Teaching System Patents (Class 901/3)
  • Patent number: 8588958
    Abstract: A computer program product and an apparatus for preparing a moving program for controlling the operation of a working robot which can move a known working apparatus relative to a workpiece and which can perform desired work on the workpiece. Movement information of the working apparatus may be input to a text entry screen on a character basis. Movement information of the working apparatus may also be input via a figure entry screen as a path on a two-dimensional plane in correlation with height information. The movement information that is input on the text entry screen is output in real time as the path on the two-dimensional plane and the height information thereof on the figure entry screen. The movement information that is input on the figure entry screen is output in real time to the text entry screen on the character basis.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: November 19, 2013
    Assignee: Musashi Engineering, Inc.
    Inventor: Kazumasa Ikushima
  • Patent number: 8560122
    Abstract: Disclosed is a teaching and playback method using a redundancy resolution parameter determined in conjunction with a joint structure, for a robot, and a method to apply analytic inverse kinematics to a robot having an elbow with an offset and a computer-readable medium of controlling the same. A reference plane variable with the joint structure is generated and an angle between the reference plane and an arm plane of the robot is used as the redundancy resolution parameter. The robot is taught and its operation is played back in differential inverse kinematics or analytic inverse kinematics using the resolution redundancy parameter.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae Hyung Park, Ki Moon Lee, Chi Gun An, Yong Joon Hong
  • Publication number: 20130239639
    Abstract: A positioning apparatus and a working system which can position a workpiece with better accuracy at a lower cost and in a reduced space even when the workpiece is heavy are provided. The positioning apparatus has 3 robot arms (1)-(3) each having an arm and an actuator which drives the arm, a mounting platform (5) which is supported by the ends of the three robot arms (1)-(3), a securing jig (6) which secures a workpiece W which is mounted on the mounting platform (5) to the mounting platform (5), and a controller (9) which controls the operation of each of the actuators.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 19, 2013
    Applicants: KABUSHIKI KAISHA YASKAWA DENKI, SUMITOMO PIPE & TUBE CO., LTD., SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Manabu OKAHISA, Yusuke Kinoshita, Takashi Suyama, Atsushi Tomizawa, Shinjiro Kuwayama, Mitsusato Hara
  • Publication number: 20130236050
    Abstract: There is provided a method of post-correction of a 3D feature point-based direct teaching trajectory, which improves direct teaching performance by extracting shape-based feature points based on curvature and velocity and improving a direct teaching trajectory correction algorithm using the shape-based feature points. Particularly, there is provided a method of post-correction of a 3D feature point-based direct teaching trajectory, which makes it possible to extract and post-correct a 3D (i.e., spatial) trajectory, as well as a 2D (i.e., planar) trajectory, with higher accuracy.
    Type: Application
    Filed: July 6, 2012
    Publication date: September 12, 2013
    Applicant: Korea Institute of Machinery & Materials
    Inventors: Tae Yong CHOI, Chan-Hun PARK, Hyun Min DO, Jin-Ho KYUNG
  • Patent number: 8483879
    Abstract: A robotic system includes a robot adapted for moving a payload in proportional response to an input force from an operator, sensors adapted for measuring a predetermined set of operator input values, including the input force, and a controller. The controller determines a changing stiffness value of the operator using set of operator input values, and automatically adjusts a level of control sensitivity over the robot using the stiffness value. The input values include the input force, a muscle activation level of the operator, and a position of the operator. A method of controlling the robot includes measuring the operator input values using the plurality of sensors, processing the input values using the controller to thereby calculate the stiffness value, and automatically adjusting the level of control sensitivity over the robot using the stiffness value. A specific operator may be identified, with control sensitivity being adjusted based on the identity.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Dalong Gao, Roland J. Menassa, Robin Stevenson
  • Publication number: 20130173039
    Abstract: Certain embodiments of the present invention are generally directed to devices and methods for using pressure measurements to teach a robot a teaching point location. In certain embodiments, a method includes measuring pressure at multiple points across a target. A location of a robot teaching point is determined based on the measured pressure.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: Seagate Technology LLC
    Inventors: Bradley Edwin Rowell, Shawn Allen Ruden
  • Publication number: 20130110275
    Abstract: A robot system according to one aspect of an embodiment includes a robot and an instructing module. The robot holds one of a plurality of feed materials used for processing a workpiece. The instructing module gives instructions to the robot, when the feed materials are used for processing the single workpiece, for an operation in which the feed material held last in the previous round of processing a workpiece is used first in the subsequent round of processing a workpiece.
