Abstract: A device for the remote control of a firearm has a turret head which can be pointed in all directions and is controlled by an azimuth motor. A frame which fixes the firearm is suspended in an upward tilting manner in a pintle of the turret head. A sighting camera is connected to a screen which displays a sighting reticule. A remote control controls the azimuth motor and an elevation motor which controls an elevation of the frame. At least one sensor determines the orientation of either or both the frame and the camera and a ballistic calculator connected to the sensors to calculate and control the super elevation of the frame as a function of the information from the sensors and the distance of the target, such that the camera is driven by the elevation motor, and the frame can be inclined in elevation in relation to the camera.
Abstract: The present invention provides a powered aiming platform for pointing devices such as firearms, illumination devices, or sensing instruments, remotely controlled by a hand-controller device, with video feedback of the aiming position and audio feedback of the exact direction and speed of positioning movements. The present invention overcomes the safety and accuracy limitations of manual and conventional remotely-controlled aiming mechanisms, thereby allowing operators to point devices accurately and quickly with predictable, precise control. In the case of firearms, the present invention maintains a steady position after repeated firing.