Welding Patents (Class 901/42)
  • Patent number: 12042942
    Abstract: When a force sensor on a robot arm detects that the force of contact between an end of a calibration device and a calibration plate reaches a threshold, the robot arm stops, and the end of the calibration device performs marking at the contact position between the end of the calibration device and the calibration plate. The robot arm moves upward and stops at a position where the end of the robot arm is at a predetermined height. At this position, a camera at the end of the robot arm photographs marks on the calibration plate, records the coordinates of the marks in the camera coordinate system, and records the coordinates of the end of the calibration device in the robot coordinate system. A calibration transformation matrix is calculated according to the recorded coordinates of at least three marks.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 23, 2024
    Assignee: SIEMENS LTD., CHINA
    Inventors: Yin Zeng He, Qi Xiao Chen
  • Patent number: 12005528
    Abstract: A weaving control method in fillet welding. On a surface perpendicular to a welding direction, a position of the welding torch is set such that a weaving reference line passes through a base point on a weld line, and at least five fixed end points are set, and positions of the fixed end points are set such that one or more of the fixed end points are provided on each of both sides across the weaving reference line and a reference end point a being on the weaving reference line and having the shortest distance between a tip and a base metal is provided. The weaving operation is performed such that the welding torch moves between the fixed end points along with a trajectory forming a polygon when viewed from the welding direction.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 11, 2024
    Assignee: Kobe Steel, Ltd.
    Inventors: Baini Jo, Atsushi Fukunaga, Akira Ogawa
  • Patent number: 11964391
    Abstract: A robot system includes a robot body, a memory, an operation controlling module and a manipulator. When the robot body is located at a first position, the operation controlling module stops the robot body and receives a selecting manipulation of operation mode from the manipulator. When a correctable automatic mode is selected at the first position, the operation controlling module makes positional coordinates of a second position provided downstream of the first position in a moving direction, changeable from the second position in automatic operation information. When the positional coordinates of the second position are changed, the operation controlling module corrects the automatic operation information so that the robot body reaches the changed second position while retaining some of elements of the automatic operation information in the correctable automatic mode.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 23, 2024
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Yasuhiko Hashimoto, Shigetsugu Tanaka, Masayuki Kamon, Yoshihiko Maruyama
  • Patent number: 11896325
    Abstract: A system for controlling a catheter-based procedure system that includes a robotic drive configured to control rotational motion and axial motion of one or more elongated medical devices may include a body, a first control coupled to the body, and a second control coupled to the body. First control is configured to instruct the robotic drive to axially move one of the one or more elongated medical devices in response to manipulation of the first control by a user, and the second control is configured to instruct the robotic drive to rotate one of the one or more elongated medical devices in response to manipulation of the second control by the user, wherein the first control and the second control are positioned on the body so the first control and the second control can be simultaneously manipulated by a first digit and a second digit on a hand of the user.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: February 13, 2024
    Assignee: Corindus, Inc.
