Abstract: It is described a manganese pellet production from non-calcinated manganese ore, comprising the following phases: (a) ore size preparation through ore classification by function of particle size, smaller or equal to 1 mm particles being maintained from the ore particle fraction process so as to have a smaller or equal to 1 mm size, as well as the comminution of these particles; (b) flux addition; (c) agglomerant addition; (d) pelletizing resulting in crude pellets; and (e) thermal processing through crude pellet drying, pre-heating and heating.
Type:
Grant
Filed:
July 27, 2009
Date of Patent:
November 10, 2015
Assignee:
VALE S.A.
Inventors:
Washington Luiz Mafra, João Batista Conti de Souza
Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
Abstract: A process for producing a high-purity Mn material comprising the steps of premelting crude Mn at 1250-1500° C. and vacuum distilling the melt at 1100-1500° C. The degree of vacuum during the vacuum distillation ranges from 5×10−6 torr to 10 torrs. A crucible for use in the vacuum distillation is a double crucible, which consists of inner and outer crucibles, and a carbon felt packed in the space therebetween. A high-purity Mn material for thin film deposition which contains a total of not more than 100 ppm impurity metallic elements, not more than 200 ppm oxygen, not more than 50 ppm nitrogen, not more than 50 ppm S, and not more than 100 ppm C.
Abstract: A processing method by which metals may be recovered at a high purity from metal-containing waste materials.The method for processing metal-containing waste materials comprises crushing a metal-containing waste material to a particle size of 1-50 mesh, separating and recovering the metal-containing particles from the crushed portion, introducing the metal-containing particles into a vacuum heating furnace, pre-heating the furnace while under suction evacuation, and then raising the temperature of the furnace in stages while continuing the vacuum suctioning, recovering the metal and non-metal vapor produced at each temperature level using a condensing and adsorbing means, and recovering the liquated metals as melts. The method may be used to process waste batteries, copper-containing waste materials and the like in the same manner to recover high-purity metals.
Abstract: An object of the present invention is to provide method and apparatus for manufacturing medium or low carbon ferromanganese at reduced running costs.In order to achieve the above object, the present invention resides in charging molten high carbon ferromanganese into a refining vessel of a top blowing type, and blowing oxygen gas on the surface of the molten high carbon ferromanganese from above and injecting a mixed gas having the following composition into the molten high carbon ferromanganese from bottom. The mixed gas composition comprises 65-100% of CO, 0-25% of CO.sub.2 and 0-10% of N.sub.2. In a case, argon gas is used as the bottom-blown gas.
Abstract: Metal vapor, for example zinc fume in the offgas of a smelting furnace, is captured by bringing the stream into direct contact with a fluidized bed of solid particles having a particulate loading of greater than 10 kg/m.sup.3 and preferably greater than 400 kg/m.sup.3. The thermal mass and temperature of the bed is such as to rapidly quench the vapor in the case of zinc from above 960.degree. C. to below 419.degree. C. in less than 100 milliseconds, whereby the vapor condenses in the bed and is recovered as zinc metal in acceptable yield.
Type:
Grant
Filed:
June 29, 1991
Date of Patent:
October 25, 1994
Assignees:
Mount Isa Mines Limited, Commonwealth Scientific and Industrial Research Organisation