Ceramic Layer In Combination With Metal Layer (epo) Patents (Class 89/907)
  • Patent number: 8881639
    Abstract: In one embodiment, hybrid body armor includes a ballistic fabric and a plurality of small ballistic plates arranged in a tightly packed array over the ballistic fabric.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 11, 2014
    Assignee: University of South Florida (A Florida Non-Profit Corporation)
    Inventors: Daniel Jeffrey Miller, Autar Krishen Kaw
  • Publication number: 20130284003
    Abstract: A multi-layer material that provides blast and projectile impact protection is provided. The multi-layer material may include a hard metal layer, a composite layer, an air gap layer, and an innermost layer. An armor layer may also be provided that includes a polymeric honeycomb layer and a ceramic layer. In other aspects of the invention, a vehicle made from the multi-layer material is provided, and methods for making the multi-layer material are provided.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: Future Force Innovation, Inc.
    Inventor: Antony Dodworth
  • Patent number: 8528457
    Abstract: A Method of Producing a hybrid tile metal matrix composite armor is disclosed. First, dense ceramic plates are placed within the mold cavity and may rest on spacer(s) that separate the bottom surface of the ceramic plates from the base of the mold cavity to create a space therebetween. The plates are further positioned within the mold cavity to create a controlled space between any adjacent plates. A second set of spacers may be placed on the plates top surface to create a space between the mold cavity cover and the ceramic plates top surface. A plurality of ceramic plates and spacers may also be stacked into multiple layers according to the shape of the mold cavity and desired ballistic resistance. The mold cavity is next infiltrated with liquid metal under pressure forming a hybrid metal matrix composite structure with an encapsulating aluminum rich skin.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 10, 2013
    Assignee: CPS Technologies Corp
    Inventor: Richard Adams
  • Publication number: 20130228067
    Abstract: A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Inventors: Michael W. McElfresh, Scott E. Groves, Mtichell L. Moffet, Louis P. Martin
  • Patent number: 8474362
    Abstract: A diamond-reinforced SiC ceramic composite material and shaped article. The addition of diamond to the microstructure greatly enhances properties such as hardness and Young's modulus. Such a composite material has considerable promise as an armor material. In particular, significant increases in ballistic performance can be achieved versus a non-diamond-containing composite, particularly versus the M993 threat. Reaction bonded silicon carbide (RBSC) ceramics with 7% diamond were shown to offer ballistic performance levels that matched the best commercial ceramics tested on the program.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 2, 2013
    Assignee: M Cubed Technologies, Inc.
    Inventors: Prashant G. Karandikar, Sam Salamone, Allyn L. McCormick, Michael K. Aghajanian, Glen Evans
  • Patent number: 8464626
    Abstract: The armor tile system embodying the principles of the present invention comprises one or more hybrid tiles which can be connected together to cover a protected structure. Various arrays of material layers may be utilized (1×1, 2×2, 4×4, 2×8, etc) within a hybrid tile system and multiple hybrid tiles may be mounted on the area to be protected. Each hybrid tile comprises one or more material layers stacked within a single metal matrix casting. Each material layer within a hybrid tile includes at least one reinforcement insert arranged along a common surface. The reinforcement inserts comprise material types suitable for containment, structural support, and projectile deflection and destruction. The armor tile system of the present invention is created utilizing a molten metal infiltration process.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 18, 2013
    Assignee: CPS Technologies Corp.
