Sheep Patents (Class 800/16)
  • Publication number: 20110023151
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding ABC transporter proteins. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences encoding ABC transporter proteins.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023149
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences involved in tumor suppression. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. The invention also provides zinc finger nucleases that target chromosomal sequence involved in tumor suppression and the nucleic acids encoding the zinc finger nucleases. Also provided are methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences involved in tumor suppression.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023159
    Abstract: The present invention provides a genetically modified ovine or cell comprising at least one edited chromosomal sequence. In particular, the chromosomal sequence is edited using a zinc finger nuclease-mediated editing process. The disclosure also provides zinc finger nucleases that target specific chromosomal sequences in the ovine genome.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Joseph Bedell, Brian Buntaine, Xiaoxia Cui
  • Publication number: 20110023145
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding proteins associated with ASD. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of using the genetically modified animals or cells disclosed herein to study ASD development and screen agents for assessing their effect on progression or symptoms of an ASD.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023148
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding proteins associated with addiction disorders. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. The invention also provides zinc finger nucleases that target chromosomal sequence encoding addiction-related proteins and the nucleic acids encoding said zinc finger nucleases. Also provided are methods of using the genetically modified animals or cells disclosed herein to screen agents for addiction and withdrawal side effects and other effects.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023143
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding proteins that are associated with neurodevelopmental disorders. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of using the genetically modified animals or cells disclosed herein to screen agents for toxicity and other effects.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023150
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences associated with schizophrenia. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. The invention also provides zinc finger nucleases that target chromosomal sequence associated with schizophrenia and the nucleic acids encoding said zinc finger nucleases. Also provided are methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences associated with schizophrenia.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023152
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding proteins that are associated with cognitive disorders. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences associated with cognitive disorders.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023153
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding proteins associated with AD. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of using the genetically modified animals or cells disclosed herein to study AD development and methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences encoding proteins associated with AD.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110023139
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal involved in cardiovascular disease. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. The invention also provides zinc finger nucleases that target chromosomal sequences involved in cardiovascular disease and the nucleic acids encoding said zinc finger nucleases. Also provided are methods of using the genetically modified animals or cells disclosed herein to screen agents for toxicity and other effects.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20110016545
    Abstract: The invention relates to enzymes having xylanase, mannanase and/or glucanase activity, e.g., catalyzing hydrolysis of internal ?-1,4-xylosidic linkages or endo-?-1,4-glucanase linkages; and/or degrading a linear polysaccharide beta-1,4-xylan into xylose. Thus, the invention provides methods and processes for breaking down hemicellulose, which is a major component of the cell wall of plants, including methods and processes for hydrolyzing hemicelluloses in any plant or wood or wood product, wood waste, paper pulp, paper product or paper waste or byproduct. In addition, methods of designing new xylanases, mannanases and/or glucanases and methods of use thereof are also provided. The xylanases, mannanases and/or glucanases have increased activity and stability at increased pH and temperature.
    Type: Application
    Filed: August 1, 2008
    Publication date: January 20, 2011
    Applicant: VERENIUM CORPORATION
    Inventors: Kevin Gray, Reinhard Dirmeier
  • Publication number: 20110016543
    Abstract: The present invention provides genetically modified animals and cells comprising edited chromosomal sequences encoding inflammation-related proteins. In particular, the animals or cells are generated using a zinc finger nuclease-mediated editing process. Also provided are methods of assessing the effects of agents in genetically modified animals and cells comprising edited chromosomal sequences encoding inflammation-related proteins.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 20, 2011
    Applicant: SIGMA-ALDRICH CO.
    Inventors: Edward Weinstein, Xiaoxia Cui, Phil Simmons
  • Publication number: 20100333218
    Abstract: A non-human transgenic mammalian animal, as described above, contains one or more exogenous double stranded DNA sequence(s) stably integrated into the genome of the animal, which comprises trans-acting regulatory units controlling expression of DNA sequences encoding proteins to be secreted into the milk of transgenic mammals. The DNA sequence of the trans-regulatory gene encodes transcriptional activating proteins, which are not secreted but made in a temporally controlled and mammary tissue specific manner. The DNA sequence containing the protein to be secreted in the milk is constructed on a separate gene sequence under the regulation of a minimal promoter and a trans-activation binding domain. The transgenic mammals are preferably pigs, cows, sheep, goats and rabbits. A related composition and method for making transgenic proteins which require specialized propeptides for proper post-translational processing is also described.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 30, 2010
    Applicant: PROGENETICS LLC
    Inventors: Julian D. Cooper, Tanya K. O'Sickey, Stephen P. Butler
  • Publication number: 20100293624
    Abstract: This application is in the field of sialic acid chemistry, metabolism, antigenicity, and the production of transgenic non-human mammals with altered sialic acid production. More particularly, this application relates to N-glycolylneuraminic acid (Neu5Gc) being an immunogen in humans, and the production of Neu5Gc-free mammalian products for laboratory and human use.