    Type: Application
    Filed: March 15, 2012
    Publication date: May 2, 2013
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Takashi SHIINO, Keigo Ishibashi
  • Patent number: 8433389
    Abstract: The invention relates to a surgery assistance system for guiding a surgical instrument. The surgical instrument (3) is fastened lo an arm system (10, 12, 14), the tip (S) of the surgical instrument (3) can be moved in a controlled manner by means of the arm system (10, 12, 14) in a Cartesian patient coordinate system (PKS), one of the three spatial axes (x, y, z) of the Cartesian patient coordinate system (PKS) extends through the surgical opening or the trocar point (T) receiving the surgical instrument (3). Advantageously, the angle of inclination (w) of the surgical instrument (3) is determined with respect to the spatial axis (z) of the Cartesian patent coordinate system (PKS) extending through the trocar point (T), the angle of inclination (w) so determined is compared with a predetermined set angle of inclination (ws) for the purpose of guiding the tip (S).
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 30, 2013
    Inventors: Robert Geiger, Jürgen Scherr
  • Patent number: 8423185
    Abstract: A robot system includes a robot control device connected to a plurality of robots each having a plurality of joints and a robot teaching device configured to communicate with the robot control device so as to teach and operate the robots. The robot control device automatically select one of the robots to be operated in accordance with a change in a display state of a display of the robot teaching device.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Seishiro Sakaguchi, Toshiaki Iimori
  • Patent number: 8406924
    Abstract: Teaching images are acquired at a plurality of separate teaching points on a running route extending from a running start position to a goal position, respectively, under a first light environmental condition and a light environmental condition different from the first light environmental condition, and the teaching images are stored. A present teaching image serving as a target for a robot body in a running direction at present is selected from the stored teaching images. A driving mechanism is controlled so as to increase the matching degree between the present teaching image and an actual image taken by a camera.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 26, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Dai Kouno, Takashi Nishimura
  • Publication number: 20130053997
    Abstract: A vacuum processing apparatus includes a robot connected to a vacuum container to carry a wafer on one of its two arms to or from a processing chamber; a unit to detect an amount of deviation of the wafer from a predetermined wafer mounting position on the arm that may occur when the robot carries the wafer into or out of the processing chamber; and an adjusting device to adjust the operation of the robot based on the detected amount of deviation. The adjusting device adjusts the robot operation based on the result of a teaching operation performed in advance. After being subjected to the initial teaching operation, the robot again undergoes a second teaching operation according to the information on the amount of wafer position deviation that is detected by moving the wafer in a predetermined transfer pattern, before the wafer processing is performed.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 28, 2013
    Inventors: Tomohiro Ohashi, Akitaka Makino, Hiroho Kitada, Hideki Kihara
  • Patent number: 8380348
    Abstract: Provided is a robot capable of appropriately adjusting a position and the like of a main body in view of executing a specified task involving an interaction with a target object. While the position and posture of the main body (10) are being controlled according to a second target path, the robot (1) moves from a first specified area to a second specified area and stands there. In this state, a second position deviation (=the deviation of the position of the main body from a second target path) and a second posture deviation (=the deviation of the posture of the main body from a second target posture) are determined. According to the determination result, the second target path is corrected so that the subsequent position deviation and the like may be smaller.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: February 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Norio Neki, Koji Okazaki, Takashi Nakayama, Masaaki Muromachi, Satoshi Kaneko, Yuta Kimura
  • Patent number: 8364313
    Abstract: The safety of an operator which may be endangered by an erroneous instruction by the operator or a robot control system is ensured by making more stringent a condition regarding the separation of the operator from the vicinity of a robot when an operation program of the robot is activated. An interlock to which a condition regarding activation of the operation program of the robot is added is provided in a feeding unit which is connected to a robot controlling unit by wireless connection for charging a teaching unit, so as to provide a robot system which improves the safety of the operator.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Akira Akashi, Michiharu Tanaka
  • Patent number: 8321054
    Abstract: A method for adjusting a program including program instructions for controlling an industrial robot to carry out work at a plurality of target points on a work object. The robot includes a tool having two arms adapted to clamp the work object and at least one of the arms is arranged movable relative the other arm in an opening and a closing direction, a manipulator adapted to hold the tool or the work object, and a controller controlling the movements of the manipulator and the tool arm and configured to switch between a normal control mode and a compliant control mode in which the manipulator has a reduced stiffness in at least one direction. The method includes moving the manipulator and the tool according to the program instructions until one of the target points is reached.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 27, 2012
    Assignee: ABB Technology Ltd.