    Inventors: Andrew Clark, Eric Klem, Omid Saber, Saeed Sokhanvar, Per Bergman, Cameron Canale, Steven J. Blacker, Dino Kasvikis
  • Patent number: 11874653
    Abstract: A method of servicing equipment, the method comprising: recording information associated with servicing of the equipment in view of a workscope at a first location; sending the recorded information to a node; receiving service input from a third party located at a second location different from the first location, the third party having prepared the service input in response to the recorded information on the node; and performing the service using the received service input.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: January 16, 2024
    Assignees: Oliver Crispin Robotics Limited, General Electric Company
    Inventors: Andrew Crispin Graham, David Scott Diwinsky
  • Patent number: 11845139
    Abstract: A resistance welding apparatus includes a welding controller configured to control a welding tool. The welding controller has an assignment device including a parametrization device. The assignment device is configured to read out a current point to be welded from a list of points to be welded, to read out a first setpoint curve from a record of a database assigned to the current point to be welded, and to assign the first setpoint curve to the first regulator and the parametrization device is configured to read out the first value from the record of the point to be currently welded and to parametrize a first parameter of the first regulator with the first value. The welding controller further includes the first regulator configured, using a first parameter, to regulate a temporal profile of an electric current at the current point to be welded in accordance with the first setpoint curve.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: December 19, 2023
    Assignee: Robert Bosch GmbH
    Inventor: Juergen Haeufgloeckner
  • Patent number: 11847298
    Abstract: Provided is an electric arc generation system comprising a robot, an electric arc torch attached to the robot, a power supply configured to provide an electrical power output to the torch, and a user interface for adjusting a plurality of power supply parameters. The user interface comprises a display. The system includes a processor configured to receive respective settings of the plurality of power supply parameters, and configured to analyze the settings of the plurality of power supply parameters and control the display to display a pictograph warning associated with a current parameter setting, based on a result of analyzing the settings of the plurality of power supply parameters. Said pictograph warning graphically indicates an adjustment direction for the current parameter setting. The processor is configured to automatically adjust one or more of the settings of the plurality of power supply parameters based on a predetermined operating angle of the torch.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: December 19, 2023
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Matthew A. Albright, Bruce J. Chantry, Levi J. Mitchell, Lance F. Guymon, Daniel J. Spieker
  • Patent number: 11679501
    Abstract: A controller calculates a correction amount of a position of a robot 1 at a movement point in a first movement path, and drives the robot 1 in a second movement path obtained by correcting the first movement path. The controller includes a second camera configured to detect a shape of a part after a robot apparatus performs a task, and a variable calculating unit configured to calculate, based on an output of the second camera, a quality variable representing quality of a workpiece. When the quality variable deviates from a predetermined determination range, a determination unit of the controller determines that the position or an orientation of the robot 1 needs to be modified based on a correlation between the correction amount of the position in the first movement path and the quality variable.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 20, 2023
    Assignee: FANUC CORPORATION
    Inventor: Tomonori Matsushima
  • Patent number: 11642781
    Abstract: A robot includes a base plate rotatable around a rotation axis, a first arm connected to the base plate at a first axis which is perpendicular to the rotation axis and around which the first arm is rotatable, a second arm connected to the first arm at a second axis which is parallel to the first axis and around which the second arm is rotatable, a third arm connected to the second arm at a third axis which is parallel to the first axis and around which the third arm is rotatable, a turnable link connected to the third arm at a fourth axis which is perpendicular to the third axis and around which the turnable link is rotatable, a distal-end swingable portion connected to the turnable link at a fifth axis which is perpendicular to the fourth axis and around which the distal-end swingable portion is rotatable, a distal end connected to the distal-end swingable portion at a sixth axis which is perpendicular to the fifth axis and around which the distal end is rotatable, and a welder connected to the distal end.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 9, 2023
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Yusuke Kinoshita, Eiji Fujitsu, Kazuyoshi Nogami
  • Patent number: 11633801
    Abstract: A method for electric welding a workpiece arrangement having at least one workpiece with the aid of a robot arrangement including at least one robot. A rotational movement is carried out between the workpiece arrangement to be welded and at least one welding electrode which contacts the workpiece arrangement. The rotational movement is started as a function of a commanded and/or detected welding start and/or ended as a function of a commanded and/or detected welding end. The direction of rotation of the movement may be changed as a function of a predefined parameter during contact between the welding electrode and the workpiece arrangement.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 25, 2023
    Assignee: KUKA Deutschland GmbH
    Inventors: Christoph Dzierzega, Martin Wiedenmann
  • Patent number: 11623340
    Abstract: A robot system includes a robot having an arm pivoting about a pivot axis (first pivot axis), a motor (first motor) pivoting the arm, a shaft (spline shaft) coupled to the arm and moving in an axial direction of a linear motion axis parallel to the pivot axis, and an inertial sensor provided in the arm or shaft, and a control apparatus having a control unit controlling the motor, wherein the inertial sensor detects an angular velocity about a roll axis orthogonal to the pivot axis and the linear motion axis or an acceleration in a tangential direction of a circle around the roll axis, and the control unit controls the motor based on information representing a pivot direction of the arm about the roll axis when the arm stops or decelerates and output from the inertial sensor.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: April 11, 2023
    Inventor: Ryosuke Imai
  • Patent number: 11618165
    Abstract: A method for operating a robotic arm using a first visualization device includes visually indicating, on the robotic arm and/or in the workspace of the robotic arm and/or on a work surface below the robotic arm, an imminent adjustment of at least one axis of the robotic arm, in particular of at least one axis closest to the robotic arm base.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: April 4, 2023
    Assignee: KUKA Deutschland GmbH
    Inventor: Martin Riedel
  • Patent number: 11446825
    Abstract: A method, system, and non-transitory, computer-readable medium are provided for estimating a direction of gravity with respect to a robot. The method includes rotating a first joint. A first torque information of the first joint is recorded during rotation of the first joint. A second joint is then rotated. A second torque information of the second joint is recorded during rotation of the second joint. The direction of gravity is then estimated with respect to the robot based on the first torque information and the second torque information. The method provides an efficient way for determining the direction of gravity with respect to the robot.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: September 20, 2022
    Assignees: SHANGHAI FLEXIV ROBOTICS TECHNOLOGY CO., LTD., FLEXIV LTD.