    Type: Application
    Filed: June 8, 2006
    Publication date: November 18, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ajit Varki, Anna Maria Hedlund, Dzung Nguyen
  • Patent number: 7803981
    Abstract: The invention features novel methods for the production of large quantities of xenogenous antibodies, such as human antibodies. Preferably, this result is effected by inactivation of IgM heavy chain expression and, optionally, by inactivation of Ig light chain expression, and by the further introduction of an artificial chromosome which results in the expression of xenogenous antibodies (e.g., non-bovine antibodies), preferably human antibodies.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: September 28, 2010
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Philippe Collas, Eddie Sullivan, Poothappillai Kasinathan, Richard A. Goldsby, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida, Barbara Osborne
  • Publication number: 20100235926
    Abstract: The present invention provides a hairless transgenic nonhuman animal used in the development of a therapy for dermatitis such as human atopic dermatitis and drug discovery. Specifically, the present invention provides a transgenic nonhuman animal, into which recombinant DNA comprising a heparin-binding EGF gene and a type 2 keratin gene promoter for regulating expression of the above gene has been introduced.
    Type: Application
    Filed: February 8, 2006
    Publication date: September 16, 2010
    Inventors: Hiromichi Yonekawa, Toyoyuki Takada, Hiroshi Shitara, Yoshiaki Kikkawa, Rie Ishii, Kenji Kohno
  • Publication number: 20100215658
    Abstract: The invention relates to antibodies and subsequences thereof that specifically bind to poxvirus B5R envelope protein, antibodies and subsequences thereof that specifically bind to pox virus H3L envelope protein, and combinations thereof.
    Type: Application
    Filed: October 6, 2008
    Publication date: August 26, 2010
    Applicant: KYOWA HAKKO KIRIN CO., LTD.
    Inventor: SHINICHIRO KATO
  • Publication number: 20100205682
    Abstract: The present invention concerns methods and means to produce humanized antibodies from transgenic non-human animals. The invention specifically relates to novel immunoglobulin heavy and light chain constructs, recombination and transgenic vectors useful in making transgenic non-human animals expressing humanized antibodies, transgenic animals, and humanized immunoglobulin preparations.
    Type: Application
    Filed: July 29, 2009
    Publication date: August 12, 2010
    Inventors: ROLAND BUELOW, Wim van Schooten, Josef Platzer
  • Publication number: 20100205680
    Abstract: The present invention provides a mammary gland-specific human erythropoietin expression (hEPO) vector, transgenic animal and method for producing human erythropoietin using the same. The inventive hEPO-expressing transgenic animals express a mammary gland-specific EPO at an extremely higher concentration than the convention method. The hEPO produced from inventive transgenic animals shows better stability and superior physiological activity than those of the same kind of commerally available protein. Therefore, the inventive hEPO-expressing transgenic animals can be effectively used for production of EPO showing a superior physiological activity than the existing EPO.
    Type: Application
    Filed: August 8, 2007
    Publication date: August 12, 2010
    Inventor: Jin Hoi Kim
  • Publication number: 20100205681
    Abstract: A prognostic marker for breast cancer and a composition for inducing obesity are provided, wherein said marker and said composition comprise HCCR-1.
