Treating Slag Or Dross Patents (Class 75/640)
  • Patent number: 11920210
    Abstract: A process for producing a solder product and a copper product from a first lead-tin based metal composition having at least 40% wt of copper and at least 5.0% wt together of tin and lead. The process includes the steps of partially oxidizing a first liquid bath having the first lead-tin based metal composition, thereby forming a first dilute copper metal composition and a first solder refining slag, followed by separating the slag from the metal composition, and partially oxidizing a second liquid bath having the first dilute copper metal composition, thereby forming a first high-copper metal composition and a third solder refining slag, followed by separating the third solder refining slag from the first high-copper metal composition, whereby the solder product is derived from the first solder refining slag.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 5, 2024
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11827953
    Abstract: A disclosed process produces at least one concentrated copper product together with at least one crude solder product, starting from a black copper composition with at least 50% of copper together with at least 1.0% wt of tin and at least 1.0% wt of lead The process includes the step of partially oxidizing the black copper thereby forming a first copper refining slag, followed by partially reducing the first copper refining slag to form a first lead-tin based metal composition and a first spent slag. The total feed to the reducing step includes an amount of copper that is at least 1.5 times as high as the sum of the amounts of Sn plus Pb present, and the first spent slag includes at most 20% wt total of copper, tin and lead together.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 28, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11767576
    Abstract: A disclosed dilute copper metal composition has 57-85% wt Cu, ?3.0% wt Ni, ?0.8% wt Fe, 7-25% wt Sn and 3-15% wt Pb. A process includes partially b) oxidizing a black copper composition to obtain a first copper refining slag and a first enriched copper metal. The process further includes oxidizing h) the first enriched copper metal to obtain a second copper refining slag, whereby at least 37.0% wt of the amount of tin and lead processed through steps b) and/or h) is retrieved in the first and second copper refining slags together, partially reducing c) the first copper refining slag to form a first lead-tin based metal composition and a first spent slag, adding the second copper refining slag to the first lead-tin based metal composition thereby forming a first liquid bath, partially oxidizing d) the first liquid bath, thereby obtaining the dilute copper metal composition.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 26, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11746395
    Abstract: A process for the production of a crude solder composition includes the provision of a first solder refining slag that includes tin and/or lead. The process further includes the steps of partially reducing the first solder refining slag, thereby forming a crude solder metal composition and a second solder refining slag, followed by separating the second solder refining slag from the crude solder metal composition, and partially reducing the second solder refining slag, thereby forming a second lead-tin based metal composition and a second spent slag followed by separating the second spent slag from the second lead-tin based metal composition A copper containing fresh feed is added to step (ii), preferably before reducing the second solder refining slag.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 5, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11739394
    Abstract: A process for a producing crude solder product and a copper product includes the steps of providing a black copper comprising >=50% wt of copper together with >=1.0% wt of tin and/or >=1.0% wt of lead, and refining a first portion of the black copper to obtain a refined copper product together with at least one copper refining slag. The process further includes the steps of recovering a first crude solder product from the copper refining slag, thereby forming a solder refining slag in equilibrium with the first crude solder product, and contacting a different portion of the black copper with the solder refining slag thereby forming a spent slag and a lead-tin based metal, followed by separating the spent slag from the lead-tin based metal.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 29, 2023
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Publication number: 20150143951
    Abstract: The invention relates to a method and to an arrangement for refining copper concentrate (1). The arrangement comprises a suspension smelting furnace (2) comprising a reaction shaft (5), and a settler (6). The reaction shaft (5) is provided with a concentrate burner (8) for feeding copper concentrate (1) such as copper sulfide concentrate and/or copper matte and additionally at least reaction gas (9) into the reaction shaft (5) to obtain a blister layer (11) containing blister and a first slag layer (12) containing slag on top of the blister layer (11) in the settler (6), and a slag cleaning furnace (3). The arrangement comprises feeding means (16, 18, 23) for feeding blister from the blister layer (11) in the settler (6) and for feeding slag from the first slag layer (12) in the settler (6) into the slag cleaning furnace (3).