    Inventors: Richard Adams, Renee MacPherson, Jim Sorensen
  • Patent number: 8387510
    Abstract: The present invention's stratified composite material system of armor, as typically embodied, comprises a strike stratum and a backing stratum. The strike stratum includes elastomeric matrix material and inventive ceramic-inclusive elements embedded therein and arranged (e.g., in one or more rows and one or more columns) along a geometric plane corresponding to the front (initial strike) surface of the strike stratum. More rigid than the strike stratum, the backing stratum is constituted by, e.g., metallic (metal or metal alloy) material or fiber-reinforced polymeric matrix material. Some inventive embodiments also comprise a spall-containment stratum fronting the strike stratum. The inventive ceramic-inclusive elements geometrically describe any of various inventive modes, including: first mode, having a flat front face and a textured back face; second mode, having a pyramidal front section and a prismatoidal (especially, prismoidal, e.g.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Curtis A. Martin, Gilbert F. Lee, Jeffry J. Fedderly
  • Publication number: 20130025440
    Abstract: A composite ballistic armor or other composite component may be formed by encapsulating one or more ceramic elements in a casting shell and introducing molten base metal into the casting shell, such that the molten base metal encapsulates the one or more ceramic elements to form the composite component. Prior to the pouring process, the ceramic elements are pre-heated to, or near, the melting point temperature or pouring temperature of the encapsulating metal. Additionally, the cooling rate following the metal pour may be less than a predetermined rate for a predetermined period of time. The encapsulating metal may comprise, for example, a steel alloy, such as 4140 or 8630 AISI, a stainless steel alloy, or FeMnAl.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: Spokane Industries
    Inventors: Rod Alan Grozdanich, Edward Robert Kaczmarek
  • Publication number: 20120318130
    Abstract: According to an embodiment, a ballistic structure comprises a front pellet layer configured to face a ballistic threat and rear pellet layer therebehind, each of the pellet layers comprising a plurality of pellets, which can be made of a ceramic material, having cylindrical bodies with their height axes in both layers being substantially parallel to each other, the pellets being arranged in a honeycomb pattern within a binder matrix, the pellet layers being codisposed such that all interior spaces (i.e., spaces which are surrounded on all sides by pellets) of each pellet layer are entirely overlapped by an area of the other pellet layer that is free of such spaces, the two layers being by an intermediate layer having such a width and being made of such a material as to allow the rear layer to rigidly support the front layer.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 20, 2012
    Applicant: Plasan Sasa Ltd.
    Inventors: Shmuel Genihovich, IIan Gavish, Yaron Rozenfeld Hacohen, Oren Gozlan, Yoav Hirshberg
  • Publication number: 20120297965
    Abstract: In one embodiment, hybrid body armor includes a ballistic fabric and a plurality of small ballistic plates arranged in a tightly packed array over the ballistic fabric.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 29, 2012
    Applicant: University of South Florida
    Inventors: Daniel Jeffrey Miller, Autar Krishen Kaw
  • Publication number: 20120291621
    Abstract: A composite armor panel and a method for making the armor is disclosed. In one embodiment the armor consists of a plurality of ceramic tiles (21) individually edge-wrapped with fiber or edge-wrap fabric (52), which are further wrapped with a face-wrap fabric (53A,53B), and encapsulated in a hyperelastic polymer material (31) permeating the fabric and fibers, with a front plate (42) and back plate (41) adhered to the encapsulated tiles. In one embodiment the hyperelastic polymer is formed from a MDI-polyester or polyether prepolymer, at lease one long-chain polyester polyol comprising ethylene/butylene adipate diol, at least one short-chain diol comprising 1,4-butanediol, and a tin-based catalyst.
    Type: Application
    Filed: December 7, 2010
    Publication date: November 22, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jay Sayre, Kary Valentine, Jim Tuten
  • Publication number: 20120240755
    Abstract: A composite ballistic armor or other composite component may be formed by placing one or more ceramic cores in a mold and introducing molten base metal into the mold, such that the molten base metal encapsulates the one or more ceramic cores to form the composite component. The ceramic cores may comprise, for example, porous packed-particle ceramic cores or pre-cast porous ceramic cores. The base metal may comprise, for example, a steel alloy, such as FeMnAl.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: Spokane Industries
    Inventors: Tyrus Neil Tenold, Gregory George Tenold, Robert Gordon Tenold, Edward Robert Kaczmarek, Rod Alan Grozdanich
  • Patent number: 8267002
    Abstract: A ceramic armor tile for attaching internally behind a wall of a structure and for cooperation in conjunction therewith, such that the wall acts as an external protective layer of the armor.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 18, 2012
    Assignee: Rafael Armament Development Authority Ltd.