    Type: Application
    Filed: July 6, 2007
    Publication date: August 12, 2010
    Inventors: Hyun-Kee Kim, Jin-woo Kim
  • Patent number: 7737325
    Abstract: The present invention relates to a cell for the production of an antibody molecule such as an antibody useful for various diseases having high antibody-dependent cell-modulated cytotoxic activity, a fragment of the antibody and a fusion protein having the Fc region of the antibody or the like, a method for producing an antibody composition using the cell, the antibody composition and use thereof.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: June 15, 2010
    Assignee: Kyowa Hakko Kirin Co., Ltd
    Inventors: Yutaka Kanda, Mitsuo Satoh, Kazuyasu Nakamura, Kazuhisa Uchida, Toyohide Shinkawa, Naoko Yamane, Emi Hosaka, Kazuya Yamano, Motoo Yamasaki, Nobuo Hanai
  • Publication number: 20100136113
    Abstract: This invention relates to phytases, polynucleotides encoding them, uses of the polynucleotides and polypeptides of the invention, as well as the production and isolation of such polynucleotides and polypeptides. In particular, the invention provides polypeptides having phytase activity under high temperature conditions, and phytases that retain activity after exposure to high temperatures. The phytases of the invention can be thermotolerant and/or thermostable at low temperatures, in addition to higher temperatures. The phytases of the invention can be used in foodstuffs to improve the feeding value of phytate rich ingredients. The phytases of the invention can be formulated as foods or feeds or supplements for either to, e.g., aid in the digestion of phytate. The foods or feeds of the invention can be in the form of pellets, liquids, powders and the like.
    Type: Application
    Filed: September 21, 2007
    Publication date: June 3, 2010
    Applicant: VERENIUM CORPORATION
    Inventors: Brian Steer, Mark Dycaico, Katie A. Kline, Axel Trefzer, Thomas Todaro, Arne Solbak, Fatima El-Farrah, Alberto Alvarado, Gerhard Frey
  • Publication number: 20100125918
    Abstract: The invention provides a new type of a capsid protein VP1 of human enterovirus 71, named as MEL701-VP1 and functional/structural variants thereof, which is used for protection against enterovirus. The transgenic animal producing the protein, the composition comprising the protein and the method for production thereof are also provided.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Applicant: National Chung Hsing University
    Inventors: Chuan-Mu Chen, Hsiao-Ling Chen
  • Publication number: 20100088778
    Abstract: A method for the diagnosis of an epilepsy syndrome, including SMEI or an SMEI-related syndrome, in a patient comprising testing for an alteration in the SCN1A gene in a sample obtained from the patient; and if an alteration is identified, comparing said alteration to any one of those listed in Table 3, wherein if said alteration is identical to any one of those listed in Table 3, a diagnosis of an epilepsy syndrome, including SMEI or an SMEI-related syndrome, in said patient is made in accordance with the correlation set forth in Table 3.
    Type: Application
    Filed: June 16, 2006
    Publication date: April 8, 2010
    Inventors: John Charles Mulley, Louise Harkin, Samuel Frank Berkovic, Ingrid Eileen Scheffer, Steven Petrou
  • Publication number: 20100077496
    Abstract: MO-1 is a newly identified gene and gene product associated with morbid obesity. Isolated MO-1 nucleic acids, MO-1 polypeptides, oligonucleotides that hybridize to MO-1 nucleic adds, and vectors, including expression vectors, comprising MO-1 nucleic acids are disclosed, as are isolated host cells, antibodies, transgenic non-human animals, compositions, and kits relating to MO-1. Methods of detecting the presence of MO-1 nucleic acid, screening for agents which affect MO-1 activity, and screening for MO-1 variants are also disclosed.
    Type: Application
    Filed: April 21, 2008
    Publication date: March 25, 2010
    Applicant: Mt. Sinai School of Medicine
    Inventors: Adel Shalata, JOHN Martignetti, Robert Desnick
  • Publication number: 20100077491
    Abstract: Provided herein are compositions and methods relating to the involvement of RNF5 in muscle wasting.
    Type: Application
    Filed: July 12, 2007
    Publication date: March 25, 2010
    Applicants: Burnham Institute for Medical Research, Mount Sinai School of Medicine
    Inventors: Ze'ev Ronai, Agnes DeLaunay, Kenneth Bromberg
  • Patent number: 7683236
    Abstract: Compositions and methods are provided for the efficient and reproducible generation of clone animals of all developmental stages. Also provided are methods of use of the same in reproductive and therapeutic cloning protocols.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: March 23, 2010
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Michele Boiani, Kenneth John McLaughlin, Hans R. Scholer
  • Publication number: 20100061997
    Abstract: The present invention provides a substantially purified growth differentiation factor (GDF) receptor, including a GDF-8 (myostatin) receptor, as well as functional peptide portions thereof. In addition, the invention provides a virtual representation of a GDF receptor or a functional peptide portion thereof. The present invention also provides a method of modulating an effect of myostatin on a cell by contacting the cell with an agent that affects myostatin signal transduction in the cell. In addition, the invention provides a method of ameliorating the severity of a pathologic condition, which is characterized, at least in part, by an abnormal amount, development or metabolic activity of muscle or adipose tissue in a subject, by modulating myostatin signal transduction in a muscle cell or an adipose tissue cell in the subject.