    Inventors: Shuyun Chung, Xingchi He, Kenneth Chao
  • Patent number: 10099373
    Abstract: A multi-axis robot includes robot drives, a tool head, a drag chain for guiding flexible lines along at least a part of the robot up to the tool head, and an auxiliary system for moving a tool head-side end of the drag chain. The auxiliary system includes at least one auxiliary system drive for moving the tool head-side end. The auxiliary system drive is different than the robot drives. The multi-axis robot advantageously allows collisions between the tool-side end of the drag chain and the object to be treated or other objects in the vicinity of the robot to be avoided, ensuring that the surface of the object may be treated, in particular printed on by an inkjet print head, without disruption.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 16, 2018
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Christian Goerbing, Stefan Maier
  • Patent number: 9975257
    Abstract: A ceiling mounted robot includes a first arm portion, and a second motor that is provided in the first arm portion. The first arm portion has a first heat dissipation path limiting portion, and a first heat dissipation portion that is in contact with the first heat dissipation path limiting portion and has thermal conductivity higher than that of the first heat dissipation path limiting portion. The first heat dissipation portion is in contact with the second motor.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 22, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Seiji Hahakura, Masato Yokota
  • Publication number: 20150108099
    Abstract: An industrial robot including a robot chain of elements, a robot wrist bearing a tool (100) and a continuous internal passage through which one or more cables and/or pipes for the power supply and/or the fluid supply to the tool. The cables and pipes continue without interruption through the passage and through a flange of the robot up to respective connections of said tool, whereby the cables and pipes are arranged completely inside the robot and inside the tool, without the need to provide separate cables and pipes of the tool connected to the cables and the pipes of the robot at the flange of the robot.
    Type: Application
    Filed: May 9, 2013
    Publication date: April 23, 2015
    Applicant: Comau S.p.A
    Inventors: Fulvio Ferrero, Enrico Mauletti
  • Publication number: 20150089880
    Abstract: A method of manufacturing PDC drill bits includes inspecting a plurality of cutters. The method further includes inspecting a plurality of pockets of a bit body. A cutter of the plurality of cutters is assigned to a pocket of the plurality of pockets based on the inspection of the plurality of cutters and the inspection of the plurality of cutter pockets. A robot positions the cutter inside the pocket and applies heat to a brazing material to produce a molten brazing material within the pocket.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: VAREL EUROPE S.A.S.
    Inventors: Alfazazi Dourfaye, Gary M. Thigpen
  • Publication number: 20150088300
    Abstract: A robotic end effector system and method having a plurality of end effectors which are selectively suitable for particular applications on a workpiece. The end effectors include a resident controller adapted to execute tasks specific to the end effector and are rapidly attachable and removable from the robot for easy change over to different workpieces.