    Inventors: Moshe Benyami, Yehiel Reifen, Ron Genussov
  • Patent number: 8257814
    Abstract: Composite structures and methods of fabrication thereof are disclosed. An embodiment of a composite structure, among others, includes: a backing substrate; a layer of structures distributed over the backing substrate; and a thermoplastic disposed onto the structures and the backing substrate, wherein the thermoplastic substantially binds the backing substrate and layer of structures together.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: September 4, 2012
    Assignee: University of Alabama at Birmingham
    Inventors: Shane Bartus, George Husman, Uday Vaidya
  • Publication number: 20120186427
    Abstract: The armor tile system embodying the principles of the present invention comprises one or more hybrid tiles which can be connected together to cover a protected structure. Various arrays of material layers may be utilized (1×1, 2×2, 4×4, 2×8, etc) within a hybrid tile system and multiple hybrid tiles may be mounted on the area to be protected. Each hybrid tile comprises one or more material layers stacked within a single metal matrix casting. Each material layer within a hybrid tile includes at least one reinforcement insert arranged along a common surface. The reinforcement inserts comprise material types suitable for containment, structural support, and projectile deflection and destruction. The armor tile system of the present invention is created utilizing a molten metal infiltration process.
    Type: Application
    Filed: November 20, 2009
    Publication date: July 26, 2012
    Inventors: Richard Adams, Renee MacPherson, Jim Sorensen
  • Publication number: 20120174750
    Abstract: An armor material, body armor articles, and methods of manufacturing the armor material are provided. In an embodiment, by way of example only, the armor material includes a first plate, a second plate, and a powder material. The first plate includes a layer comprising a metallic material. The second plate is spaced apart from the first plate and includes a layer comprising a ceramic material. The powder material is disposed between the first and the second plates, and comprises loose powder including at least one of a plurality of ceramic particles and a plurality of metallic particles.
    Type: Application
    Filed: October 24, 2007
    Publication date: July 12, 2012
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Reza Oboodi, Derek Raybould, Thomas E. Strangman
  • Publication number: 20120174754
    Abstract: An armor for protection against armor piercing and/or high energy projectiles has a ceramic layer with a confinement layer on a front thereof. The ceramic layer is backed by a first metal layer and the first metal layer in turn is backed by a composite layer. A second optional confinement layer may be included between the ceramic and first metal layers. The composite layer is backed by an optional second metal layer, which in turn is backed by an optional anti-trauma layer. The armor is used to protect personnel and objects such as vehicles.
    Type: Application
    Filed: June 1, 2009
    Publication date: July 12, 2012
    Applicant: STRIKE FACE TECHNOLOGY INCORPORATED
    Inventors: Christopher Peter Salisbury, Christian Kaufmann, Duane S. Cronin, Michael James Worswick
  • Publication number: 20120103177
    Abstract: An assembly for armoring an amphibious vehicle against projectile penetrations, the amphibious vehicle having a hull, the assembly including a rigid spall generating sheet, the rigid spall generating sheet having a thickness and an outer surface; a buoyant sheet fixedly attached to and extending inwardly from the rigid spall generating sheet; and a multiplicity of fasteners interconnecting the rigid and buoyant sheets with the amphibious vehicle's hull, the buoyant sheet incorporating a low density, nonabsorbent hardened foam material; the buoyant sheet functioning for vehicle buoyancy enhancement and for defining a spall dispersal space overlying the hull and underlying the rigid spall generating sheet.