    Type: Application
    Filed: January 28, 2009
    Publication date: March 11, 2010
    Inventors: Se-Jin Lee, Alexandra C. McPherron
  • Patent number: 7667089
    Abstract: Hemophilia A is one of the major inherited bleeding disorders caused by a deficiency or abnormality in coagulation factor VIII (FVIII). Hemophiliacs have been treated with whole plasma or purified FVIII concentrates. The risk of transmitting blood-borne viruses and the cost of highly purified FVIII are the major factors that restrict prophylaxis in hemophilia therapy. One of the challenges created by the biotechnology revolution is the development of methods for the economical production of highly purified proteins in large scales. The present invention provides improved mammary expression cassettes useful for the expression of genes at high levels in the milk of transgenic animals. In particular, the present invention provides recombinant signal peptide sequences derived from a-lactalbumin and aS1-casein milk genes suitable for leading protein secretion in the mammary gland.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: February 23, 2010
    Assignee: National Chung Hsing University
    Inventors: Winston T. K. Cheng, Chuan-Mu Chen, Shwu-Wha Lin, Chih-Hong Wang, Chih-Jen Lin, Shinn-Chih Wu
  • Patent number: 7652192
    Abstract: The invention is directed in part to totipotent cells that have one or more artificial chromosomes; processes for producing such cells; processes for using such cells (e.g., nuclear transfer); transgenic embryos and transgenic animals cloned from such cells; and processes for producing such embryos and animals.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: January 26, 2010
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: Erik J. Forsberg, Kelly S. Mallon, Paul J. Golueke, Michael D. Bishop
  • Publication number: 20090311194
    Abstract: Methods and compositions for using magnetosomes as cellular contrast agents and markers for magnetic resonance imaging are provided. Certain methods involve synthesizing magnetosomes in a cell as directed by a nucleotide construct comprising an exogenous polynucleotide sequence, wherein the magnetosome serves as a contrast agent or marker for magnetic resonance imaging. Methods of synthesizing and isolating magnetosomes for introduction into immune-matched cells within a tissue or subject for use as a contrast agent or marker for magnetic resonance imaging are also provided. Also provided are methods for stably transfecting cells to express a polypeptide that drives or modulates magnetosome production in the cell, cells produced by such methods and methods for their isolation, transgenic animals comprising at least one eukaryotic cell produced by such methods, and vectors and delivery systems for the transfection of such cells.
    Type: Application
    Filed: April 28, 2006
    Publication date: December 17, 2009
    Applicants: Emory University, Georgia Tech Research Corporation
    Inventors: Xiaoping Philip Hu, Anthony Wing Sang Chan, Omar Zurkiya
  • Publication number: 20090276863
    Abstract: The present inventors discovered that knockout mice whose S1-5 gene function is lost develop age-related diseases or symptoms. Histological analysis in such knockout mice revealed that bone mineral content, bone mineral density, and bone strength were decreased, and the number of osteoclasts in bone tissues was increased. Analysis of osteoclast-forming ability using bone marrow cells derived from the knockout mice revealed that osteoclast-forming ability is enhanced and osteoclasts are larger in the knockout mice than in wildtype mice. When purified S1-5 protein was added to this in vitro system, osteoclast-forming ability was inhibited.
