Treating Premelted Iron(fe) Or Slag Layer Thereon By Adding Solid Agent, Slag, Or Flux Patents (Class 75/560)
  • Patent number: 11091816
    Abstract: A method for ironmaking by smelting reduction in a stir-generated vortex includes: (1) placing a pig iron in an induction furnace, and then heating the pig iron to a molten state to form a molten iron, and maintaining the molten iron to be greater than or equal to 1450° C.; (2) stirring a center of the molten iron to form a vortex with a height-to-diameter ratio of 0.5-2.5, and continuously performing stirring; (3) mixing and grinding on an iron-containing mineral, a reducing agent and a slag-forming agent in a mass ratio of 1:(0.1-0.15):(0.25-0.4) to obtain a powder mixture, spraying and blowing the powder mixture to a center of the vortex, performing a reduction reaction, and stopping the stirring after the molten iron and molten slags are obtained, wherein a waste gas is produced; and (4) discharging the molten iron and the molten slags respectively, and exhausting a treated waste gas.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: August 17, 2021
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Ting an Zhang, Yan Liu, Zhi he Dou, Zi mu Zhang, Guo zhi Lv
  • Publication number: 20150122083
    Abstract: Provided are a method and a refining device for producing molten steel of outstanding cleanliness, and more particularly provides a method and device for refining inclusions by forming droplets from molten steel and dropping same into slag during pre-processing in a continuous casting process in a steel-making process.
    Type: Application
    Filed: May 13, 2013
    Publication date: May 7, 2015
    Applicant: POSCO
    Inventors: Ja Yong Choi, Seung Min Han, Sun Koo Kim, Hee Ho Lee, Sang Yuel Jung, Young Jong Seo
  • Patent number: 9023128
    Abstract: Methods of forming metal matrix nanocomposites are provided. The methods include the steps of introducing a master metal matrix nanocomposite into a molten metal at a temperature above the melting temperature of the master metal matrix nanocomposite, allowing at least a portion of the master metal matrix nanocomposite to mix with the molten metal and, then, solidifying the molten metal to provide a second metal matrix nanocomposite.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 5, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xiaochun Li, Michael Peter De Cicco, Dake Wang, Hongseok Choi
  • Publication number: 20140298955
    Abstract: A top-blowing lance includes a refining oxygen gas blowing nozzle having a plurality of ejection openings through which oxygen gas is blown into an iron bath in a reaction vessel, the ejection openings being disposed along a circular orbit at intervals, and a burner nozzle having an axis coaxial with the central axis of the circular orbit, forming a flame inside the refining oxygen gas blowing nozzle, and having ejection openings for blowing a powder heated by the flame into the iron bath, wherein an indicator A that indicates the positional relationship between the ejection openings of the refining oxygen gas blowing nozzle and the ejection openings of the burner nozzle satisfies the specified conditions.
    Type: Application
    Filed: October 16, 2012
    Publication date: October 9, 2014
    Inventors: Goro Okuyama, Naoki Kikuchi, Yuichi Uchida, Yukio Takahashi, Shingo Sato, Kenji Nakase, Yasutaka Ta, Yuji Miki
  • Patent number: 8771400
    Abstract: An object of the present invention is to provide a method for producing molten iron, the method being capable of minimizing the generation of converter dust and increasing the thermal degree of freedom in the converter process. In addition, the present invention provides a method for improving a converter operation method in the production of steels. The present invention relates to a method for producing molten iron including the steps of: 1) supplying carbon-containing molten pig iron to a converter, 2) continuously supplying iron oxide into the converter, and 3) blowing a mixed gas comprising a fuel gas and a combustion-supporting gas at a speed equal to or faster than the speed of sound to the molten pig iron to cause a combustion reaction, thereby heating the molten pig iron by heat of the combustion reaction.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: July 8, 2014
    Assignee: ISTC Co., Ltd.
