Probes, Their Manufacture, Or Their Related Instrumentation, E.g., Holders (epo) Patents (Class 850/48)
  • Patent number: 8975893
    Abstract: In a method for optimization of a flow coding with switching of an additional bipolar dephasing gradient pair, used in a magnetic resonance (MR) phase contrast angiography, the strength of the flow coding is selected depending on the flow velocity in the vessels that should be depicted. MR signals of an examination region are acquired with continuously running overview measurements, with an operator-selected flow coding strength. After the selected flow coding strength is adopted automatically for the next measurement of the continuously running overview measurements, and two partial measurements with different flow codings are implemented for each selected strength and a phase difference image from the two partial measurements is calculated and depicted in real time, and the selected flow coding strength is automatically adopted for the MR phase contrast angiography.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 10, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Peter Speier
  • Patent number: 8884608
    Abstract: The present disclosure is discloses the development of a new device, system, and method that combines advantages of magnetic resonance and atomic force microscopy technologies, and the utility of the new device, system, and method for a wide range of biomedical and clinical researchers. According to one aspect of the present disclosure, a device for micro-scale spectroscopy is disclosed. The micro-scale spectroscopy device includes a beam having a distal end, a proximal end, a top surface and a bottom surface, where the beam is attached to an anchor at the proximal end and further includes a tip extending substantially perpendicular from the bottom surface at or near the distal end, and a coil having at least one turn mounted to the top surface of the beam at or near the distal end opposite the tip, where the coil is capable of both transmitting and sensing electromagnetic radiation.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: November 11, 2014
    Assignee: Purdue Research Foundation
    Inventors: Corey P. Neu, Babak Ziaie, Teimour Maleki-Jafarabadi, Charilaos Mousoulis
  • Patent number: 8726410
    Abstract: An atomic force microscope (AFM) system capable of imaging multiple physical properties of a sample material at the nanoscale level. The system provides an apparatus and method for imaging physical properties using an electromagnetic coil placed under the sample. Excitation of the coil creates currents in the sample, which may be used to image a topography of the sample, a physical property of the sample, or both.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 13, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Shamachary Sathish, Vijayaraghava Nalladega, Kumar V Jata, Mark P Blodgett
  • Publication number: 20130263332
    Abstract: A signal for excitation is supplied to a connection terminal of a magnetic head. A magnetic probe of a magnetic force microscope is made to fly over the magnetic head and to scan a plurality of scan lines at predetermined intervals in parallel with one side of the magnetic head. A magnetic field strength of the magnetic head is detected to form magnetic field strength profiles of the scan lines. An effective magnetic field strength profile that brings about a magnetic effective track width of the magnetic head is extracted on the basis of a result of detection and the magnetic effective track width of the magnetic head is obtained on the basis of the effective magnetic field strength profile. After extraction of the effective magnetic field strength profile, a scan for obtaining the magnetic effective track width of the magnetic head is stopped.
    Type: Application
    Filed: February 7, 2013
    Publication date: October 3, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Shinji KAWAMOTO
  • Patent number: 8287745
    Abstract: Disclosed is a method for fabricating a probe tip, capable of preventing a rapid increase of a surface size of a front end of the probe tip as the probe tip is worn out by a frequent contact with a wafer chip and, also, capable of improving the precision of the front end of the probe tip. The method for fabricating a probe tip includes forming a front end of the probe tip on a silicon wafer; forming a first protective layer which is patterned to expose a part of the front end of the probe tip; and forming a body of the probe tip in a portion opened by the pattern of the first protective layer.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 16, 2012
    Assignee: M2N Inc.
    Inventors: Ki Pil Hong, Jong Hyeon Chae, Hac Ju Lee
  • Patent number: 8214917
    Abstract: A microfluidic cell includes a compressible block and a cantilever. The compressible block includes a first horizontal surface, an opposite second horizontal surface and a plurality of vertical surfaces therebetween. A gasket structure depends downwardly from the second horizontal surface. The gasket structure defines an open cavity therein. The compressible block defines a fluid inlet passage and a fluid outlet passage each in fluid communication with the cavity and opening to a selected one of the first horizontal surface and one of the plurality of vertical surfaces. The cantilever includes body portion and a beam extending laterally therefrom. The body portion is embedded in the compressible block and a portion of the beam extends into the cavity defined by the gasket structure.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Todd A. Sulchek, Siping Roger Qiu, Damien J. Noga, David K. Schoenwald
  • Publication number: 20110225684
    Abstract: A magnetic head inspection method is provided with the step that an area smaller than a half of a scanning and measurement area of a magnetic probe in a cantilever unit of the MFM is set as a scanning and measurement area on a surface of a recording portion of the magnetic head that is scanned by the AFM, so as to greatly reduce the inspection time (tact time) of the AFM.