    Type: Application
    Filed: July 1, 2005
    Publication date: November 5, 2009
    Inventors: Toshihiro Nakajima, Naoko Yagishita, Tetsuya Amano
  • Publication number: 20090276866
    Abstract: The present invention relates to a method of producing an ungulate having both copies of the IgM heavy chain (mu) rag-1 and/or rag-2 gene eliminated from its genome. Animals which have IgM, rag-1 and/or rag-2 eliminated from their genome are unable to conduct the gene rearrangements that are necessary to generate the antigen receptors of B- or T-lymphocytes, and therefore will not develop native B- or T-cells. Because they are unable to produce B- and T-lymphocytes, these IgM, rag-1, or rag-2 ungulates cannot reject human hematopoietic stem cell preparations, and B- and T-lymphocytes which develop therefrom. Therefore, the present invention also involves injecting into IgM, rag-1, and/or rag-2 deficient ungulates, in utero or shortly after birth, human B- and T-lymphocytes whose immune systems produce human immunoglobulin that can be processed for therapeutic uses in humans.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 5, 2009
    Inventors: Richard A. Goldsby, James M. Robl, Barbara A. Osborne, Yoshimi Kuroiwa
  • Publication number: 20090228999
    Abstract: The invention relates to a non-human transgenic mammal that is useful for the production of a protein of interest that may be toxic to the mammal. The mammal is characterized by the fact that it is transgenic for the production in its milk of an inactive form of the protein of interest, preferably recombinant human insulin. It is not possible to produce recombinant human insulin in transgenic mammals since this molecule has a certain degree of biological activity in the mammals and could be toxic to the mammal. Thus, the invention involves cloning a genetic construct comprising a sequence encoding a modified human insulin precursor under the control of a beta casein promoter in an expression vector. It also involves transfecting the expression plasmid into fetal bovine somatic cells, such as fibroblasts, and enucleating bovine oocytes by nuclear transfer to generate transgenic embryos.
    Type: Application
    Filed: June 13, 2008
    Publication date: September 10, 2009
    Applicant: Sterrenbeld Biotechnologie North America, Inc.
    Inventors: A. BERCOVICH, A. PRYNC, N. Fernandez, C. Melo, M. Criscuolo
  • Publication number: 20090221492
    Abstract: Recombinant Factor IX characterized by a high percentage of active protein can be obtained in the milk of transgenic animals that incorporate chimeric DNA molecules according to the present invention. Transgenic animals of the present invention are produced by introducing into developing embryos DNA that encodes Factor IX, such that the foreign DNA is stably incorporated in the DNA of germ line cells of the mature animal. Particularly efficient expression was accomplished using a chimeric construct comprising a mammary gland specific promoter, Factor IX cDNA that lacked the complete or any portion of the 5?-untranslated and 3?-untranslated region, which is substituted with a 5-? and 3?-end of the mouse whey acidic protein gene. In vitro cell cultures of cells explanted from the transgenic mammal of the invention and methods of producing Factor IX from such said culture and methods of treating hemophilia B are also described.
    Type: Application
    Filed: August 29, 2008
    Publication date: September 3, 2009
    Inventors: William H. Velander, William N. Drohan, Henryk Lubon, John L. Johnson, Mary Ann H. Johnson
  • Publication number: 20090222935
    Abstract: In general, the invention features genetically modified non-human mammals (e.g., bovines and other ungulates), and methods of making these mammals. In particular, the invention features transgenic ungulates having reduced levels of endogenous IgM heavy chain and/or prion protein.
    Type: Application
    Filed: June 25, 2008
    Publication date: September 3, 2009
    Inventors: James M. Robl, Yoshimi Kuroiwa, Poothappillai Kasinathan, Isao Ishida, Kazuma Tomizuka
  • Publication number: 20090165153
    Abstract: Methods and means for efficiently downregulating the expression of any gene of interest in eukaryotic cells and organisms are provided. To this end, the invention provides modified antisense and sense RNA molecules, chimeric genes encoding such modified antisense or sense RNA molecules and eukaryotic organisms such as plants, animals or fungi, yeast or molds, comprising the modified antisense and/or sense RNA molecules or the encoding chimeric genes.
    Type: Application
    Filed: July 18, 2008
    Publication date: June 25, 2009
    Applicant: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION (CSIRO)
    Inventors: Ming-Bo Wang, Peter Waterhouse
  • Publication number: 20090155238
    Abstract: The invention relates to enzymes having xylanase, mannanase and/or glucanase activity, e.g., catalyzing hydrolysis of internal ?-1,4-xylosidic linkages or endo-?-1,4-ghicanase linkages; and/or degrading a linear polysaccharide beta-1,4-xylan into xylose. Thus, the invention provides methods and processes for breaking down hemicellulose, which is a major component of the cell wall of plants, including methods and processes for hydrolyzing hemicelluloses in any plant or wood or wood product, wood waste, paper pulp, paper product or paper waste or byproduct. In addition, methods of designing new xylanases, mannanases and/or glucanases and methods of use thereof are also provided. The xylanases, mannanases and/or glucanases have increased activity and stability at increased pH and temperature.