    Type: Application
    Filed: June 12, 2013
    Publication date: May 28, 2015
    Applicant: Outotec (Finland) Oy
    Inventors: Tapio Ahokainen, Peter Björklund, Tuomo Jokinen, Harri Rannikko, Maija Metsärinta, Markku Lahtinen
  • Publication number: 20130340568
    Abstract: Copper is produced by a looping oxidizing process wherein oxidation of copper sulfide concentrate to molten blister copper by conversion with copper oxides (and optionally oxygen from air) in a one step, molten bath operation to produce molten blister copper, iron oxide slag, and rich SO2 off gas. The blister copper is treated in an anode furnace to reduce the iron content and oxidize residual sulfur, and prepare it for either electrolysis or reoxidation.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Applicant: ORCHARD MATERIAL TECHNOLOGY
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter, Joseph D. Lessard, Daniel G. Gribbin, Esra Cankaya-Yalcin
  • Patent number: 7955409
    Abstract: A method of smelting copper includes: a generating step of generating blister and slag from copper matte by charging the copper matte into a smelting furnace and oxidizing the copper matte; a first refining step of refining another blister from the slag by reduction in an electrical furnace; and a charging step of charging the slag into one of the smelting furnace or another smelting furnace for treating copper concentrate and generating matte as repeating flux if copper grade of slag generated in the first refining step is higher than 0.8 weight %.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 7, 2011
    Assignee: Pan Pacific Copper Co., Ltd.
    Inventors: Kenta Nakakado, Makoto Hamamoto, Seiichi Watanabe
  • Patent number: 7918917
    Abstract: A method of smelting copper includes: a generating step of generating blister and calcium ferrite slag from copper matte by charging the copper matte into a smelting furnace and oxidizing the copper matte; and a refining step of refining another blister from the calcium ferrite slag in an electrical furnace under a temperature condition of 1250 degrees C. to 1350 degrees C. and under a reductive atmosphere condition of oxygen partial pressure logPO2??9.3.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: April 5, 2011
    Assignee: Pan Pacific Copper Co., Ltd.
    Inventors: Kenta Nakakado, Makoto Hamamoto, Seiichi Watanabe
  • Patent number: 7819941
    Abstract: The invention relates to a method for reducing and/or refining a metal-containing slag. The aim of the invention is to improve reduction of the slag. For this purpose, calcium carbide (CaC2) is added to the slag as the reducing agent.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: October 26, 2010
    Assignee: SMS Siemag Aktiengesellschaft
    Inventors: Jürgen Kunze, Rolf Degel, Dieter Borgwardt, Andrzej Warczok, Gabriel Angel Riveros Urzua, Marco Antonio Caceres Rivera, Roberto Marcelo Parada Araya
  • Publication number: 20100242682
    Abstract: A method for processing converter slag produced in copper smelting includes feeding the converter slag into a reducing furnace, reducing zinc and copper contained in the converter slag by heating and removing the reduced zinc through volatilization in a reducing furnace. The slag discharged from the converter is transformed into a raw material for iron making.
    Type: Application
    Filed: November 25, 2009
    Publication date: September 30, 2010
    Inventors: Takafumi SASAKI, Takayoshi FUJII
  • Publication number: 20100050813
    Abstract: A method of smelting copper includes: a generating step of generating blister and slag from copper matte by charging the copper matte into a smelting furnace and oxidizing the copper matte; a first refining step of refining another blister from the slag by reduction in an electrical furnace; and a charging step of charging the slag into one of the smelting furnace or another smelting furnace for treating copper concentrate and generating matte as repeating flux if copper grade of slag generated in the first refining step is higher than 0.8 weight %.
    Type: Application
    Filed: July 14, 2009
    Publication date: March 4, 2010
    Inventors: Kenta NAKAKADO, Makoto Hamamoto, Seiichi Watanabe
  • Publication number: 20090293678
    Abstract: A copper smelting method includes: supplying an oxygen-enriched gas, a solvent, and a copper concentrate into a furnace, while not supplying a coke material; and supplying pig iron to slag that is generated in the furnace.
    Type: Application
    Filed: April 29, 2009
    Publication date: December 3, 2009
    Inventors: Tatsuya MOTOMURA, Yoshiaki SUZUKI, Masaharu TAKAHASHI, Mitsumasa HOSHI
  • Publication number: 20080027206
    Abstract: A process for feeding metals to one or more melt phase process lines for the production of a polyester polymers comprising: A. providing a first feed stream, said first feed stream having a first molar ratio and comprising a mixture of metal A and a different metal B; B. providing a second feed stream, said second feed stream comprising metals of a kind which are less than all the kinds of metals in the first feed stream, or a metal of a kind which is not a metal in said first feed stream, or all of the same kind of metals in said first feed stream but at a second molar ratio different than said first molar ratio; and C.