    Inventor: Teruyoshi Hiraoka
  • Patent number: 8613790
    Abstract: A lance for injecting a solid material into a vessel, such as a direct smelting vessel for producing molten iron, has a core tube assembly comprising a passageway for solid material. The core tube assembly has an inlet for receiving solid material at a rear end and an outlet for discharging material at a forward end. The core tube assembly comprises an outer tube of a structural material and an inner tube of a wear resistant material that are bonded together. A method of manufacturing the core tube assembly may include spin casting the outer tube of the structural material; spin casting the inner tube of the wear resistant material onto the inner surface of the outer tube; and metallurgically bonding the tubes together.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: December 24, 2013
    Assignee: Technological Resources Pty Limited
    Inventor: Bronislaw Jerzy Minko
  • Patent number: 8523977
    Abstract: A method of desulfurizing steel including steps of forming a slag over a molten metal, drawing a vacuum to less than 5 torr over the slag and molten metal, stirring the molten metal and slag, and deoxidizing and desulfurizing the molten metal and slag to degas the steel reducing at least sulfur, nitrogen, oxygen, and hydrogen contents, and reducing activity of oxygen in the molten metal to less than 30 ppm. The method includes forming a slag composition after degassing the steel comprising CaO between about 50 and 70% by weight, SiO2 between about 20 and 28% by weight, CaF2 between about 5 and 15% by weight, MgO not more than 8% by weight, Al2O3 not more than 1% by weight, and a combination of FeO+MnO not more than 2% by weight, where the sum of CaO+CaF2+SiO2+MgO is at least 85% by weight.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 3, 2013
    Assignee: Nucor Corporation
    Inventors: Dhiren Panda, Neal Ross, Gary McQuillis, Jerome Jenkins
  • Publication number: 20130152739
    Abstract: Methods of forming metal matrix nanocomposites are provided. The methods include the steps of introducing a master metal matrix nanocomposite into a molten metal at a temperature above the melting temperature of the master metal matrix nanocomposite, allowing at least a portion of the master metal matrix nanocomposite to mix with the molten metal and, then, solidifying the molten metal to provide a second metal matrix nanocomposite.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Inventors: Xiaochun Li, Michael Peter De Cicco, Dake Wang, Hongseok Choi
  • Patent number: 8313553
    Abstract: A method of making a steel with low carbon less than 0.035% by weight including steps of preparing a heat of molten steel composition in a steelmaking furnace to a tapping temperature as desired for desulfurization at a VTD, tapping open into a ladle the molten steel composition with an oxygen level between about 600 and 1120 ppm, providing slag forming compound to the ladle to form a slag cover over the molten steel composition in the ladle, transporting the molten steel composition in the ladle to a VTD, decarburizing the molten steel composition at the VTD by drawing a vacuum of less than 650 millibars, after decarburizing, adding one or more deoxidizers to the molten steel composition and deoxidizing the molten steel composition, after deoxidizing, adding one or more flux compounds to desulfurize the molten steel composition, and casting the molten steel composition to form a steel with low carbon less than 0.035% by weight.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 20, 2012
    Assignee: Nucor Corporation
    Inventors: Jacobus Marthinus Andreas Geldenhuis, David John Sosinsky, Daniel Gene Murray, David Wayne McGaughey, Eugene B. Pretorius
  • Patent number: 8298317
    Abstract: A steelmaking process is disclosed. The process includes producing molten steel and molten steelmaking slag in a steelmaking process, the steelmaking slag including iron units and flux units, and thereafter producing molten iron in a molten bath based direct smelting process using a substantial portion of the steelmaking slag as part of the feed material requirements for the direct smelting process. A direct smelting process is also disclosed. The process includes pre-treating ferrous material including steelmaking slag and thereafter direct smelting molten iron using the pretreated ferrous material as part of the feed material for the process.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 30, 2012
    Assignee: Technological Resources Pty. Limited
    Inventors: Rodney James Dry, Robin John Batterham
  • Patent number: 8246716
    Abstract: A method of producing a fluxing agent that can be used in production of steel, preferably stainless steel, employs as a raw material a hydroxide sludge that results from neutralization of metal-contaminated pickling liquid from a pickling step for a steel and contains at least one fluoride-containing compound. The hydroxide sludge is calcined. Steel, preferably stainless steel, is produced by decarburizing a steel heat, whereby a slag is formed on top of the steel heat, and adding a fluxing agent to the slag.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: August 21, 2012
    Assignee: Outokumpu Oyj
    Inventors: Sven-Eric Lunner, Ye Guozhu
  • Publication number: 20120167717
    Abstract: The present invention relates to a method for manufacturing an amorphous alloy by using liquid pig iron. The exemplary embodiment of the present invention provides a method for manufacturing an amorphous alloy, including providing liquid pig iron, adding an alloy material to the liquid pig iron, and solidifying the liquid pig iron.