    Type: Application
    Filed: February 14, 2007
    Publication date: June 18, 2009
    Applicant: Verenium Corporation
    Inventors: David Weiner, David Blum, Alexander Varvak, Shaun Healey, Kristine Chang, Geoff Hazlewood, Thomas Todaro, Grace Desantis, Hwai Chang, Connie Jo Hansen, Scott W. Beaver, Thomas Woodward, Charles Hancock
  • Publication number: 20090133133
    Abstract: The invention relates to the use of transgenic constructs to produce animal models for the study of chronic wasting disease.
    Type: Application
    Filed: October 14, 2008
    Publication date: May 21, 2009
    Applicant: University of Kentucky Research Foundation
    Inventor: Glenn C. Telling
  • Publication number: 20090100532
    Abstract: Provided herein are transgenic non-human animals having a transgene encoding a variant nicotinic acetylcholine receptor (nAChR) subunit, wherein the variant nAChR subunit is selected from the group consisting of ?6, ?5, and ?2. The transgenic animals display a modified phenotype that includes nicotinic hypersensitivity. Also provided are methods of generating the invention transgenic animals. Further provided are methods for screening a candidate agent for the ability to modulate nicotine-mediated behavior in the invention transgenic animals.
    Type: Application
    Filed: September 24, 2008
    Publication date: April 16, 2009
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ryan Drenan, Henry A. Lester
  • Publication number: 20090077679
    Abstract: Nucleic acid and protein sequences relating to a gene required for systemic RNAi are disclosed. The SID-1 protein is shown to be required for systemic RNAi. Nucleic acids, vectors, transformed cells, transgenic animals, polypeptides, and antibodies relating to the sid-1 gene and protein are disclosed. Also provided are methods for reducing the expression of a target gene in a cell, a population of cells, or an animal.
    Type: Application
    Filed: February 22, 2008
    Publication date: March 19, 2009
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Craig P. Hunter, William M. Winston, Christina Molodowitch
  • Patent number: 7501554
    Abstract: The invention provides a transgenic animal producing low-lactose milk, which is transformed with a gene encoding an extracellular lactase-hydrolyzing enzyme cloned from a human small intestinal cDNA library. The invention also provides a new extracellular lactase-phlorizin hydrolase (ecLPH) gene that can express human lactase-hydrolyzing enzyme in the mammary gland of animals. The invention can be used in the production of low-lactose milk.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: March 10, 2009
    Assignee: National Chung Hsing University
    Inventors: Chuan-Mu Chen, Winston T. K. Cheng, Hsiao-Ling Chen
  • Publication number: 20090062190
    Abstract: The present invention relates to novel proteins (LITAF and STAT6(B)) and the nucleotide sequences encoding the same. The present invention also relates to the use of the novel peptides and nucleotide sequences of the present invention, or functional fragments thereof, for the regulation of cytokine expression. The present invention also relates to the use of the novel proteins and nucleotides sequences of the present invention for the regulation of inflammatory responses in mammals including the regulation of angiogenesis and tubulogenesis. Also in this regard, the present invention relates to the generation of null mutant animals deficient in the expression of one or both of the proteins of the present invention.
    Type: Application
    Filed: February 23, 2006
    Publication date: March 5, 2009
    Inventors: Salomon Amar, Xiaoren Tang
  • Publication number: 20090053210
    Abstract: The present invention describes transgenic animals with human(ized) immunoglobulin loci and transgenes encoding human(ized) Ig? and/or Ig? sequences. Of particular interest are animals with transgenic heavy and light chain immunoglobulin loci capable of producing a diversified human(ized) antibody repertoire that have their endogenous production of Ig and/or endogenous Ig? and/or Ig? sequences suppressed. Simultaneous expression of human(ized) immunoglobulin and human(ized) Ig? and/or Ig? results in normal B-cell development, affinity maturation and efficient expression of human(ized) antibodies.
    Type: Application
    Filed: August 27, 2007
    Publication date: February 26, 2009
    Inventor: Roland Buelow
  • Patent number: 7491867
    Abstract: The present invention relates to the production of a transgenic bovine which comprises a genetic modification that results in inactivation and loss of expression of its endogenous antibodies, and the expression of xenogenous antibodies, preferably human antibodies. This is effected by inactivation of the IgM heavy chain expression and, optionally, by inactivation of the Ig light chain expression, and by the further introduction of an artificial chromosome which results in the expression of non-bovine antibodies, preferably human antibodies.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: February 17, 2009
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Richard A. Goldsby, Stacy E. Ferguson, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida, Barbara A. Osborne
  • Publication number: 20090041659
    Abstract: The invention described herein provides for human antibodies produced in non-human animals that specifically bind to lipopolysaccharide (LPS) from strains Fisher Devlin (International Serogroups) It-2 (011), It-3 (02), It-4 (01), It-5 (010), It-6 (07), PA01 (05), 170003 (02), IATS016 (02/05), and 170006 (02). The invention further provides methods for making the antibodies in a non-human animal, expression of the antibodies in cell lines including hybridomas and recombinant host cell systems. Also provided are kits and pharmaceutical compositions comprising the antibodies and methods of treating or preventing pseudomonas infection by administering to a patient the pharmaceutical compositions described herein.