    Inventors: Tony Selnes, Ake Olofsson
  • Publication number: 20120290131
    Abstract: The parallel kinematic machine (PKM) trajectory planning method is operable via a data-driven neuro-fuzzy multistage-based system. Offline planning based on robot kinematic and dynamic models, including actuators, is performed to generate a large dataset of trajectories, covering most of the robot workspace and minimizing time and energy, while avoiding singularities and limits on joint angles, rates, accelerations and torques. The method implements an augmented Lagrangian solver on a decoupled form of the PKM dynamics in order to solve the resulting non-linear constrained optimal control problem. Using outcomes of the offline-planning, the data-driven neuro-fuzzy inference system is built to learn, capture to and optimize the desired dynamic behavior of the PKM. The optimized system is used to achieve near-optimal online planning with a reasonable time complexity. The effectiveness of the method is illustrated through a set of simulation experiments proving the technique on a 2-degrees of freedom planar PKM.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 15, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventor: AMAR KHOUKHI
  • Publication number: 20120253514
    Abstract: It is possible to perform robot motor learning in a quick and stable manner using a reinforcement learning apparatus including: a first-type environment parameter obtaining unit that obtains a value of one or more first-type environment parameters; a control parameter value calculation unit that calculates a value of one or more control parameters maximizing a reward by using the value of the one or more first-type environment parameters; a control parameter value output unit that outputs the value of the one or more control parameters to the control object; a second-type environment parameter obtaining unit that obtains a value of one or more second-type environment parameters; a virtual external force calculation unit that calculates the virtual external force by using the value of the one or more second-type environment parameters; and a virtual external force output unit that outputs the virtual external force to the control object.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Inventors: Norikazu Sugimoto, Yugo Ueda, Tadaaki Hasegawa, Soshi Iba, Koji Akatsuka
  • Publication number: 20120239192
    Abstract: A robot system includes a robot, and a robot controller configured to control operation of the robot. The robot includes two arms including tools at their tip ends, and a body that supports the two arms and allows them to swing. The robot controller controls the robot so as to keep the tool provided at the tip end of at least one arm of the two arms at the same position in the same posture during a time period between before and after a swing.