    Type: Application
    Filed: March 7, 2007
    Publication date: January 31, 2008
    Inventor: Jason Christopher Jenkins
  • Patent number: 7273510
    Abstract: The invention relates to an arrangement (1, 12, 16) for continuously tapping a molten phase, such as matte, from a smelting furnace, such as a flash smelting furnace, said arrangement comprising a matte tapping hole (5) provided in the furnace wall for discharging the molten phase from the furnace, an overflow tank (6) for receiving the molten phase (4), and an overflow edge (8) provided in the overflow tank for discharging the molten phase, so that in the smelting furnace, in the vicinity of the matte tapping hole (5), there can be arranged at least one heat-producing element (9, 15) in order to prevent the molten phase from being solidified.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 25, 2007
    Assignee: Outokumpu Oyj
    Inventor: Risto Saarinen
  • Patent number: 6755890
    Abstract: The present invention relates to a method, whereby the non-ferrous metal content of the slag generated in the production of non-ferrous metals such as copper or nickel in a suspension smelting furnace is reduced by charging metallurgical coke, with a size ranging from 1-25 mm, into the furnace. Baffles can be positioned from the roof of the furnace downwards, by means of which small particles containing copper and nickel are prevented from drifting to the back of the furnace and being tapped with the slag. The baffles force the small particles to settle in the reduction zone of the furnace.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: June 29, 2004
    Assignee: Outokumpu Oyj
    Inventors: Pekka Hanniala, Ilkka Kojo, Risto Saarinen
  • Patent number: 6436169
    Abstract: In a method of operating a copper smelting furnace, wherein a ferrous substance containing more than 80 wt. % metallic iron having a specific gravity of 3.0-8.0 and particle diameter of 0.3-15 mm is added to copper smelting slag containing Fe having an oxidation-reduction number of 3+ and to the Fe3O4 in the intermediate layer, thereby deoxidizing the Fe3O4 to FeO, the method reduces the Fe3O4 within the slag layer and the Fe3O4 generated in the intermediate layer between the slag layer and the matte layer. So that their viscosity is reduced and separation rate is increased, thus increasing the yield rate of useful metal, and the problems that originate in the intermediate layer are eliminated.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: August 20, 2002
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Yushiro Hirai, Mitsumasa Hoshi
  • Patent number: 6293993
    Abstract: A recycling process for zinc-rich solid waste containing zinc oxide, Cu oxides and impurities normally present in brass, in which a mixture is formed containing the waste with a finely divided solid reducing agent and a binder, and the mixture is compacted as agglomerates with open pores. The agglomerates are added into a treatment reactor containing a bath of liquid copper or brass metal, in which the zinc and copper oxides are reduced, to obtain in the treatment reactor after the reduction, a new brass in liquid form and a new waste. The new liquid brass is transferred into a fusion and casting furnace, in which its composition is optionally adjusted, and the new liquid brass is cast to form a product. Any waste present in the treatment reactor and the casting furnace are recycled using this process.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: September 25, 2001
    Assignee: Trefimetaux
    Inventors: Jean-Marie Welter, Florence Revet
  • Patent number: 6261340
    Abstract: In a method of converting slags derived from nonferrous metallurgy, in particular primary and secondary Ni and Cu metallurgical slags, while recovering and/or enriching the nonferrous metals and forming synthetic puzzolans, the molten oxidic slags are reduced with gases containing H2 and CO such as, e.g., cracked gas in a first reduction stage above a metal bath containing Cu and/or Ni and optionally Co. The redox potential of the CO/H2 mixture is reduced by adding 10 to 40% by volume H2O vapor and/or CO2 in order to hold off the reduction of Fe oxides. Subsequently, the remaining slag free of Cu and Ni is further reduced above an iron bath while using carbon in order to reduce the portion of Fe oxides so as to produce a slag free of Fe and nonferrous heavy metals.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: July 17, 2001
    Assignee: “Holderbank” Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6241797
    Abstract: There is disclosed a process for reducing oxidic slags or combustion residues above a metal bath. The metal bath is formed of an iron alloy containing metals nobler than iron and whose redox potential is adjusted such FeO is reduced to Fe not at all or only partially.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: June 5, 2001
    Assignee: “Holderbank” Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6231641
    Abstract: In a copper converting furnace, the (i) reduction of copper oxide in and the removal of copper metal from the slag, and (ii) conversion of copper sulfide in and the elimination of mineral waste from the blister copper is enhanced by introducing a gas, e.g. nitrogen, into at least one of the blister copper and slag such that the gas increases the turbulence or mixing at the blister copper/slag interface and promotes a lowering of the sulfur dioxide equilibrium pressure within the blister copper and slag phases. In one embodiment, the gas is introduced into both the molten blister copper and slag through a porous-wall injector.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: May 15, 2001
    Assignee: Kennecott Utah Copper Corporation
    Inventors: Torstein Utigard, John F. Castle, Philip J. Gabb, David B. George
  • Patent number: 6210463
    Abstract: Copper matte is processed to anode copper without oxidizing blister copper in an anode furnace. Copper matte, in either molten or solid form, is fed to a continuous copper converting furnace in which it is converted to blister copper and slag. The blister copper and slag collect in the settler region of the furnace and separate into two phases, a blister copper phase and a slag phase (the latter floating upon the former). The converting furnace is equipped with means for stirring or agitating the interface of the blister copper and slag phases such that the sulfur content of the blister copper phase and the copper content of the slag phase are reduced.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: April 3, 2001
    Assignee: Kennecott Utah Copper Corporation
    Inventors: David B. George, Philip J. Gabb, John F. Castle, Torstein Utigard
  • Patent number: 5776226
    Abstract: A method for working up refuse or metal-oxide-containing refuse incineration residues or metallurgical residues includes an at least partial oxidation in a meltdown oxidizing reactor followed by a two-stage reduction. The first reduction stage is effected in an iron bath reactor in which iron oxides are not yet reduced. In the second reduction stage also iron oxides are reduced in an iron bath calciner, a pig iron bath being obtained. The metal bath discharged from the iron bath reactor reaches a segregation mold, from which crude bronze can be drawn off.