    Type: Application
    Filed: April 22, 2010
    Publication date: May 3, 2012
    Inventor: Michael D. Coltrane
  • Patent number: 8166863
    Abstract: A resource is protected by an armor structure comprising a magnetic field such that the magnetic field will interfere with a warhead blast to weaken the blast. In particular, magnetic field will interfere with a molten metal jet from a shaped charge to disperse the jet, allowing subsequent layers of armor to absorb the jet energy without penetration. In one embodiment, the magnetic field is produced by a layer of magnetic material magnetized with the field lines perpendicular to the primary threat direction and typically parallel to the surface of the area to be protected. The magnetic material layer may include ferromagnetic (iron or steel, or other) layers to strengthen and contain the magnetic field, protect the magnetic material and act as additional armor layers. The magnetic layer is typically used in conjunction with an inner shield armor layer to absorb the diffused jet after passing through the magnetic layer.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 1, 2012
    Assignee: Cedar Ridge Research LLC
    Inventor: Larry W. Fullerton
  • Patent number: 8141471
    Abstract: The present invention provides an initial strike-face layer for armor, a method of constructing an armor plate and armor. In one embodiment, the initial strike-face layer includes a substantially planar surface having a relief pattern with raised or recessed structures, each of the structures having sides that are oblique to the substantially planar surface.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 27, 2012
    Assignee: Alcatel Lucent
    Inventors: John L. DeCristofaro, John A. Dispenza, Leon Klafter, Richard T. LaGrotta, Ka-Shu Lee
  • Publication number: 20110303079
    Abstract: An armor system for defeating a solid projectile having a first armor plate, an interior armor plate, and an inner armor plate displaced from one another to form a first dispersion space between the first armor plate and the interior armor plate. The first dispersion space is sufficiently thick to allow significant lateral dispersion of armor passing therethrough. The inner armor plate is disposed approximately parallel to the interior armor plate and displaced therefrom to form a second dispersion space between the interior armor plate and the inner armor plate. The second dispersion space is sufficiently thick to allow significant lateral dispersion of materials passing therethrough.
    Type: Application
    Filed: September 15, 2006
    Publication date: December 15, 2011
    Inventor: Vernon P. Joynt
  • Publication number: 20110277621
    Abstract: In one aspect, the present disclosure is directed to a system for protecting a vehicle from a mine. Upon detonation the mine may yield ejecta having an expected trajectory. The system has a first layer of material disposed outside of an underbody of a hull of the vehicle. The first layer includes a base disposed in a direction substantially parallel to the underbody and a protrusion that narrows as it extends away from the base in a direction opposing the expected ejecta trajectory. The system also has a second layer including a material having a shock wave transmission velocity that is higher than a shock wave transmission velocity of the material of the first layer. The system further has an exterior layer substantially covering the first and second layers, and the exterior layer has an exterior surface that faces away from the underbody and toward the expected ejecta trajectory.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Inventor: Vernon P. JOYNT
  • Publication number: 20110168003
    Abstract: In some example, the disclosure provides armor assembly designs utilizing multiple solid armor plates and one or more coupling elements, such as, e.g., high-strength ropes, to couple the solid armor plates to each other. For example, the solid armor plates may be attached to one another and held in position via high-strength ropes for form a discontinuous armor layer. The armor assemblies may include multiple layer arrangements of the solid armor plates that provide substantially complete coverage of a surface when the multiple discontinuous layers are combined. Ropes or other coupling elements may be used to horizontally connect plates together within the same discontinuous layer of armor plates and ropes may also be used to vertically connect plates in different armor layers. In some example, the armor assembly may be highly flexible and breathable to provide body armor that may be comfortably worn. In some examples, armor assemblies may be adapted for use as vehicle armor or other armor applications.
    Type: Application
    Filed: April 14, 2010
    Publication date: July 14, 2011
    Inventor: Young-Hwa Kim
  • Publication number: 20110167997
    Abstract: Up-armoring structure for protecting a selected surface including (a) a foundation layer formed of a chemically curable, elastomeric, urethane-based material applied to that surface, (b) a core layer of hardened armoring material embedded, at least partially, in the foundation layer, and (c) a coating overlayer of a chemically curable, elastomeric material which covers the core layer, and which is bonded molecularly to the foundation layer. The method of the invention includes (a) applying a chemically curable, elastomeric foundation layer to a surface which is to be armor protected, (b) embedding a core layer of hardened armoring material at least partially in the foundation layer, (c) creating over the core layer an overlayer of chemically curable, elastomeric material, and (d) molecularly bonding the coating layer to the foundation layer.