    Type: Application
    Filed: February 10, 2011
    Publication date: September 15, 2011
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: TSUNEO NAKAGOMI, NORIMITSU MATSUSITA
  • Patent number: 7945964
    Abstract: Provided are a structure of an apparatus for analysis, inspection, and measurement in which a support structure supporting a detection unit is resistant to disturbance, suppresses a reduction in resolution during large-sample measurement, and has high rigidity, and a probe microscope using the apparatus structure. The apparatus structure supporting the detection unit which is opposed to a sample which is located on a unit movable in at least one axis direction and is an object to be analyzed has an arch shape. In the apparatus structure having the arch shape and supporting the detection unit, a surface substantially perpendicular to a flat surface portion of a sample holder located immediately under the apparatus structure is formed. The detection unit is supported on the perpendicular surface. The arch-shaped apparatus structure is a curved structure consistent with a catenary curve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 17, 2011
    Assignee: SII NanoTechnology Inc.
    Inventors: Shigeru Wakiyama, Kenichi Akamatsu
  • Patent number: 7884323
    Abstract: The present invention relates generally to atom probes, atom probe specimens, and associated methods. For example, certain aspects are directed toward methods for analyzing a portion of a specimen that includes selecting a region of interest and moving a portion of material in a border region proximate to the region of interest so that at least a portion of the region of interest protrudes relative to at least a portion of the border region. The method further includes analyzing a portion of the region of interest. Other aspects of the invention are directed toward a method for applying photonic energy in an atom probe process by passing photonic energy through a lens system separated from a photonic device and spaced apart from the photonic device. Yet other aspects of the invention are directed toward a method for reflecting photonic energy off an outer surface of an electrode onto a specimen.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: February 8, 2011
    Assignee: Cameca Instruments, Inc.
    Inventors: Thomas F. Kelly, Joseph H. Bunton, Scott A. Wiener
  • Patent number: 7841016
    Abstract: The invention is directed to a spin-polarized electron injector using a semiconductor tip, in which tip the injected electrons are photocreated by a circularly polarized light excitation incident on the rear of the tip. This tip is supported by a transparent lever or cantilever and undergoes a surface treatment for the purpose of removing the surface oxide layer, to prevent said layer from reforming and to improve the proportion of injected electrons.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: November 23, 2010
    Assignee: Ecole Polytechnique
    Inventors: Daniel Paget, Jacques Peretti, Alistair Rowe, Georges Lampel, Bruno Gerard, Shailendra Bansropun
  • Patent number: 7814565
    Abstract: Techniques for forming a nanostructure on a probe tip are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 12, 2010
    Assignee: SNU R&DB Foundation
    Inventors: Yong Hyup Kim, Tae June Kang
  • Publication number: 20100170017
    Abstract: A polarization microscope optically detects the effect of the magnetic field from a sub-optical resolution magnetic structure on a magneto-optical transducer. The magneto-optical transducer includes a magnetic layer with a magnetization that is changed by the magnetic field produced by the magnetic structure. The saturation field of the magnetic layer is sufficiently lower than the magnetic field produced by the magnetic structure that the area of magnetization change in the magnetic layer is optically resolvable by the polarization microscope. A probe may be used to provide a current to the sample to produce the magnetic field. By analyzing the optically detected magnetization, one or more characteristics of the sample may be determined. A magnetic recording storage layer may be deposited over the magnetic layer, where a magnetic field produced by the sample is written to the magnetic recording storage layer to effect the magnetization of the magnetic layer.
    Type: Application
    Filed: December 29, 2009
    Publication date: July 1, 2010
    Applicant: INFINITUM SOLUTIONS, INC.
    Inventor: Juergen Heidmann
  • Publication number: 20100138964
    Abstract: Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate.
    Type: Application
    Filed: November 20, 2009
    Publication date: June 3, 2010
    Applicant: The Regents of the University of California
    Inventors: Nissim Amos, Sakhrat Khizroev, Rabee Ikkawi, Robert Haddon, Robert Fernandez