    Type: Application
    Filed: December 28, 2009
    Publication date: July 5, 2012
    Applicant: POSCO
    Inventors: Sang-Ho Yi, Seung Dueg Choi, Seong Hoon Yi
  • Patent number: 8211206
    Abstract: The invention provides a method of processing a starting material in the form of a metal oxide-containing raw metallurgical slag to obtain a processed slag product. The method includes admixing the raw slag with a reductant to obtain a reaction mixture and heating the reaction mixture to cause the reductant to reduce the metal oxide in the slag, to obtain molten metal, in particular containing ferromanganese, and molten processed slag, in particular having a manganese content of at most 10% by mass. The method further includes separating the molten processed slag from the molten metal and causing or allowing the molten processed slag to solidify, thereby to obtain a solid processed slag product. This processed slag product may be, as desired, a filler for use in brick-making or for use in formulating a ready-mix concrete, an extender for extending a cement or for producing a blended cement, or an aggregate for use in the construction or building industry.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 3, 2012
    Inventor: Anton Mecchi
  • Patent number: 8192521
    Abstract: A method of suppressing slag foaming that can grasp a state of slag foaming in the continuous melting furnace and accurately suppress the slag foaming so as to enable continuous production of molten metal in a stable state. This method includes charging of a suppressor into slag in the furnace, measuring a flow rate of a flue gas discharged from the continuous melting furnace during blowing of the slag over time, increasing a charging speed rate of the suppressor if the flue gas flow rate has an increasing tendency and decreasing the charging speed rate of the suppressor if the flue gas flow rate has a decreasing tendency.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Masataka Tateishi
  • Patent number: 8105415
    Abstract: A method of making a steel with low carbon less than 0.035% by weight including steps of preparing a heat of molten steel composition in a steelmaking furnace to a tapping temperature as desired for desulfurization at a VTD, tapping open into a ladle the molten steel composition with an oxygen level between about 600 and 1120 ppm, providing slag forming compound to the ladle to form a slag cover over the molten steel composition in the ladle, transporting the molten steel to a VTD, decarburizing the molten steel composition at the VTD by drawing a vacuum of less than 650 millibars, after decarburizing, transporting the molten steel to an LMF and deoxidizing the molten steel composition, after deoxidizing, returning to the VTD to desulfurize and degas the molten steel composition, and casting the molten steel composition to form a steel with low carbon less than 0.035% by weight.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: January 31, 2012
    Assignee: Nucor Corporation
    Inventors: Gary McQuillis, Jerome Jenkins, Neal Ross, Dhiren Panda, David John Sosinsky
  • Publication number: 20110209581
    Abstract: The steel for steel pipes of the present invention is the one for steel pipes excellent in sour-resistance performance including C, Mn, Si, P, S, Ti, Al, Ca, N and O, and optionally including a predetermined amount of one or more of Cr, Ni, Cu, Mo, V, B and Nb, in which inclusions in the steel have Ca, Al, O and S as main components, the CaO content in the inclusions is 30 to 80%, the ratio of the N content in the steel (ppm) to the CaO content in the inclusions (%) is from 0.28 to 2.0, and the CaS content in the inclusions is 25% or less. In addition, the method of producing steel for steel pipes of the present invention is to produce steel for steel pipes in which Ca is added so that the ratio of the N content in the steel to the amount of Ca addition (kg/t) into the molten steel is from 200 to 857.
    Type: Application
    Filed: May 9, 2011
    Publication date: September 1, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Mitsuhiro NUMATA, Shingo Takeuchi, Tomohiko Omura
  • Publication number: 20110203415
    Abstract: A method of suppressing slag foaming that can grasp a state of slag foaming in the continuous melting furnace and accurately suppress the slag foaming so as to enable continuous production of molten metal in a stable state. This method includes charging of a suppressor into slag in the furnace, measuring a flow rate of a flue gas discharged from the continuous melting furnace during blowing of the slag over time, increasing a charging speed rate of the suppressor if the flue gas flow rate has an increasing tendency and decreasing the charging speed rate of the suppressor if the flue gas flow rate has a decreasing tendency.
    Type: Application
    Filed: July 15, 2008
    Publication date: August 25, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Masataka Tateishi
  • Publication number: 20110197713
    Abstract: A method for recarburising a molten ferro-alloy in a ladle or ladle furnace comprises the step of adding a carbon-containing polymer to the ladle or furnace. The polymer is adapted to function as a recarburiser of the ferro-alloy. In this regard, the polymer can have a format which, when it contacts the molten ferro-alloy, promotes dissolution of carbon from the polymer into the molten ferro-alloy.