    Type: Application
    Filed: September 26, 2006
    Publication date: July 14, 2011
    Inventors: Thomas S. Ohnstad, Russell A. Monk
  • Publication number: 20110154980
    Abstract: The invention relates to a ballistic resistant article comprising at least one multilayered sheet, said sheet comprising a consolidated stack of monolayers, said monolayers comprising fibers, characterized in that the total thickness of said article is at least 100 mm. The invention also relates to the use of the ballistic resistant article to protect against high speed projectiles and Explosively Formed Projectiles.
    Type: Application
    Filed: June 16, 2009
    Publication date: June 30, 2011
    Inventor: Johann Van Elburg
  • Publication number: 20110107904
    Abstract: The armor system according to the present invention also exploits synergistic multi-layering to provide different properties as a function of depth within a sandwich panel. Various embodiments of the invention include a combination of composite sandwich topology concepts with hard, strong materials to provide structures that (i) efficiently support static and fatigue loads, (ii) mitigate the blast pressure transmitted to a system that they protect, (iii) provides very effective resistance to projectile penetration, and (iv) minimizes shock (stress wave) propagation within the multi-layered armor sandwich structure. By using small pieces of highly constrained ceramic, the concept has significant multi-hit potential.
    Type: Application
    Filed: August 15, 2008
    Publication date: May 12, 2011
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Douglas T. Queheillalt, Haydn N.G. Wadley
  • Publication number: 20110083549
    Abstract: A ballistic armor adapted to protect against armor piercing projectiles and to withstand multiple impacts of fragment simulating projectiles of a predetermined type, traveling at an initial velocity not exceeding a first velocity. The armor comprises a main armor layer and an auxiliary layer. The main armor layer is adapted to absorb most of the energy of the armor piercing projectiles and to withstand the impacts of the fragment simulating projectiles traveling at a velocity not exceeding a second velocity which is lower than said first velocity.
    Type: Application
    Filed: July 27, 2006
    Publication date: April 14, 2011
    Applicant: PLASAN SASA LTD.
    Inventors: Moshe Ravid, Mark Pak, Yoav Hirschberg
  • Patent number: 7921757
    Abstract: An armor plate is provided for a body jacket to include provision for electrical power. The plate includes a flexible substrate, a ceramic cover disposed on the substrate, and a battery. The cover includes cavities along the substrate, with the battery disposed within the cavities. The battery comprises sheets disposed within the cavities. The battery includes a first metal layer disposed on the substrate, an electrolyte layer disposed on the first electrode layer and a second electrode layer disposed between the electrolyte layer and the cover.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: April 12, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Daniel J. Vavrick, Nicholas V. Nechitailo
  • Publication number: 20110041676
    Abstract: A hard armor composite includes a rigid facing and a ballistic fabric backing. The fabric backing is carried by the facing, and includes an array of bundled high-performance fibers. The fibers have a tensile strength greater than 7 grams per denier and a denier per filament ratio of less than 5.4.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 24, 2011
    Inventors: Andrew D. Park, Dave Park, Alexander J. Park, William J. Perciballi
  • Publication number: 20110030543
    Abstract: An armor module for protecting a surface against an explosively formed projectile (EFP) threat is provided. The armor module is configured for mounting on the surface and comprises at least one armor assembly having a hard layer disposed facing the threat and being configured to fragment the EFP, thus forming residuals of the original EFP threat; a unidirectional fiber layer disposed behind the hard layer; and a catcher layer behind the unidirectional fiber layer, the catcher layer being made of a material exhibiting a level of ballistic protection such that a layer of the material being of the same thickness as the unidirectional fiber layer absorbs at least 20% more energy than is the unidirectional fiber layer for the same threat.
    Type: Application
    Filed: December 31, 2009
    Publication date: February 10, 2011
    Applicant: PLASAN SASA LTD.