    Type: Grant
    Filed: October 5, 1995
    Date of Patent: July 7, 1998
    Assignee: "Holderbank" Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 5662730
    Abstract: In a flash smelting method of copper, a carbonaceous material, whose grain size is under 100 um and is in a proportion of 65% or more, and whose grain size is from 44 to 100 .mu.m and is in a proportion of 25% or more, and which has 80% or more of a fixed carbon content, is charged into a reaction shaft of a flash smelting furnace. It is possible to prevent the excessive formation and excessive reduction of Fe.sub.3 O.sub.4 in the slag. Copper loss, erosion of refractories and boiler trouble can be prevented.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: September 2, 1997
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Susumu Akagi, Takayoshi Fujii, Masatoshi Maeda, Yoshiaki Suzuki
  • Patent number: 5626646
    Abstract: A method of recovering metals and producing a secondary slag from base metal smelter slag produced by a copper or nickel smelter includes mixing the smelter slag with at least one reducing agent selected from the group consisting of carbon and aluminum, said carbon (if present) being from about 1% to about 10% by weight of the slag and said aluminum (if present) being from about 5 to about 30% by weight of the slag, and with from zero to about 60% calcium oxide by weight of the slag. The mixture is heated above the eutectic melting point thereof directly and to ignition temperature aluminothermically (if aluminum is present as reducing agent) to reduce the iron silicate to ferrosilicon containing substantially all the copper, nickel and cobalt which was in the smelter slag and form a secondary slag comprising at least one compound selected from the group consisting of calcium silicate, calcium aluminate and calcium iron aluminum silicate. The ferrosilicon is then separated from the secondary slag.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: May 6, 1997
    Assignee: Fenicem Minerals Inc.
    Inventor: David Krofchak
  • Patent number: 5540752
    Abstract: A process and apparatus are disclosed for recovering a non-ferrous metal, preferably aluminum and aluminum alloys, in molten coherent form from a charge of material to be processed containing the metal. The charge is introduced into a sealable furnace which is then sealed. The charge is agitated. A control parameter indicative of conditions inside said furnace is monitored and compared to a pre-determined first condition for the parameter. A heat source is operated to heat the charge until the control parameter reaches the first condition. The operation of the heat source is then stopped. A controlled amount of oxidizing agent and an inert carrier is then introduced into the furnace. The control parameter is monitored and compared to a predetermined second condition for the parameter. The flow of the oxidizing agent and the carrier is controlled to maintain the control parameter at about the second condition. The molten metal is subsequently removed from the furnace.