    Type: Application
    Filed: August 7, 2009
    Publication date: August 18, 2011
    Inventors: Veena Sahajwalla, Paul O'kane
  • Patent number: 7935172
    Abstract: A steelmaking process is disclosed. The process includes producing molten steel and molten steelmaking slag in a steelmaking process, the steelmaking slag including iron units and flux units, and thereafter producing molten iron in a molten bath based direct smelting process using a substantial portion of the steelmaking slag as part of the feed material requirements for the direct smelting process. A direct smelting process is also disclosed. The process includes pre-treating ferrous material including steelmaking slag and thereafter direct smelting molten iron using the pretreated ferrous material as part of the feed material for the process.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: May 3, 2011
    Assignee: Technological Resources Pty Limited
    Inventors: Rodney James Dry, Robin John Batterham
  • Patent number: 7828873
    Abstract: A direct smelting vessel (3) for operating a molten bath-based direct smelting process under pressure conditions in the vessel is disclosed. The vessel includes a forehearth (67) for tapping molten metal continuously from the vessel. The forehearth includes an open connection (97) that extends through a side wall of the vessel into the interior of the vessel. The open connection is formed to dampen the impact of sudden changes in pressure in the vessel on molten metal flow in the forehearth that could result in an undesirable surge of molten metal from the forehearth. The open connection is also formed so that molten metal does not freeze in the connection for at least 6 hours when molten metal is not being discharged from the vessel into the forehearth via the open connection.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: November 9, 2010
    Assignee: Technological Resources Pty. Limited
    Inventor: Matthew John Gurr
  • Publication number: 20100275728
    Abstract: A method of producing a fluxing agent that can be used in production of steel, preferably stainless steel, employs as a raw material a hydroxide sludge that results from neutralization of metal-contaminated pickling liquid from a pickling step for a steel and contains at least one fluoride-containing compound. The hydroxide sludge is calcined. Steel, preferably stainless steel, is produced by decarburizing a steel heat, whereby a slag is formed on top of the steel heat, and adding a fluxing agent to the slag.
    Type: Application
    Filed: June 10, 2010
    Publication date: November 4, 2010
    Applicant: OUTOKUMPU OYJ
    Inventors: Sven-Eric Lunner, Ye Guozhu
  • Patent number: 7819940
    Abstract: For the production of stainless steel of the ferritic AISI 4xx group of steels, particularly the AISI 430 group of steels, based on liquid pig iron and FeCr solids, the invention proposes the use of the AOD (Argon Oxygen Decarburization) process in which oxygen and inert gas (inactive gas) together are blown into the bath through nozzles and top-blown onto the surface of the bath by a blowing lance. The aim of the treatment is to conclude a smelting charge within an optimal time period, to achieve the intended tapping temperature and composition, and to minimize chromium losses. This is achieved by a correspondingly applied technology and by means of a metallurgic process model which observes, prognosticates and controls the treatment of the smelting charge.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: October 26, 2010
    Assignee: SMS Siemag Aktiengesellschaft
    Inventor: Johann Reichel
  • Publication number: 20100071509
    Abstract: The steel for steel pipes of the present invention is the one for steel pipes excellent in sour-resistance performance including C, Mn, Si, P, S, Ti, Al, Ca, N and O, and optionally including a predetermined amount of one or more of Cr, Ni, Cu, Mo, V, B and Nb, in which inclusions in the steel have Ca, Al, O and S as main components, the CaO content in the inclusions is 30 to 80%, the ratio of the N content in the steel (ppm) to the CaO content in the inclusions (%) is from 0.28 to 2.0, and the CaS content in the inclusions is 25% or less. In addition, the method of producing steel for steel pipes of the present invention is to produce steel for steel pipes in which Ca is added so that the ratio of the N content in the steel to the amount of Ca addition (kg/t) into the molten steel is from 200 to 857.
