Reduction Patents (Class 75/625)
-
Publication number: 20150040728Abstract: Carbothermic reduction of magnesium oxide at approximately 2200 degrees Kelvin yields a high temperature mixture of magnesium vapors and carbon monoxide gas. Previous processes have sought to cool or alter the mixture to cause the yield of pure magnesium, which is then used in subsequent processes for its reducing properties. The present invention takes advantage of the stability and inertness of carbon monoxide at elevated temperatures enabling the magnesium vapor/carbon monoxide gas mixture from the carbothermic process to be used directly for the production of other metals at high temperatures. For example, Chromium oxide or chloride, manganese oxide or chloride, zinc oxide or chloride or sulfide, and several other metal compounds can be reduced by the magnesium vapor/carbon monoxide gas mixture at temperatures high enough to prevent the gas mixture from back-reacting to magnesium oxide and carbon.Type: ApplicationFiled: August 29, 2014Publication date: February 12, 2015Inventor: John Joseph Barsa
-
Patent number: 8268036Abstract: Disclosed is a method of producing ultra low phosphorus and carbon ferromanganese having 0.1 wt % or less carbon and 0.03 wt % or less phosphorus. The method includes preparing low carbon silicomanganese having low phosphorus content, preparing molten manganese slag, subjecting the molten manganese slag and the low carbon silicomanganese having low phosphorus content to primary mixing and stirring at a ratio of 70˜72:28˜30 in a ladle, thus producing a metal melt and slag, and subjecting the metal melt separated from the above slag and the molten manganese slag identical to that used in the primary mixing and stirring to secondary mixing and stirring, thus producing slag and a metal melt including 91˜93 wt % manganese, 0.60˜0.85 wt % silicon, 0.05˜0.10 wt % carbon and 0.015˜0.02 wt % phosphorus.Type: GrantFiled: November 19, 2008Date of Patent: September 18, 2012Assignee: Dongbu Metal Co., Ltd.Inventors: Dong-Shik Min, Chan-Soo Park, Young-Eun Lee, Hai-Chang Cho, Kwang-Jung Lee, Sung-Hwan Hong
-
Publication number: 20110265608Abstract: Disclosed is a method of producing ultra low phosphorus and carbon ferromanganese having 0.1 wt % or less carbon and 0.03 wt % or less phosphorus. The method includes preparing low carbon silicomanganese having low phosphorus content, preparing molten manganese slag, subjecting the molten manganese slag and the low carbon silicomanganese having low phosphorus content to primary mixing and stirring at a ratio of 70˜72:28˜30 in a ladle, thus producing a metal melt and slag, and subjecting the metal melt separated from the above slag and the molten manganese slag identical to that used in the primary mixing and stirring to secondary mixing and stirring, thus producing slag and a metal melt including 91˜93 wt % manganese, 0.60˜0.85 wt % silicon, 0.05˜0.10 wt % carbon and 0.015˜0.02 wt % phosphorus.Type: ApplicationFiled: November 19, 2008Publication date: November 3, 2011Inventors: Dong-Shik Min, Chan-Soo Park, Young-Eun Lee, Hai-Chang Cho, Kwang-Jung Lee, Sung-Hwan Hong
-
Patent number: 6458182Abstract: A process for producing a high-purity Mn material comprising the steps of premelting crude Mn at 1250-1500° C. and vacuum distilling the melt at 1100-1500° C. The degree of vacuum during the vacuum distillation ranges from 5×10−6 torr to 10 torrs. A crucible for use in the vacuum distillation is a double crucible, which consists of inner and outer crucibles, and a carbon felt packed in the space therebetween. A high-purity Mn material for thin film deposition which contains a total of not more than 100 ppm impurity metallic elements, not more than 200 ppm oxygen, not more than 50 ppm nitrogen, not more than 50 ppm S, and not more than 100 ppm C.Type: GrantFiled: December 21, 2000Date of Patent: October 1, 2002Assignee: Japan Energy CorporationInventors: Yuichiro Shindo, Tsuneo Suzuki
-
Patent number: 5759229Abstract: A process for recovering valuable components of a residue from a stream of used catalyst, discharged from a plant for the liquid-phase, homogeneously catalyzed oxidation of alkylaromatic compounds under pressure, to produce polycarboxylic aromatic acids. The residue containing mainly cobalt (Co) and manganese (Mn) compounds is injected into a molten metal bath in combination with enough oxygen gas to convert essentially all carbon in the residue mainly to CO. The residue may also be sludge from a pond in which the residue is stored. The Co content of the molten metal is determined by how much of the Mn in the residue is to be rejected from the molten metal. The Mn rejected is distributed between a slag overlying the molten metal and the effluent which leaves the bath. In the slag, the Mn is trapped as manganese oxide (MnO); in the effluent Mn leaves as manganese dibromide (MnBr.sub.2).Type: GrantFiled: July 29, 1996Date of Patent: June 2, 1998Inventor: David Feitler
-
Patent number: 5462579Abstract: An object of the present invention is to provide method and apparatus for manufacturing medium or low carbon ferromanganese at reduced running costs.In order to achieve the above object, the present invention resides in charging molten high carbon ferromanganese into a refining vessel of a top blowing type, and blowing oxygen gas on the surface of the molten high carbon ferromanganese from above and injecting a mixed gas having the following composition into the molten high carbon ferromanganese from bottom. The mixed gas composition comprises 65-100% of CO, 0-25% of CO.sub.2 and 0-10% of N.sub.2. In a case, argon gas is used as the bottom-blown gas.Type: GrantFiled: September 14, 1994Date of Patent: October 31, 1995Assignee: Mizushima Ferroalloy Co., Ltd.Inventors: Hiroshi Narahara, Kouji Suzuki
-
Patent number: 5240495Abstract: In situ formation of metal-ceramic oxide microstructures is carried out on a starting oxide phase containing at least a most noble metallic component (e.g., iron) and a least noble metallic component (e.g. manganese) and subjecting the starting oxide phase to a temperature and oxygen partial pressure and for a time period to cause reduction of only part of the most noble metallic component to elemental metal.Type: GrantFiled: April 2, 1992Date of Patent: August 31, 1993Assignee: Cornell Research Foundation, Inc.Inventors: Rudiger Dieckmann, Stephen L. Sass
-
Patent number: 4975116Abstract: The present invention relates to a method for production of metals and/or ferro alloys by prereduction of particulate metal oxide co-current with a reducing gas. Reducing gas having a temperature between 650.degree. and 1100.degree. C. and metal oxide particles are supplied at the lower end of a substantially vertical prereduction column which comprises at least two chamber having a substantially circular cross-section, said chambers in their upper and lower ends having a decreasing cross-section and where a ringshaped member for decreasing the cross-section is arranged in the intermediate zone between the chambers. The mixture of reducing gas and prereduced metal oxide particles is collected at the top of the prereduction column, whereafter the prereduced metal oxide particles are transported to a smelting furnace for smelting and final reduction to metallic state by addition of a reduction material.The present invention also relates to a column for treatment of particulate solid materials with a gas.Type: GrantFiled: April 18, 1989Date of Patent: December 4, 1990Assignee: Elkem Technology a/sInventors: Toralv Basen, Robin Ephithite