Abstract: A high dimensional cored wire is provided containing de-oxidant material arranged in a core of the wire, the de-oxidant material being in finely divided granular or powdery form coated with a protective coating material, the diameter of the cored wire varying between 13 and 40 mm. A process for manufacturing the wire is also provided.
Type:
Grant
Filed:
July 17, 2007
Date of Patent:
September 25, 2012
Assignees:
Heraeus Electro-Nite International N.V., Goda Surya Narayan
Abstract: The present invention concerns a new type of grain refiners for steel, in the form of a particulate composite material, containing a high volume fraction of tailor-made dispersed particles, with the purpose of acting as potent heterogeneous nucleation sites for iron crystals during solidification and subsequent thermo-mechanical treatment of the steel.
Type:
Application
Filed:
May 31, 2007
Publication date:
August 27, 2009
Applicant:
SINVENT AS
Inventors:
Oystein Grong, Casper Van Der Eijk, Gabriella Maria Tranell, Leiv Olav Kolbeinsen
Abstract: A technique for producing iron utilizes agglomerations, such as briquettes or tablets, or powders, that include a sulfur-containing material such as iron sulfide, and and oxygen containing material such as iron oxide. The agglomerations or powders are substantially free of chemical binders and utilize iron and aluminum metal powders and pressure for compaction on either roll presses or tablet machines. Addition of metal powders provides rapid dissolution of the alloy and improved heat transfer. Iron sulfide agglomerations also provide consistent and improved sulfur recoveries compared to granulated iron sulfide additions with little to no sulfur odor.
Abstract: A technique for producing compacted graphite iron utilizes agglomerations, such as briquettes or tablets that include a sulfur-containing material such as iron sulfide. The agglomerations are free of chemical binders and utilize iron and aluminum metal powders and pressure for compaction on either roll presses or tablet machines. Addition of metal powders provides rapid dissolution of the alloy and improved heat transfer. Iron sulfide agglomerations also provide consistent and improved sulfur recoveries compared to granulated iron sulfide additions with little to no sulfur odor.
Abstract: A VOD refining method for fast-cut stainless steel containing sulphur includes a step of VOD refining process, another step of reduction and residue producing and ferrous sulphide adding process, another step of micro-adjusting control process, and a last step of taking out the steel. The feature is to add 0.001 wt %-0.01 wt % CaO and 0.001 wt %-0.005 wt % MgO in the steel liquid during the micro-adjusting control process, in order to elevate sulphur absorption and enhance the aggregate sulphur recycling percentage to more than 85%.
Abstract: A new technique for producing ferrosilicon free inoculating agents for gray and ductile irons utilizing oxy-sulfide forming elements combined with sulfur and oxygen and 1) mechanically pressed into an insert or tablet for placement into foundry sand molds or 2) a mixture of the same ingredients used as a loose or granular addition to molten iron. The inoculating agent is composed of 15 to 49% silicon, 7 to 22% calcium, 2.5 to 10% sulfur, 2 to 4% oxygen, 2.5 to 7.5% magnesium and 0.5 to 5% aluminum with the balance iron and incidental impurities, wherein the iron is the primary densification agent.
Abstract: In a process for separating tin as well as, if required, copper from scrap melts, in particular, tinplate melts or metallic melts as formed in the working up of waste or metal-oxide-containing combustion residues, the carbon content of the melt is adjusted to 3 to 4.2% by weight and hot wind, oxygen or air enriched with oxygen is locally blown on partial regions of the surface of the melt bath, whereby SnO is discharged, via the gaseous phase, from the redox-gradient-exhibiting zone formed between the carbon-rich bath and the iron oxides produced by top-blowing.
Abstract: A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.
Type:
Grant
Filed:
June 27, 1997
Date of Patent:
March 23, 1999
Assignee:
The United States of America as represented by the United States Department of Energy
Abstract: A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.