    Type: Application
    Filed: December 2, 2009
    Publication date: March 25, 2010
    Inventors: Mitsuhiro Numata, Shingo Takeuchi, Tomohiko Omura
  • Patent number: 7655066
    Abstract: The invention relates to titanium oxide containing slag compositions and associated methods for reducing the nitrogen content of metals. The titanium oxide slag compositions can be used to reduce nitrogen content in various molten metals including steel, nickel, copper, iron, and the like. The nitrogen content of the metals can be reduced by contacting the metal with the titanium oxide containing slag composition. The slag compositions are capable of reducing the nitrogen content of steel to less than 20 ppm without the need for specialized high-quality starting materials or processing equipment.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: February 2, 2010
    Assignee: University of Utah Research Foundation
    Inventors: Peng Fan, Weol D. Cho
  • Patent number: 7537638
    Abstract: A method of making a material for use as a steel-making slag comprises mixing sufficient lime and/or magnesia containing materials with combustion ash until the so-formed composition has a basicity ratio appropriate for use in steel making.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: May 26, 2009
    Inventor: Peter Geoffrey Pope
  • Patent number: 7451804
    Abstract: A method and apparatus for preparing and delivering various types of carbon and microalloy steel, free of oxygen with abundance of nuclei, when cast producing ultra fine grain steel free of internal defeats with excellent quality. A horizontal sealed table caster has a chamber, containing a suitable atmosphere for casting, with a tube connecting to a tundish so as to allow a liquid to flow into the chamber. The liquid metal is captured on a cooling belt along the bottom of the chamber and is maintained as a specific width and depth. The cooling belt serves as a heat sink causing the liquid metal to solidify from the bottom up, allowing inclusions to migrate to the surface of the steel. A layer of liquid metal is maintained on top of the solidifying steel until the solidification reaches the surface. The belt moves the solid metal toward the exit of the chamber.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: November 18, 2008
    Inventor: Oren V. Peterson
  • Patent number: 7442338
    Abstract: The present invention develops a manufacture method, via conventional liquid metallurgy, of finished and semi-finished metallic parts as casting, ingot, blooms and slabs in alloys base Fe, base Ni and base Co, microstructurally reinforced with complex molybdenum and titanium carbide particles, by means of their previous elaboration and latter addition to the molten alloy in the melting furnace. Then, when the alloy solidifies, they are inserted and distributed within the grains of the base metallic matrix, enhancing their mechanical properties and behavior at room as well as at high temperatures.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: October 28, 2008
    Assignee: Fundacion Inasmet
    Inventors: Ignacio Erauskin Lopetegui, Manuel Gutierrez Stampa, Inigo Agote Beloki, Manuel Orbegozo Ibarguren
  • Patent number: 7396421
    Abstract: A duplex stainless steel containing C, Si, Mn, P, S, Al, Ni, Cr, Mo, N (nitrogen, O (oxygen), Ca, Mg, Cu, B, and W, and the balance Fe and impurities, where a number of oxide-based inclusions, which have a total content of Ca and Mg of 20 to 40% by mass and also have a long diameter of not less than 7 ?m, is not more than a 10 per 1 mm2 of the cross section perpendicular to the working direction, or further, the number of oxide-based inclusions, which have a content of S of not less than 15% by mass and also have a long diameter of not less than 1 ?m, is not more than 10 per 0.1 mm2 of the cross section perpendicular to the working direction. Particularly, the contents of Cu, B and W are desirably 0.2 to 2%, 0.001 to 0.01%, and 0.1 to 4% by mass, respectively.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: July 8, 2008
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiko Omura, Satoshi Matsumoto
  • Publication number: 20070209480
    Abstract: To produce metallic iron from iron ore, a composition comprising a mass of material formed from a mixture of iron ore particles and particles of a reductant that is either a biomass material in particulate form or a plastic resinous material in particulate form is used. The reductant can also be a mixture of biomass material and resin in any proportions. The mass of material comprises at least one body having a shape adapted for smelting such as pellets, briquettes, pieces or lumps. The pellets have sufficient cohesion to maintain the shape into which they have been formed.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 13, 2007
    Inventors: Timothy C. Eisele, Surendra Komar Kawatra
  • Patent number: 7175691
    Abstract: A method of producing stainless steel includes the steps of melting a raw material in an electric furnace to form molten steel, and then refining the molten steel by a refining furnace to produce stainless steel in a stainless steel producing process. In the method, a carbonaceous reducing agent is added to a zinc-containing waste material produced in the stainless steel producing process, the resultant mixture is agglomerated by a briquette press to form agglomerates incorporated with a carbonaceous material, the agglomerates incorporated with the carbonaceous material are heated in a rotary hearth furnace to reduce and evaporate zinc to form dezincified agglomerates, and then the dezincified agglomerates are charged as a coolant in an oxidation period of the refining furnace.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: February 13, 2007
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Sugitatsu, Itsuo Miyahara
  • Patent number: 7081172
    Abstract: A nodular graphite cast iron is provided, having a pearlite matrix, with high strength and high toughness. The nodular graphite cast iron consists essentially of, by weight %: from 3.0 to 4.6% of carbon; from 1.6 to 2.5% of silicon; from 0.2 to 0.6% of manganese; from 0.02 to 0.05% of magnesium; from 0.0004 to 0.090% of zirconium; at least one of tin and copper such that ? ranges from 0.01 to 0.06% where ? indicates a tin conversion amount defined by a summation of a weight % of the tin and 0.1× a weight % of the copper; and the balance of iron and inevitable foreign matters.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 25, 2006
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Yasuhiro Enya, Francois Coderre, Yoshikazu Ibayashi, Masaru Matukura
  • Patent number: 6939388
    Abstract: A method for forming a nanocomposite material and articles made with the nanocomposite material are presented.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: September 6, 2005
    Assignee: General Electric Company
    Inventor: Thomas Martin Angeliu
  • Publication number: 20040083853
    Abstract: The prevent invention provides a method for producing a feed material for molten metal production and a method for producing a molten metal capable of sufficiently carbonizing biomass and effectively using carbonized biomass as a reducing agent. In the method for producing a feed material for molten metal production, a mixture containing an iron oxide-containing material and biomass is heated in a heating furnace substantially isolated from oxygen to carbonize the biomass in the mixture and obtain a feed material for molten metal production, or the mixture is charged in a reducing furnace to reduce the iron oxide-containing material after being heated in the heating furnace. In the method for producing a molten metal, the feed material for molten metal production obtained by the method for producing a feed material for molten metal production is charged in a melting furnace to obtain a molten metal.