    Type: Application
    Filed: February 14, 2012
    Publication date: September 20, 2012
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yoshihide YAMATO, Takahiro Maeda
  • Patent number: 8242730
    Abstract: A robot teach tool is provided that enables automatic teaching of pick and place positions for a robot. The automated robot teach tool obviates the need for manual operation of the robot during the teaching. The result is an automated process that is much faster, more accurate, more repeatable and less taxing on a robot operator.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: August 14, 2012
    Inventors: Michael J. Nichols, Louis J. Guarracina
  • Patent number: 8224486
    Abstract: There is provided a device for evaluating and correcting a robot operation program for evaluating an appropriateness for the robot operation program and correcting the robot operation program, comprising a computer including a simulation function for confirming a robot operation. The computer includes a load calculation section for calculating a load given to a motor for driving an operating portion of the robot by a simulation conducted by a computer; and an evaluation section for evaluating, by an evaluation function, whether or not the load exceeds a predetermined allowed value.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 17, 2012
    Assignee: Fanuc Ltd
    Inventors: Yoshiharu Nagatsuka, Toshiya Takeda
  • Patent number: 8219246
    Abstract: A method of controlling the position of an elongate robotic arm comprising articulated segments. An actuator is associated with each segment to control its position, and a control system operates the actuators. Data representing the position of the arm is gathered and compared to input data that represents a required new position of a part of the arm. Data representing the required new position of the arm is then calculated, attempting to keep the remainder of the arm as close as possible to its previous position. The actuators are operated to move the arm into the new position. In tip following, the data representing the new position may define a path, and the arm may be fitted to the path by matching the position and orientation of a point on each pair of adjacent segments to that of the path.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: July 10, 2012
    Assignee: Oliver Crispin Robotics Limited
    Inventors: Robert Oliver Buckingham, Andrew Crispin Graham
  • Patent number: 8185242
    Abstract: Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 22, 2012
    Assignee: Lam Research Corporation
    Inventors: Scott Wong, Jeffrey Lin, Andrew D. Bailey, III, Jack Chen, Benjamin W. Mooring, Chung Ho Huang
  • Publication number: 20120123590
    Abstract: This invention relates to a robot programming method that is carried out at a first location (i.e., teaching station) and a second location (i.e., application station). The second location is different from the first location. At the first location, teach data is prepared to teach motions to a robot to drive an end effector through a series of desired path points along a desired path of motion with respect to the application station. The teach data comprises at least one of robot position data elements and at least one of robot motion pattern data elements. At the second location, teach data is communicated to the robot and the robot is programmed in accordance with the teach data to drive the end effector through the series of desired path points along the desired path of motion with respect to the application station. This invention also relates to a robot programming system. The robot programming method and system are useful, for example, in thermal spray coating applications.
    Type: Application
    Filed: April 6, 2011
    Publication date: May 17, 2012
    Inventor: Matthew Halsmer
  • Publication number: 20120116586
    Abstract: A teaching method of a robot which supports a transported matter with a hand and transports the transported matter between two or more reception spots, includes: a jig disposing process of disposing a positioning jig at the reception spot so as to have the same center axis as the transported matter when the transported matter is placed at the reception spot; and a teaching process of moving the hand to a position at which an abutting portion of the hand abuts the positioning jig at each of the reception spots and teaching the position of the hand to a controller.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 10, 2012
    Applicant: ULVAC, INC.
    Inventor: Yoshinori Fujii
  • Publication number: 20120101613
    Abstract: In an automated system which includes a robot manipulator, a workcell, and a control system implemented on a hardware platform based on a programmable logic controller (“PLC”), a method and apparatus for performing integrated simulation that does not require the presence of both the robot manipulator and the workcell. If one component is real, the other component is simulated so as to be sufficiently responsive to responses from the real component such that the real component is unable to discern that the other component is not also real. A computing device simultaneously displays simulacra of both the components, real and simulated, and visualizations of the responses provided by each.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Applicant: AGILE PLANET, INC.
