Abstract: The present invention provides an apparatus and method for converting a large bale of hay into a plurality of smaller sized bales having the same nutritional composition and texture as the large bale. The apparatus comprises a first cutting assembly which has a first set of blades which are orthogonally oriented with respect to a second set of blades. The apparatus further comprises a driver head assembly which is used to force a large bale of hay through the first cutting assembly. The apparatus also has a second cutting assembly which comprises a metering knife oriented substantially orthogonal to both the first and second sets of blades of the first cutting assembly. The associated method for processing the large bale fibrous comprises a first step of producing bale sections by pushing the large bale through the first cutting assembly. The method has a second step of producing metered bales through operation of the second cutting assembly.
Type:
Grant
Filed:
May 22, 2000
Date of Patent:
March 30, 2004
Inventors:
Edgar W. McCracken, Gary D. Griggs, James B. Archer
Abstract: An automatic iron core air gap cutting apparatus includes an electronic control box and a transmission system to receive signals and control from the electronic control box for receiving finished iron cores to perform air gaps cutting operations. The completed iron cores with the air gaps formed thereon are pushed to an exit chute for packaging, thereby completing the automatic iron core fabrication process.
Abstract: An automatic iron core air gap cutting apparatus includes an electronic control box and a transmission system to receive signals and control from the electronic control box for receiving finished iron cores to perform air gaps cutting operations. The completed iron cores with the air gaps formed thereon are pushed to an exit chute for packaging and proceeding the follow on processes, thereby to form an automatic iron core fabrication processing.
Abstract: The present invention refers to a processing center for automatic food treatment without human intervention throughout the process. Various food products like vegetables or fruits are placed within the storage compartments of the apparatus and, depending on apriori preprogrammed parameters, are automatically cut in 3 dimensions. The desired 3D cut is obtained by the following cutting steps:
1. Slicing of the product.
2. Horizontal cutting of sliced product.
3. Vertical cutting of sliced product.
Various possibilities are established by the above process so as to allow preparation of ready made salads with predetermined size of cut components like onion, cucumber, tomato, radish, banana, apple, orange, melon, etc.
The apparatus is equipped with motion converting mechanisms, multimode control and with approppiate computerized control means.
Abstract: Improvements are provided in an apparatus and a method for shredding blocks of cheese. The apparatus includes an elongated cheese chamber having an open side face for the admission of a block of cheese, which is urged into the elongated cheese chamber by a loading piston, a longitudinally-extending side plate and a floor surface for slidingly-engaging a block of cheese. An extruding piston is provided to force the cheese downstream within the elongated cheese chamber. The improvement includes an extrusion grid plate which is fixed at the downstream end of the elongated cheese chamber having a plurality of elongated, parallel, horizontal and vertical, knife-edges constituting a plurality of rectangular openings. A rotatable shredder assembly including an overlapped disc is sited immediately downstream of, and is in longitudinal abutment with, the extrusion grid plate, to prevent undesired escape of the extruded cheese.
Abstract: A formed element trimming apparatus includes a base member, a nesting member connected to a ram cylinder mounted on one end of the base member, a clamping member connected to a clamping cylinder mounted to a second end of the base member, and a cutting plate attached to the base member between the nesting member and the clamping member. The cutting plate has a cutting aperture to engage any undesired attachments on the periphery of the formed element. The formed element is securely placed in the nesting member, which is designed to integrally receive the formed element. The clamping member, propelled by the clamping cylinder, traverses the cutting aperture to engage the nesting member and secure the position of the formed element between the nesting member and the clamping member.