    Type: Application
    Filed: October 3, 2003
    Publication date: May 6, 2004
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Hiroshi Sugitatsu, Takao Harada, Hidetoshi Tanaka, Masaharu Kohno
  • Publication number: 20030233912
    Abstract: A method of producing stainless steel includes the steps of melting a raw material in an electric furnace to form molten steel, and then refining the molten steel by a refining furnace to produce stainless steel in a stainless steel producing process. In the method, a carbonaceous reducing agent is added to a zinc-containing waste material produced in the stainless steel producing process, the resultant mixture is agglomerated by a briquette press to form agglomerates incorporated with a carbonaceous material, the agglomerates incorporated with the carbonaceous material are heated in a rotary hearth furnace to reduce and evaporate zinc to form dezincified agglomerates, and then the dezincified agglomerates are charged as a coolant in an oxidation period of the refining furnace.
    Type: Application
    Filed: May 15, 2003
    Publication date: December 25, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Hiroshi Sugitatsu, Itsuo Miyahara
  • Patent number: 6638337
    Abstract: The additives, in particulate solid form, are conveyed pneumatically in a divergent stream from a pneumatic gun to impinge upon the molten iron and mix therewith. The gun is spaced above a surface of molten iron such that the pneumatically conveyed stream including the additive has a central axis which is either horizontal (or at an acute angle to the horizontal). The gun is prefereably adjustable for adjustment of the stream angle, and the stream may be either added to pouring metal or to cover a surface of the molten iron.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: October 28, 2003
    Assignee: Qual-Chem Limited
    Inventors: Stephen David Bray, Keith Harris
  • Publication number: 20030177864
    Abstract: The present invention provides a method of desulfurizing hot metal, which method utilizes desulfurization slag resulting from a KR hot metal desulfurizing treatment as a desulfurizing agent for hot metal again to reduce hot metal desulfurization costs and the amount of slag generated, thereby solving environmental problems.
    Type: Application
    Filed: December 12, 2002
    Publication date: September 25, 2003
    Inventors: Yoshie Nakai, Hiroshi Shimizu, Toshio Takaoka, Yoshiteru Kikuchi, Shuei Tanaka, Shinichi Wakamatsu, Atsushi Watanabe, Osamu Yamase
  • Patent number: 6517605
    Abstract: A procedure for starting up a direct smelting process for producing iron from a metalliferous feed material in a metallurgical vessel is disclosed. The vessel is of the type which includes a plurality of feed material injection lances/tuyeres (11, 13). The start-up procedure includes the steps of: (a) preheating the vessel; (b) supplying a charge of molten iron to the vessel and forming a molten bath in the vessel, (c) supplying carbonaceous material and flux to the molten bath and injecting oxygen-containing gas through one or more than one feed material injection lance/tuyere and combusting carbon and bath derived gas (if present) and thereby heating the molten bath and generating slag; and (d) suppling metalliferous feed material to the vessel while continuing supply of carbonaceous material and flux and injection of oxygen-containing gas and smelting metalliferous feed material and producing molten iron and thereby completing the start-up procedure.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: February 11, 2003
    Assignee: Technological Resources Pty. Ltd.