    Inventors: Chetan Kapoor, Peter S. March
  • Patent number: 8155789
    Abstract: An offline programming device for preparing an operation program for making a robot with a hand perform a handling operation for an object with respect to a machine tool.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 10, 2012
    Assignee: Panuc Ltd
    Inventors: Yoshiharu Nagatsuka, Kozo Inoue
  • Patent number: 8121731
    Abstract: A teaching position correcting apparatus corrects plural teaching point positions of a robot in a robot operation program, by sequentially moving the robot to each of the plural teaching points and by sequentially reading a current position of the robot at each of the plural teaching points. The apparatus includes: a position correction amount calculating unit that calculates a position correction amount, based on corrected teaching point positions and teaching point positions before correction; and a corrected-position calculating unit that calculates corrected positions of teaching point positions before correction out of the plural teaching points, based on the position correction amount. At the time of moving the robot to uncorrected teaching points, a moving unit moves the robot to corrected positions of the teaching point positions before correction.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: February 21, 2012
    Assignee: Fanuc Ltd
    Inventors: Kazunori Ban, Ichiro Kanno, Gang Shen, Katsutoshi Takizawa
  • Patent number: 8121733
    Abstract: According to an embodiment, a numerically controlled (NC) processing system includes materials processing installation having a multi-axis kinematic linkage operable to position a tip portion of the linkage along a predetermined process path. The system also includes a processor having a compensation system operable to detect a singular point in the process path and to improve the accuracy tip portion positioning near the singular point.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: February 21, 2012
    Assignee: The Boeing Company
    Inventor: Philip L. Freeman
  • Patent number: 8115439
    Abstract: A system for moving robots in accordance with a predetermined algorithm. The system includes: a surface having a position-coding pattern which identifies the surface; mobile robots for moving across the surface, each robot being configured for sensing and decoding the position-coding pattern; and a computer system in communication with the mobile robots. The computer system is configured to send instructions for moving each mobile robot relative to the surface in response to position information corresponding to that mobile robot. Further, the computer system is configured to determine instructions for moving each mobile robot using a predetermined algorithm. The predetermined algorithm is selected on the basis of the identity of the surface.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: February 14, 2012
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Patent number: 8112176
    Abstract: A system of self-organizing mobile robotic agents (MRAs) in a multi-robotic system (MRS) is disclosed. The MRAs use simulations to organize the behaviors of groups of robots in the MRS. The MRAs use software agents to model the MRS and the environment. By developing simulations of environmental change, the system provides methods for the MRS to interact with its environment to produce collective epigenetic behaviors.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: February 7, 2012
    Inventor: Neal Solomon
  • Publication number: 20120029700
    Abstract: In a method for the offline programming of an NC-controlled manipulator which follows at least one real trajectory, possibly in a sensor-supported manner, with tool center point thereof in the real working mode, a kinematic manipulator model and, possibly, an environmental model are stored in an offline programming environment with user interface, at least one virtual trajectory of the manipulator and a virtual tolerance zone assigned to said trajectory are defined using the offline programming environment in a definition routine, and the offline programming environment is used to check, in a check routine, the previously defined tolerance zone at least in part in terms of kinematic singularities of the manipulator, the occurrence of which prompts a singularity routine to be executed.
    Type: Application
    Filed: July 26, 2011
    Publication date: February 2, 2012
    Inventor: Dirk Eickhorst
  • Patent number: 8099189
    Abstract: Ball robot comprising a shell, a diametric main axle, at least one pendulum, and a drive mechanism comprising at least two drive motors, wherein the drive motors are arranged on the pendulum(s) in the vicinity of the inner surface of the shell. There is also provided a ball robot with a ball shaped shell, a diametric axle attached to the shell concentric with the main axis of rotation of the shell, and a drive mechanism located inside the shell and supported by the diametric axle, wherein the diametric axle is arranged to accommodate for dimensional changes of the shell along the main axis of rotation.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: January 17, 2012
    Assignee: Rotundus AB
    Inventors: Viktor Kaznov, Fredrik Bruhn, Per Samuelsson, Lars Stenmark
  • Patent number: 8099192
    Abstract: A method is provided for teaching a transfer robot used in conjunction with a workpiece processing system including a pedestal assembly, a light sensor having an optical input fixedly coupled to the pedestal assembly, a transfer robot having an end effector, and a processing chamber containing the pedestal assembly and light sensor. The method includes the steps of producing light within the processing chamber, moving the end effector over the optical input such that amount of light reaching the light sensor varies in relation to the position of the end effector, and recording the signal gain as the end effector is moved over the optical input. The method also includes the step of establishing from the recorded signal gain a desired position of the end effector relative to the pedestal assembly.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 17, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Heinrich Von Bunau, Tarek Radwan, Karen Townsend
  • Patent number: 8090475
    Abstract: A method for monitoring the condition of an industrial robot having a plurality of links movable relative to each other, and a plurality of actuators controlling the movements of the links. A feed forward torque is calculated for at least one of the actuators based on reference values for the position of the actuator and a mathematical model of the robot calculating a feedback torque for the actuators based on measured values from the actuators and reference values for the position of the actuator. A torque is calculated for the actuator at least based on the feedback torque. A difference is monitored between the calculated torque for the actuator and the feed forward torque. It is determined whether the difference is normal or non-normal, and based thereon monitoring the condition of the robot.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: January 3, 2012
    Assignee: ABB Research Ltd.