    Inventors: Moshe RAVID, Amit VIESEL
  • Publication number: 20100300275
    Abstract: Armor systems for protecting against various threats, including projectiles and explosive devices. An armor system includes one or more ballistic panels, one or more wire mesh layers and a backing on a side of the armor system facing away from potential threats that helps to absorb force impacting on the first ballistic panel. The first ballistic panel includes a core that provides strength and rigidity for the first ballistic panel and that distributes and dissipates force impacting on the first ballistic panel, a grinding layer comprising grinding media situated within and positioned on at least one side of the core facing towards potential threats, and a bonding layer that encapsulates the grinding layer. The one or more wire mesh layers contain the ballistic panel, increasing the durability and re-usability of the ballistic panel.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 2, 2010
    Inventor: David H. Warren
  • Patent number: 7837086
    Abstract: A ballistic armor uses shape memory alloys and novel joining techniques to form a solution from a combination of shape memory metallic alloys (SMA) and ceramic materials. The SMA allows a high amount of strain to be recovered through a low temperature heat treatment. The amount of strain recoverable is much higher than that available through conventional thermal expansion mismatch solutions. Solid state or low temperature bonding methods are used to join the dissimilar materials. This joining technique avoids introducing excessive heat that would cause the SMA to transform before the armor system is assembled.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: November 23, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Brice, Brian T. Rosenberger, Slade H. Gardner, Nathan L. Weber
  • Publication number: 20100282061
    Abstract: A lightweight armor plate having a contiguous ceramic layer that absorbs and disperses energy from a projectile. Therefore, the ceramic layer is generally considered to be the front of armor plate. The ceramic plate receives the impact of the projectile, such as but not limited to, bullets and shrapnel. In the case of bullets, for example, the tip of the bullet is deformed and the pressure load is reduced by contact with the ceramic plate. Plate further includes a hardened metal layer situated behind, and fixedly attached to, contiguous ceramic layer and designed and constructed to prevent penetration by projectile. The high plastic elasticity of this hardened metal layer completely absorbs the rest of the kinetic energy of the bullet through deformation and heat. Attachment of ceramic layer and hardened metal layer is preferably by use of an adhesive.
    Type: Application
    Filed: January 7, 2008
    Publication date: November 11, 2010
    Inventor: Asher PERETZ
  • Publication number: 20100269975
    Abstract: A ballistic armor uses shape memory alloys and novel joining techniques to form a solution from a combination of shape memory metallic alloys (SMA) and ceramic materials. The SMA allows a high amount of strain to be recovered through a low temperature heat treatment. The amount of strain recoverable is much higher than that available through conventional thermal expansion mismatch solutions. Solid state or low temperature bonding methods are used to join the dissimilar materials. This joining technique avoids introducing excessive heat that would cause the SMA to transform before the armor system is assembled.
    Type: Application
    Filed: January 9, 2007
    Publication date: October 28, 2010
    Inventors: Craig A. Brice, Brian T. Rosenberger, Slade H. Gardner, Nathan L. Weber
  • Publication number: 20100154622
    Abstract: The present invention describes a transparent plate of lithium aluminosilicate glass ceramic showing a high transmission, a process for producing same and transparent plate laminates comprising at least one plate of the lithium aluminosilicate glass ceramic of the invention and the use thereof as armored glass or bullet-proof vest.
    Type: Application
    Filed: November 12, 2009
    Publication date: June 24, 2010
    Inventors: Thilo Zachau, Friedrich Siebers, Ulrich Schiffner, Kurt Schaupert
  • Patent number: 7730823
    Abstract: A resource is protected by an armor structure comprising a magnetic field such that the magnetic field will interfere with a warhead blast to weaken the blast. In particular, magnetic field will interfere with a molten metal jet from a shaped charge to disperse the jet, allowing subsequent layers of armor to absorb the jet energy without penetration. In one embodiment, the magnetic field is produced by a layer of magnetic material magnetized with the field lines perpendicular to the primary threat direction and typically parallel to the surface of the area to be protected. The magnetic material layer may include ferromagnetic (iron or steel, or other) layers to strengthen and contain the magnetic field, protect the magnetic material and act as additional armor layers. The magnetic layer is typically used in conjunction with an inner shield armor layer to absorb the diffused jet after passing through the magnetic layer.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: June 8, 2010
    Inventor: Larry W. Fullerton