    Inventors: Cecil Peter Bates, Peter Damian Burke
  • Patent number: 6514312
    Abstract: A slag conditioner for extending the life of a BOF vessel lining utilizing recycled blast furnace filter cake dewatered by contact with a hot slag; its process of production, and method of use.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: February 4, 2003
    Assignee: Bethlehem Steel Corporation
    Inventors: Colvin W. Smith, John D. Lynn, Richard V. Fekete
  • Patent number: 6508853
    Abstract: To be able to produce metal melts using any metal carriers incurring in metallurgical practice as the charging materials, namely in the most diverse quantitative compositions, a plant for producing metal melts is provided with the following characteristic features: an electric arc furnace vessel (1) provided with one charging opening (11, 21) for a metal melt and/or scrap and/or direct reduced metal, in particular direct reduced iron, and/or ore and at least one electrode (16) and one slag tapping means (22), an oxygen-blowing converter vessel (3) provided with one melt tapping means (41), wherein the oxygen-blowing converter vessel (3) and the electric arc furnace vessel (1) form a unit which is connected via an overflow weir (34) and which is rigidly mounted on the foundation and, wherein the bath surface related specifically to the bath volume is smaller in the oxygen-blowing converter vessel (3) than in the electric arc furnace vessel (1) and the oxygen-blowing converter vessel (3) shares a common re
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 21, 2003
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Stefan Dimitrov, Norbert Ramaseder, Wilfried Pirklbauer, Yoyou Zhai, Johannes Steins, Ernst Fritz, Johannes Müller
  • Patent number: 6451087
    Abstract: The method for producing a mother alloy for an iron-based amorphous alloy has the steps of (a) melting raw materials for elements constituting the amorphous alloy together with at least one oxide of an element constituting the amorphous alloy, the raw materials containing aluminum as an inevitable impurity, and the oxide having a smaller standard free energy of formation than that of Al2O3 in an absolute value; and (b) removing the resultant Al2O3 from the melt, thereby reducing the content of aluminum to 50 ppm or less in the melt.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: September 17, 2002
    Assignee: Hitachi Metals Ltd.
    Inventors: Yoshio Bizen, Setsuo Mishima, Takashi Meguro
  • Patent number: 6383249
    Abstract: A method and composition for removing sulfur from molten ferrous material, particularly molten pig iron. The desulfurization agent includes a magnesium particle coated with a heat absorbing compound. The heat absorbing compound absorbs heat around the magnesium particle to reduce the rate the magnesium particle vaporizes in the molten iron. The particle size of the magnesium particle is at least about twice the particle size of the heat absorbing compound. A bonding agent can be used to bond the particles of the heat absorbing compound to the particle of magnesium.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: May 7, 2002
    Assignee: Rossborough Manufacturing Co. LP
    Inventors: Thomas H. Bieniosek, Gerald R. Zebrowski
  • Patent number: 6352570
    Abstract: A method and composition for removing sulfur from molten ferrous material, particularly molten pig iron. The desulfurization agent includes a magnesium particle coated with a heat absorbing compound. The heat absorbing compound absorbs heat around the magnesium particle to reduce the rate the magnesium particle vaporizes in the molten iron. The particle size of the magnesium particle is at least about twice the particle size of the heat absorbing compound. A bonding agent can be used to bond the particles of the heat absorbing compound to the particle of magnesium.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: March 5, 2002
    Assignee: Rossborough Manufacturing Co., LP
    Inventors: Thomas H. Bieniosek, Gerald R. Zebrowski
  • Patent number: 6251159
    Abstract: A dispersion strengthening method for metallic melts that are used to form large articles. The method comprises adding nanophase particles into a molten metallic melt and dispersing the nanophase particles in the metallic melt. The nanophase particles comprising particles with diameters in the range of about 5 nanometers to about 100 nanometers. The step of dispersing the nanophase particles in the metallic melt spaces the particles from each other with an average interparticle spacing (IPS) in a range from about 10 nanometers to about 500 nanometers.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: June 26, 2001
    Assignee: General Electric Company
    Inventors: Thomas Martin Angeliu, Charles Gitahi Mukira
  • Patent number: 6174347
    Abstract: The tundish flux composition of the invention employs solid recycled ladle metallurgy furnace (LMF) slag as a fluidizing and refining base ingredient in a mixture of raw materials. The preferred recycled LMF slag material comprises about 35% to about 65% CaO, about 10% to about 35% Al2O3, about 1% to about 10% SiO2, about 3% to about 15% MgO, about 0.3% to about 10% FeO, about 0.1% to about 5% MnO, about 0.1% to about 0.15% P2O5, and about 0.1% to about 0.5% S. The tundish flux composition comprises from about 10% to about 80% of recycled LMF slag with the balance being raw materials selected from a calcium oxide source, a fluorine source, a magnesium oxide source, a carbon source, a silica source, a sodium source, a potassium source, and mixtures of these raw materials.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: January 16, 2001
    Assignee: Performix Technologies, Ltd.