    Inventors: Dominique Blanc, Niclas Sjöstrand
  • Patent number: 8090474
    Abstract: An apparatus and a method for controlling at least one machine, such as an industrial robot, having drives, safety peripheral components and a controller for a machine, and also having a safety controller. In this arrangement, the safety controller has superordinate access over the respective machine controller both to the machine drives and to the safety peripherals. This achieves the most easily configurable integration of the safety control loop into the operating control loops.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: January 3, 2012
    Assignee: KUKA Laboratories GmbH
    Inventor: Bernd Fiebiger
  • Publication number: 20110301758
    Abstract: [SUMMARY] [OBJECT] Provide a method for controlling a robot arm which retrains the vibration of the arm during a switch of operating method from teaching play back control to feedback control. [SOLUTION] Operate robot arm by the control method comprising the following steps and the vibration of the robot arm is restrained at the time of the control change, by using a non-contact type impedance control method; A step to move a robot arm along a course decided beforehand, the step is performed with teaching play hack control, the teaching play back control is carried out by the instruction of a program which is stored in the control department of a control unit. A step to recognize the presence or absence of the work by a work recognition means which is provided to the arm.
    Type: Application
    Filed: October 7, 2009
    Publication date: December 8, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Ryo Nakajima, Gentoku Fujii
  • Publication number: 20110288667
    Abstract: Provided is an industrial robot system which enables a reduction in an installation/adjustment period, and an increase in a no-error continuous operation period, and includes an action planning section (4) for temporary halts, an error-inducing-task restraining section (5), a section (6) for teaching task, an operation mastering section (7), a hand library (8), an optimum-task-operation generating section (11), a specific task library (9), an error-recovery-task teaching section (12), an error recovery library (10), a finger-eye-camera measurement section (32), a three-dimensional recognition section (33), a controller (30), a manipulator (31), and a universal hand contained in a manipulation device group (34).
    Type: Application
    Filed: February 10, 2010
    Publication date: November 24, 2011
    Applicants: KYOTO UNIVERSITY, MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akio Noda, Haruhisa Okuda, Kenichi Tanaka, Tetsuo Sawaragi, Hiroshi Matsuhisa, Yasuyoshi Yokokouji, Hideo Utsuno, Masaharu Komori, Hajime Mizuyama, Hiroaki Nakanishi, Yukio Horiguchi, Takehisa Kouda, Kazuhiro Izui
  • Patent number: 8041457
    Abstract: A robot configured to check whether an object is properly grasped by a hand determines whether the position and posture of a handle (object), determined based on an image obtained by a camera (external information), and the position and posture of the handle in the case where the handle is assumed to be properly grasped, determined from the posture of a robot based on an output or the like of a rotary encoder (internal information), agree with each other. In response to the determination of whether the external information and the internal information agree with each other, it is determined whether the handle is properly grasped based on a force detected by a six-axis force sensor provided on each hand.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 18, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Nobuyuki Ohno
  • Patent number: 8032253
    Abstract: In an automatic machine system comprising a mechanism unit (1) including at least one driving mechanism, a controller (2) for controlling a driving operation of the mechanism unit (1), and a teaching unit (3) for operating the mechanism unit (1), the teaching unit (3) includes a teaching unit communicating portion for carrying out a wireless communication with the controller (2) and a first field intensity monitoring portion (13) for monitoring a field intensity of communication data in the teaching unit communicating portion, and the controller (2) includes a controller communicating portion for carrying out a wireless communication with the teaching unit (3), a second field intensity monitoring portion (26) for monitoring a field intensity of communication data in the controller communicating portion, and a driving portion for driving the mechanism unit (1) based on an operation signal sent from the teaching unit (3) in the controller communicating portion.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Hideo Nagata, Michiharu Tanaka
