Treating Waste Gas Patents (Class 75/644)
  • Patent number: 6270554
    Abstract: A continuous nickel matte converter and method for the efficient production of low iron nickel-rich mattes from high-iron nickel-rich mattes, with minimal environmental impact. The present invention processes high-iron, nickel-rich primary furnace mattes to produce low iron, nickel-rich mattes, low value metal-containing slag and sulfur dioxide rich-off gas, with improved cobalt recovery. It eliminates use of the Peirce-Smith converter, with its undesirable environmental, metallurgical and economic features.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: August 7, 2001
    Assignee: Inco Limited
    Inventors: Paul E. Queneau, Carlos M. Diaz
  • Patent number: 6231641
    Abstract: In a copper converting furnace, the (i) reduction of copper oxide in and the removal of copper metal from the slag, and (ii) conversion of copper sulfide in and the elimination of mineral waste from the blister copper is enhanced by introducing a gas, e.g. nitrogen, into at least one of the blister copper and slag such that the gas increases the turbulence or mixing at the blister copper/slag interface and promotes a lowering of the sulfur dioxide equilibrium pressure within the blister copper and slag phases. In one embodiment, the gas is introduced into both the molten blister copper and slag through a porous-wall injector.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: May 15, 2001
    Assignee: Kennecott Utah Copper Corporation
    Inventors: Torstein Utigard, John F. Castle, Philip J. Gabb, David B. George
  • Patent number: 6210463
    Abstract: Copper matte is processed to anode copper without oxidizing blister copper in an anode furnace. Copper matte, in either molten or solid form, is fed to a continuous copper converting furnace in which it is converted to blister copper and slag. The blister copper and slag collect in the settler region of the furnace and separate into two phases, a blister copper phase and a slag phase (the latter floating upon the former). The converting furnace is equipped with means for stirring or agitating the interface of the blister copper and slag phases such that the sulfur content of the blister copper phase and the copper content of the slag phase are reduced.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: April 3, 2001
    Assignee: Kennecott Utah Copper Corporation
    Inventors: David B. George, Philip J. Gabb, John F. Castle, Torstein Utigard
  • Patent number: 6042632
    Abstract: Solidified copper matte is used as a coolant to moderate or reduce the temperature of a bath of molten blister copper resident within a continuous, top-blown converter. In one embodiment, the addition of solidified copper matte to a bath of molten blister copper resident within a continuous, top-blown converter increases the throughput of the converter.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: March 28, 2000
    Assignee: Kennecott Holdings Company
    Inventor: David B. George
  • Patent number: 5888270
    Abstract: A process for converting a copper sulphide matte and/or a copper sulphide concentrate to blister copper is described which comprises the steps of adding the matte and/or concentrate together with a suitable flux to an agitated molten bath containing molten slag phase and a molten metal phase; injecting by means of a submerged lance an oxidizing gas capable of reacting with the matte or concentrate to form a low sulphur blister copper phase, slag and sulphur dioxide; controlling the injection of the oxidizing gas such that a substantial portion of the gas contracts the blister copper phase; and separating blister copper from the bath. It is possible to obtain an amount of sulphur in the blister copper which is within a factor of two of the equilibrium value for a given percentage of copper in the slag.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: March 30, 1999
    Assignees: Mount Isa Mines Ltd., Commonwealth Scientific and Industrial Research Organisation
    Inventors: James Scott Edwards, Shafi Jahanshahi
  • Patent number: 5849061
    Abstract: A process for refining high-impurity blister copper to anode quality copper is disclosed. In an oxidation step of a blister copper refining stage, soda ash fluxing removes antimony and arsenic while also removing sulfur and iron. In a deoxidation step of the blister copper refining stage, sulfur hexafluoride is injected at a controlled oxygen concentration to remove bismuth while reducing the oxygen content. Slag is continuously or periodically skimmed from the surface of the molten blister copper to prevent re-entry of impurities. The process may be carried out in batch operation or, in a preferred embodiment, in continuous flow-through operation.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: December 15, 1998
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Nickolas J. Themelis, Baozhong Zhao
  • Patent number: 5449395
    Abstract: Fire-refined blister copper is produced from copper concentrate by a process comprising:A. melting and oxidizing the copper concentrate in a smelting furnace to produce molten matte and slag, and to separate one from the other;B. removing the molten matte from the smelting furnace;C. solidifying the molten matte;D. injecting the solidified matte into a converting furnace in which the matte is converted to blister copper and slag; andE. transferring the blister copper from the converting furnace to an anode furnace to produce fire-refined blister copper.After the fire-refined blister copper is produced in the anode furnace, it is typically transferred to an anode casting wheel on which it is converted to copper anodes suitable for subsequent electrolytic refining to cathode copper.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: September 12, 1995
    Assignee: Kennecott Corporation
    Inventor: David B. George
  • Patent number: 5180422
    Abstract: A copper smelting process is disclosed in which copper concentrate is smelted in a furnace to produce purified copper. Flue gas discharged from the furnace is treated to produce sulfuric acid. Furthermore, waste liquid discharged during the production of sulfuric acid is treated to produce gypsum, and the gypsum thus produced is recycled to the furnace as a flux. The flue gas may be exhausted from either or both of a smelting furnace and a converting furnace, and the gypsum may be preferably introduced into the converting furnace.
    Type: Grant
    Filed: November 20, 1991
    Date of Patent: January 19, 1993
    Assignee: Mitsubishi Materials Corporation
    Inventors: Nobuo Kikumoto, Mineo Hayashi
  • Patent number: 5125963
    Abstract: The present invention relates to a method for monitoring and control of smeltmetallurgical processes, endothermic as well as exothermic ones, preferably pyrometallurgical processes, by means of optical spectrometry, whereby one first determines for each endothermic and exothermic smeltmetallurgical process and/or process step characteristic emissions or absorptions and identifies the atomic or molecular origin of the emissions/absorptions, that one during a running process records changes in the characteristic emissions/absorptions and relates these changes to the condition of the process and with reference hereto controls the process.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: June 30, 1992
    Assignee: Scandinavian Emission Technology Aktiebolag
    Inventors: Lars E. M. Alden, Erik W. Persson, Erik W. Wendt
  • Patent number: RE36598
    Abstract: Fire-refined blister copper is produced from copper concentrate by a process comprising:A. melting and oxidizing the copper concentrate in a smelting furnace to produce molten matte and slag, and to separate one from the other;B. removing the molten matte from the smelting furnace;C. solidifying the molten matte;D. injecting the solidified matte into a converting furnace in which the matte is converted to blister copper and slag; andE. transfering the blister copper from the converting furnace to an anode furnace to produce fire-refined blister copper.After the fire-refined blister copper is produced in the anode furnace, it is typically transferred to an anode casting wheel on which it is converted to copper anodes suitable for subsequent electrolytic refining to cathode copper.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: March 7, 2000
    Assignee: Kennecott Holdings Corporation
    Inventor: David B. George