    Inventor: Bruce J. Barker
  • Patent number: 6146437
    Abstract: The present invention provides a metal containing compound reduction and melting process which entails feeding a burden made of a mixture of the metal containing compound and a suitable reductant in particulate form into an electrically heatable vessel which contains a bath of the metal in liquid form so that a reaction zone is formed in the burden in which the metal containing compound is reduced and a melting zone is formed below the reaction zone in which the reduced metal is melted; and controlling the process in such a manner that substantially all of the reduction of the metal containing compound takes place in the solid phase.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 14, 2000
    Assignee: IPCOR NV
    Inventor: Louis J. Fourie
  • Patent number: 6120578
    Abstract: An alloy of Al and two or more of Ca, Mg and REM is added as a deoxidizing agent to molten steel, and the amount of Al.sub.2 O.sub.3 in the resulting inclusion is adjusted to a range of 30-85 wt % to obtain an alumina cluster-free Al-killed steel.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: September 19, 2000
    Assignee: Kawasaki Steel Corporation
    Inventors: Hakaru Nakato, Seiji Nabeshima, Kenichi Sorimachi
  • Patent number: 6015448
    Abstract: Disclosed is a process for desulphurization of a pig iron melt for further processing wherein the melt is brought into close contact with a ground solid slag. As desulphurizing agent, the slag accumulating in secondary steelmaking with a basicity of at least 4, an iron content in the range of 4 to 6 wt.-% and a phosphorous content in the range .ltoreq.0.4 wt.-%, is used in ground form or the slag is used together with calcium carbide and magnesium as a solid mixture in ground form.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: January 18, 2000
    Assignee: Mannesmann Aktiengesellschaft
    Inventors: Heinz-Peter Kaiser, Klaus-Jurgen Richter, Niclas Muller
  • Patent number: 5749939
    Abstract: A multiple stage process for obtaining Ni units from Ni laterite ores and sulfur-bearing Ni concentrates during production of nickel-alloyed iron, nickel-alloyed steel or nickel-alloyed stainless steel in a reactor equipped with top- and bottom-blowing means. Dried Ni laterite ore is charged into an iron/slag bath mixture containing dissolved carbon and a metalloid reductant such as aluminum or silicon. The laterite ore is melted while heat is generated by oxidation of the metalloid and carbon in the reactor. After the laterite ore is melted, top-blowing of pure oxygen and bottom-blowing of an oxygen-containing gas are ceased. Bottom injection of an inert stirring gas is begun. A sulfur-bearing Ni concentrate and aluminum are added to the bath.
    Type: Grant
    Filed: December 4, 1996
    Date of Patent: May 12, 1998
    Assignee: Armco Inc.
    Inventor: David M. Kundrat
  • Patent number: 5567222
    Abstract: A method of controlling slag coating in a steel converter in which slag is left in the converter after tapping, and a slag solidifying agent is added to the slag to form a coated slag which is used to coat the bottom and/or side wall surface of the converter. The method is performed bya) examining the composition of the slag at the tapping time;b) determining, based on the examined slag and through an equilibrium calculation using thermodynamic data, the amount of solidifying agent per unit weight of the slag necessary for maintaining the liquid volume fraction of the coated slag to a value not greater than about 40% at the planned tapping temperature of the next charge of steel;c) determining the amount of charge of the solidifying agent based on the calculated required amount of the solidifying agent and the amount of the slag remaining in the converter; andd) adding the calculated charge of the solidifying agent to the slag after tapping, to form a coated slag.
    Type: Grant
    Filed: March 21, 1995
    Date of Patent: October 22, 1996
    Assignee: Kawasaki Steel Corporation
    Inventors: Katsunori Takahashi, Eizo Maeda, Hajime Suzuki, Sumio Yamada, Taichi Nakazawa, Yasuo Imaiida
  • Patent number: 5395443
    Abstract: The invention relates to a method for preparing a hydraulically settable cement base material starting from steel slags formed in a steel-making process, which method comprises the formation, in steel slags in the liquid state, of a ferrite gradient by adding a ferrite-precipitating compound, the separation, if required, of the high-ferrite fraction formed, the separation of at least the low-ferrite fraction formed, the cooling and the comminution thereof to obtain a hydraulically settable material. The ferrite-precipitating compound used has preferably acid components, and can expediently generate silicic acid. At least before the cooling of the low-ferrite fraction, the aluminum content of the liquid slag material is regulated by the addition of an aluminate-containing material, such as bauxite. The high-ferrite fraction separated can be returned to the steel-making process to reduce or remove the addition of a flux in the production of steel.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: March 7, 1995
    Assignee: Pelt & Hooykass B.V.
    Inventor: Carel W. J. Hooykaas