  • Publication number: 20110238215
    Abstract: An operator inputs a sensing instruction at a sensing point, which is a rough taught point, in a teaching mode (S22). The instruction and sensing point are stored in a second storage region (S23). Further, a target angle and an advance/retraction angle are both input in the second storage region (S24). A CPU moves a robot to the sensing point (S33) in a sensing mode, to perform detection tasks by a laser sensor, thereby acquiring the shape of a workpiece (S33). The CPU calculates a position and a posture of a welding torch to create a task program (S35). In such a manner, it is possible to greatly simplify teaching tasks in an environment free of workpiece displacements.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicant: DAIHEN CORPORATION
    Inventors: Kouzou YANAGAWA, Yasuhiro KOUJINA
  • Patent number: 8010234
    Abstract: A live handle switch in the form of a hand operated safety switch for an industrial robot or a machine is described. The live handle comprises a safety certified switch for operating a robot or other machine safely while under manual control. The live handle switch may be comprised in a portable robot controller of the TPU Teach Pendant Unit type. Such a TPU may comprise control means for moving a robot in three or more degrees of freedom. In other aspects of the invention a system comprising a robot and a control unit and the live handle switch are described.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 30, 2011
    Assignee: ABB AS
    Inventor: Tormod Henne
  • Patent number: 7983793
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 19, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20110160910
    Abstract: The invention relates to a method of operating a mobile hand-operated device (9) provided as a means of outputting or enabling potentially dangerous control commands to a controllable technical device (1) actively connected to it or to another hand-operated device. A safety switch device (16) . . . comprising at least one evaluation circuit and at least one enable button (18) connected to the evaluation circuit for transmitting signals is provided, which has an idle mode which is assumed automatically without applying operating force and two consecutive operating modes set on the basis of a differing strength of operating force and/or by different displacement distances in the form of an enable operation mode and a panic operating mode.
    Type: Application
    Filed: July 15, 2009
    Publication date: June 30, 2011
    Inventors: Gernot Preisinger, Manfred Schininger, Clemens Woeger, Alois Zeininger
  • Publication number: 20110130864
    Abstract: Disclosed are a transport apparatus that holds and transports an object on a predetermined transport track using a transport portion provided at the leading end of an arm and is capable of acquiring the teaching information of a transport position using a normal transport operation, a position teaching method, and a sensor jig. A transmissive sensor (32) is provided in a sensor jig (30) such that the projection segments of an optical axis (41) and an optical axis (42) on a projection plane intersect with each other and neither the project segment of the optical axis (41) nor the projection segment of the optical axis (42) is aligned with the X-direction and the Y-direction. During a position teaching operation, the sensor jig (30) is provided so as to be held by a wafer transport portion (24), thereby detecting target members (51, 52).
    Type: Application
    Filed: May 19, 2009
    Publication date: June 2, 2011
    Applicant: RORZE CORPORATION
    Inventor: Kenji Hirota
  • Patent number: 7953514
    Abstract: A learning marker configured such that one of learning horizontal distance information and learning vertical distance information can be learned based on detection information from a horizontal travel distance detection device or a vertical travel distance detection device upon detection of at least one edge section of the learning marker in one direction of a horizontal travel direction and a vertical travel direction of a transfer means by a learning marker detector for detecting the learning marker, and the other of the learning horizontal distance information and learning vertical distance information can be learned based on detection information from the horizontal travel distance detection device or the vertical travel distance detection device upon detection of each of both edge sections of the learning marker in the one direction by the learning marker detector.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: May 31, 2011
    Assignee: Daifuku Co., Ltd.