    Type: Application
    Filed: December 3, 2004
    Publication date: February 12, 2009
    Inventor: John R. Schreiber
  • Publication number: 20090007282
    Abstract: The present invention relates to a method for producing a modified foreign chromosome(s) or a fragment(s) thereof, which comprises the steps of: (a) preparing a microcell comprising a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) into a cell with high homologous recombination efficiency through its fusion with said microcell; (b) in said cell with high homologous recombination efficiency, inserting a targeting vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof, and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; and (c) in said cell with high homologous recombination efficiency, causing deletion and/or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof.
    Type: Application
    Filed: May 7, 2008
    Publication date: January 1, 2009
    Inventors: Kazuma TOMIZUKA, Hitoshi Yoshida, Kazunori Hanaoka, Mitsuo Oshimura, Isao Ishida, Yoshimi Kuroiwa
  • Publication number: 20080317731
    Abstract: The invention provides novel polypeptides having phospholipase activity, including, e.g., phospholipase A, B, C and D activity, patatin activity, phosphatidic acid phosphatases (PAP)) and/or lipid acyl hydrolase (LAH) activity, nucleic acids encoding them and antibodies that bind to them. Industrial methods, e.g., oil degumming, and products comprising use of these phospholipases are also provided.
    Type: Application
    Filed: March 8, 2005
    Publication date: December 25, 2008
    Applicant: Diversa Corporation
    Inventors: Svetlana Gramatikova, Geoff Hazlewood, David Lam, Nelson R. Barton, Blake G. Sturgis, Dan E. Robertson, Jincai Li, Joel A. Kreps, Roderick Fielding, Robert C. Brown, Amit Vasavada, Xuqiu Tan, Andrian Badillo, Wilhelmus P. Van Hoek, Giselle Janssen, Charles Isaac, Mark J. Burk
  • Publication number: 20080313753
    Abstract: The present invention relates to treating or ameliorating heart disease associated with poor myocardial performance, e.g., diabetic cardiomyopathy and associated disorders, particularly to treating, preventing or ameliorating such disorders through inhibition of O-GlcNAcylation and/or increased activity of O-GlnNAcase. The invention provides vectors for gene transfer of O-GlnNAcase. In one aspect, the invention provides cells, vectors, formulations comprising them and methods of using them, for the gene transfer of the human O-GlnNAcase gene, e.g., to treat conditions and diseases associated with impaired cardiac contractility, such as that, found associated with diabetic cardiomyopathy. In another aspect, the invention provides non-human transgenic animals and host cells comprising genetically engineered cells having increased activity of O-GlnNAcase.
    Type: Application
    Filed: August 25, 2005
    Publication date: December 18, 2008
    Applicant: Regents of the University of California
    Inventors: Wolfgang Dillmann, Darrell H. Belke, Ying Hu, Raymond Clark
  • Publication number: 20080313748
    Abstract: The invention provides non-human transgenic animals, and cell lines, host cells, tissues and isolated organs, comprising the human UDP-glucuronosyltransferase IA (UGT1A) gene locus. In one aspect, the endogenous UGT1A gene locus of the non-human transgenic animal has been partially or completely “knocked out.” In another aspect, the invention is directed to drug screening, design and discovery. In another aspect, the invention is directed to determining the toxicity or metabolism of a compound, e.g., a toxin or drug, including environmental, dietary, cosmetic, biological warfare or other known or potentially toxic compounds. In another aspect, the invention is directed to deteuiining the toxicity or metabolism of a compound during a particular metabolic state of an animal, e.g., including pregnancy, stress, diet, age or a particular genotype.
    Type: Application
    Filed: September 2, 2005
    Publication date: December 18, 2008
    Applicant: Regents of the University of California
    Inventor: Robert H. Tukey