    Type: Grant
    Filed: February 24, 1994
    Date of Patent: July 30, 1996
    Inventor: Han Spoel
  • Patent number: 5468279
    Abstract: A method is disclosed for water-granulating calcium ferrite slag which is produced in copper converting processing and contains 10 to 30 weight % of CaO. In the method, water is caused to flow at a flow velocity of 7 to 25 m/sec, and the calcium ferrite slag is introduced into the water flow such that weight ratio of water to slag amounts to no less than 100. With this method, the occurrence of phreatic explosions can be effectively avoided.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: November 21, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventor: Akiyoshi Yamashiro
  • Patent number: 5380353
    Abstract: There is disclosed an apparatus for smelting copper which includes a blister copper-producing device. A plurality of anode furnaces are provided for refining the blister copper produced in the blister copper-producing device into copper of higher quality. A blister copper launder assembly, which has a main launder and a plurality of branch launders branched off from the main launder, is provided to connect the converting furnace and the anode furnaces together. A selecting device may be attached to the launder assembly for selectively bringing the main launder into fluid communication with one of the branch launders.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: January 10, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Moto Goto, Nobuo Kikumoto, Osamu Iida, Hiroaki Ikoma, Shigemitsu Fukushima
  • Patent number: 5205859
    Abstract: There is disclosed an apparatus for smelting copper which includes a smelting furnace, a separating furnace, a converting furnace, and launders connecting these furnaces in series. In the smelting furnace, copper concentrate is melted and oxidized to produce matte and slag. In the separating furnace, the matte is separated from the slag. In the converting furnace, the matte separated from the slag is oxidized to produce blister copper. A plurality of anode furnaces are provided for refining the blister copper produced in the converting furnace into copper of higher quality. A blister copper launder assembly, which has a main launder and a plurality of branch launders branched off from the main launder, is provided to connect the converting furnace and the anode furnaces together. A selecting device may be attached to the launder assembly for selectively bringing the main launder into fluid communication with one of the branch launders.
    Type: Grant
    Filed: November 20, 1991
    Date of Patent: April 27, 1993
    Assignee: Mitsubishi Materials Corporation
    Inventors: Moto Goto, Nobuo Kikumoto, Osamu Iida, Hiroaki Ikoma, Shigemitsu Fukushima
  • Patent number: 5194213
    Abstract: A system for continuous smelting of sulfidic copper concentrate in which an oxygen flash furnace is operatively connected with a continuous converter and the continuous converter is operatively connected with a finishing furnace.
    Type: Grant
    Filed: April 28, 1992
    Date of Patent: March 16, 1993
    Assignee: Inco Limited
    Inventors: Carlos M. Diaz, Malcolm C. E. Bell
  • Patent number: 5192487
    Abstract: A method and apparatus for treating zinc concentrates in order to recover zinc. The method includes an oxidizing and smelting stage (10) and, subsequent to the smelting stage, a fuming stage (20) in which the zinc-oxide-containing slag formed in the smelting stage is so reduced as to remove the metallic zinc with the exhaust gases (28). Part of the reduced slag is discharged during the fuming stage, another part (32) is recirculated to the smelting stage. In accordance with a preferable method, the slag is reduced in two successive fuming stages (20, 40). In an apparatus according to the invention, the slag circulation between the fuming and smelting stages is facilitated by overflows arranged in the partition walls (19) between the various stages.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: March 9, 1993
    Assignee: A. Ahlstrom Corporation
    Inventors: Rolf Malmstrom, Stig Petersson
  • Patent number: 5171357
    Abstract: In the particular embodiments described in the specification, a vacuum furnace includes a hearth having a melting region and a refining region and a particulate metal supply tube for conveying particulate metal to one side of the melting region. Three water-cooled shield members surround the other sides of the melting region so that metal ejected from the particulate metal deposited in the melting region by explosive vaporization of inclusions in the metal is intercepted by the shield members.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: December 15, 1992
    Assignee: Axel Johnson Metals, Inc.
    Inventors: Carlos E. Aguirre, Howard R. Harker
  • Patent number: 5091001
    Abstract: Spent oxidic catalyst, such as vanadium pentoxide from a sulphuric acid manfacturing process, is rendered into an environmentally acceptable non-leachable form suitable for disposable by incorporation into a vitrified amorphous slag formed of oxidic slag forming agents such as CaO, SiO.sub.2, FeO and Al.sub.2 O.sub.3. The vitrified slag may be formed as part of a conventional ferrous or non-ferrous smelting process, or may employ a pre-existing slag from such a process.
    Type: Grant
    Filed: September 11, 1990
    Date of Patent: February 25, 1992
    Inventor: Pierre L. J. Schumacher
  • Patent number: RE44850
    Abstract: The process for converting a copper sulphide matte to blister copper, is achieved by adding the copper sulphide matte and flux to a suitable agitated slag phase; and injecting, from a discharge tip at the lower end of a top-submerged lance, an oxidizing gas suitable for reacting with the matte to produce blister copper which forms or adds to a continuous blister copper phase below the slag phase. The lance tip is located within the slag phase at a depth enabling the injected gas to agitate the slag phase, and to react with copper sulphide matte dispersed therein, while precluding a substantial proportion of the gas from contacting the continuous blister copper phase.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 22, 2014
    Assignee: Outotec Oyj
    Inventors: Stephen Peter Hughes, Robert W. Matusewicz, Ross Alexander McClelland, Antony Acquadro, Brian Ross Baldock