    Inventors: Jaesook Kim, Toshihito Ueda
  • Publication number: 20110125325
    Abstract: There is provided a teaching method for a transfer robot which is capable of quickly performing teaching at high reliability. Relative to a transfer robot which, in a state in which a substrate to be processed in a plurality of processing chambers is supported, transfers the substrate to a predetermined position by turning and telescopic action on the same plane, teaching is made of the transfer actions. At this time, by using at least one detection means that is disposed so as to detect the substrate when the substrate is transferred among the processing chambers, the transfer robot is caused to perform transfer action. At least one index part provided in advance on an operating part of the transfer robot is detected by the detection means. From this detection position, a reference position which serves as an origin of at least one of the turning action and the telescopic action is taught.
    Type: Application
    Filed: July 29, 2009
    Publication date: May 26, 2011
    Inventor: Yoshinori Fujii
  • Publication number: 20110118876
    Abstract: A teaching line correcting apparatus defines a first plane, which is determined by a first reference position of a preset first reference region, a second reference position of a preset second reference region, and a third reference position of a preset third reference region, defines a second plane, which is determined by a detected position of the first reference region, a detected position of the second reference region, and a detected position of the third reference region, calculates a corrective value for equalizing the first reference region to an origin, equalizing the first reference position of the first reference region as the origin to the detected position of the first reference region as the origin, and equalizing the first plane to the second plane, and correcting reference coordinates where operating points are taught based on the calculated corrective value.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 19, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hironobu HAYAMA, Shinya Murakami, Yutaka Hariya, Naoki Eto, Masashi Takebe
  • Patent number: 7945349
    Abstract: The present invention relates to a method and a system for facilitating calibration of a robot cell including one or more objects (8) and an industrial robot (1,2,3) performing work in connection to the objects, wherein the robot cell is programmed by means of an off-line programming tool including a graphical component for generating 2D or 3D graphics based on graphical models of the objects.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: May 17, 2011
    Assignee: ABB Technology AB
    Inventors: Tommy Y. Svensson, Magnus K. Gustafsson, Mathias Haage
  • Publication number: 20110106304
    Abstract: A taught point correcting device for correcting a taught point in an operation program of a robot. The device includes a judging section judging whether position data of any of a plurality of different taught points, previously taught and included in an operation program, has been corrected or not; and a data correcting section correcting, when the judging section judges that position data of a first taught point among the different taught points has been corrected, position data of a correlative taught point having a relative positional relationship with the first taught point, in accordance with a taught-point rule previously prescribing the relative positional relationship between the different taught points. The device may also include a storing section storing the taught-point rule. The taught-point rule may include a rule prescribing a distance between any two taught points among the different taught points.
    Type: Application
    Filed: January 5, 2011
    Publication date: May 5, 2011
    Inventors: Ryo Nihei, Tetsuaki Kato, Hiroji Nishi
  • Publication number: 20110093119
    Abstract: Disclosed is a teaching and playback method using a redundancy resolution parameter determined in conjunction with a joint structure, for a robot, and a method to apply analytic inverse kinematics to a robot having an elbow with an offset and a computer-readable medium of controlling the same. A reference plane variable with the joint structure is generated and an angle between the reference plane and an arm plane of the robot is used as the redundancy resolution parameter. The robot is taught and its operation is played back in differential inverse kinematics or analytic inverse kinematics using the resolution redundancy parameter.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 21, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Dae Hyung Park, Ki Moon Lee, Chi Gun An, Yong Joon Hong
  • Patent number: 7930067
    Abstract: An apparatus and method is disclosed wherein motion data which define motions of an end effecter of a robot such as a hand tip can be produced simply and conveniently. The apparatus and method provide a motion editing environment in which motion data for allowing a robot to plot a picture or a character can be edited simply and conveniently based on interactions such as hand-written inputting of a user through a mouse, a tablet or the like. By reproducing the produced motion data on a robot, a motion of plotting an arbitrary character or picture by the robot can be implemented simply.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 19, 2011
    Assignee: Sony Corporation
    Inventors: Atsushi Miyamoto, Tomohisa Moridaira