxygen-containing gas. A CO- and H2-containing process gas serving as a reducing gas is produced, fed into the reduction zone (5, 7, 8), reacted there, and subsequently withdrawn, wherein slagforming fluxes, in particular calcium carbonate, dolomite etc., gas are calcined by the process gas in a calcining zone (26′) that is separate from the reduction zone (5, 7, 8) and melt-down zone (11). To be able to employ slagforming fluxes of any desired grain and without disturbances of the reduction process, the calcining zone (26′) is connected in parallel to the reduction zone (5, 7, 8) with respect to the material flow and the calcined fluxes are fed into the melter gasifier (10) directly.
    Type: Grant
    Filed: May 24, 1998
    Date of Patent: May 22, 2001
    Assignees: Voest-Alpine Industrieanlagenbau GmbH, Pohang Iron & Steel Co., Ltd., Research Institute of Industrial Science & Technology
    Inventors: Werner Leopold Kepplinger, Johann Wurm, Johannes-Leopold Schenk
  • Patent number: 6083296
    Abstract: A method and an apparatus for producing metals and metal alloys from metal oxides in a metallurgical vessel containing a molten bath having a metal layer and a slag layer is disclosed. The method is characterized by injecting a carrier gas and a solid carbonaceous material and/or metal oxides into the molten bath from a side of the vessel that is in contact with the molten bath or from above the molten bath so that the solids penetrate the molten bath and cause molten metal to be projected into the gas space above the molten bath to form a transition zone. The method is also characterized by injecting an oxygen-containing gas into the gas space to post-combust reaction gases released from the molten bath into the transition zone.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: July 4, 2000
    Assignee: Technological Resources Pty. Limited
    Inventors: John Alexander Innes, Robin John Batterham, Rod James Dry
  • Patent number: 6039787
    Abstract: In a process for working up combustion residues and slags from waste incineration plants or steel works slags, the slag is charged at a slag layer height of above 1.2 m into a converter (1), in which the molten slag is reacted with a metal bath (4) through which oxygen is blown. The oxygen is introduced into the bath (4) for cooling the submerged tuyeres (7, 8) in the form of air or along with CO.sub.2 or water vapor.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: March 21, 2000
    Assignee: "Holderbahk" Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 5931985
    Abstract: A process for blowing oxygen-containing gas, with and without solid material, on a metal melt in a metallurgical vessel, a process for generating a burner flame and corresponding devices. The inventive process and lance suitable for such process provides, without structural conversion and by a simple design, various different process steps in the treatment of metal melts in a metallurgical vessel while increasing the insertion rates of the individual media. This is accomplished using a multifunctional lance in which the process of blowing oxygen with and without solids, and the generation of a burner flame may be performed independently from one another. The individual supply lines are connected in a corresponding manner depending on the respective process step. In the process for blowing oxygen-containing gas, vibrations are excited in the gas flow in a relatively simple manner.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: August 3, 1999
    Assignee: Mannesmann Aktiengesellschaft
    Inventors: Horst-Dieter Schoeler, Ulrich Meyer, Anatoly Sizov
  • Patent number: 5853453
    Abstract: In a method of processing iron-containing metallurgical residual substances, offgases containing iron-containing particles are washed out in a wet process and separated in the form of sludge. The sludge is then dehydrated and agglomerated; subsequently, the agglomerates are recycled into an iron melt production process. To recover the iron contained in the sludge, the agglomerates are passed exclusively into a refining stage of the steel production process. The present method may be used in a steel production process which produces steel from pig iron, as well as optionally from scrap and/or iron ore and/or sponge iron. The refining stage is performed using an oxygen blowing process.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: December 29, 1998
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Johann Lehner, Gunter Schrey
  • Patent number: 5762682
    Abstract: In steel-making, there are conflicting processing requirements at different stages of the process. The method and apparatus of the invention creates different processing conditions at different stages of the process. Molten ferrous material (2) is stirred by bubbling a gas therethrough. A refractory ring (10) is first partially immersed in the molten steel within a substantially slag free portion of the surface of the molten ferrous metal to form a bounded substantially slag-free area. The molten steel is then heated by the introduction of exothermically reacting heating agents such as aluminium and oxygen through an oxygen gas line (7) and an aluminium delivery tube (9), respectively. The refractory ring (10) is then removed from the molten steel when the steel has reached a predetermined temperature and air is then excluded from the volume above the molten steel by placing a hood (16) over the ladle containing the molten steel. Sulphur is then removed from the steel.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: June 9, 1998
    Assignee: Vacmetal Limited
    Inventor: John Rushe
  • Patent number: 5336296
    Abstract: The proposed method is characterized in that the liquid bath is constituted by the melt of low carbon steel and molten slag. Oxidation and reducing zones are created through which, along a closed path on the surface of the molten low-carbon steel, is circulated the molten slag, into which are blown powder slag materials which are melted with the heat of a fuel oxygen torch immersed into the melt. The melting is carried out in a melting reservoir shaped as a closed annular chamber (1) provided with partitions (11) hermetically dividing the gas space above the molten slag into oxidation (6) and reducing (7) zones.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: August 9, 1994
    Assignee: Scientific Dimensions USA, Inc.
    Inventor: Vitold M. Lupeiko
  • Patent number: 5135572
    Abstract: A method of in-bath smelting reduction comprises the step of selectively supplying powder materials into a gas upflow region or a gas downflow region within a furnace during the time that oxygen-containing gas is concurrently being blown into the furnace from a top lance. Also disclosed is an in-bath smelting reduction furnace for carrying out the method.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: August 4, 1992
    Assignee: Nippon Steel Corporation
    Inventors: Tetsuharu Ibaraki, Michitaka Kanemoto, Masao Yamauchi, Chikara Saito, Hiromitsu Moridera
  • Patent number: 5015291
    Abstract: A process for desulfuring molten metal by injecting a desulfurization reagent into the molten metal using a carrier gas via a lance immersed in the molten metal; said desulfurization reagent comprising magnesium nitride.
    Type: Grant
    Filed: December 8, 1989
    Date of Patent: May 14, 1991
    Assignee: The Dow Chemical Company
    Inventors: Edward J. Skach, Jr., Paul S. Frederick