    Type: Application
    Filed: October 29, 2014
    Publication date: March 26, 2015
    Inventors: Velibor Kilibarda, Joseph Cyrek, David Reid
  • Publication number: 20150076213
    Abstract: A robot according to an embodiment includes a flange, a wrist arm, a forearm, and a feeder. The flange configured so that a welding torch is attached thereto and configured to rotate about a T axis. The wrist arm configured to rotate about a B axis substantially perpendicular to the T axis and configured to support the flange. The forearm configured to support the wrist arm. The feeder attached to a position between a base end and a tip end of the forearm and configured to feed a welding wire.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Atsushi TERADA, Kazuhiro YASUTOMI
  • Publication number: 20150076131
    Abstract: A robot according to an embodiment includes a flange, a wrist arm, a forearm, a feeder, and a power cable. The flange configured so that a welding torch is attached thereto and configured to rotate about a T axis. The wrist arm configured to rotate about a B axis substantially perpendicular to the T axis and configured to support the flange. The forearm configured to support the wrist arm. The feeder attached to a position between a base end and a tip end of the forearm and configured to feed a welding wire. The power cable is a supply route of electricity to the welding torch and is provided separately from a feeding route of the welding wire.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Atsushi TERADA, Kazuhiro YASUTOMI
  • Publication number: 20150039125
    Abstract: A robot includes: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a first attachment unit provided to the rotation base, arranged in an outside, in a rotation radius direction, of the rotation base and nearer to the stage unit than the first rotation axis, and formed so that one part of a balancer is attached thereto; and a second attachment unit provided to the arm unit and formed so that another part of the balancer is attached thereto.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Shingi TAKAHASHI, Tomoyuki SHIRAKI, Masato ITO, Kaori SAKAKI
  • Publication number: 20150034698
    Abstract: A robot includes: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a balancer connected to both the rotation base and the arm unit; and a cable arranged along the arm unit outside the balancer while supported by that balancer.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Shingi TAKAHASHI, Tomoyuki SHIRAKI, Masato ITO, Kaori SAKAKI, Takahiko KANAMORI
  • Patent number: 8948917
    Abstract: A system and method for the welding of drill bits using an automated robot or robots.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 3, 2015
    Assignee: Baker Hughes Incorporated
    Inventor: Alan J. Massey
  • Publication number: 20150027996
    Abstract: A tool welding system is disclosed that includes a table that heats a tool. A multi-axis robot includes a welding head that is moved relative to the table in response to a command. A controller is in communication with the robot and generates the command in response to welding parameters. The weld parameters are based upon a difference between an initial tool shape and a desired tool shape. The difference between the initial tool shape and the desired tool shape corresponds to a desired weld shape. The desired weld shape is adjusted based upon initial tool shape variations, which includes thermal growth of the tool. The tool is welded to provide the desired weld shape to achieve a desired tool shape.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventor: Ariel Andre Waitzman
  • Patent number: 8938315
    Abstract: A method for verifying completion of a task is provided. In various embodiments, the method includes obtaining location coordinates of at least one location sensor within a work cell. The at least one sensor is affixed to a tool used to operate on a feature of a structure to be assembled, fabricated or inspected. The method additionally includes, generating a virtual object locus based on the location coordinates of the at least one location sensor. The virtual object locus corresponds to a computerized schematic of the structure to be assembled and represents of all possible locations of an object end of the tool within the work cell. The method further includes, identifying one of a plurality of candidate features as the most likely to be the feature operated on by the tool. The identification is based on a probability calculation for each of the candidate features that each respective candidate feature is the feature operated on by the tool.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: January 20, 2015
    Assignee: The Boeing Company
    Inventors: Philip L. Freeman, Thomas E. Shepherd, Christopher K. Zuver
  • Publication number: 20140360993
    Abstract: A multi-function and multi-vehicle-type common-use robot apparatus may include a robot; a frame attached to an arm of the robot; a plurality of sliders assembled to the frame to slide in a predetermined direction, and a common-use unit which includes an upper welding gun, a lower welding gun, and a component that performs a part-holding gripper and which is mounted on each slider, such that a position of the common-use unit is controlled in the frame.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 11, 2014
    Applicant: Hyundai Motor Company
    Inventor: Jung Whan YEUM
  • Publication number: 20140353298
    Abstract: A welding system is disclosed for use in closing a seam. The welding system may have a mount configured to hold a work piece having the seam to be welded, and a robotic welding device movable relative to the mount. The welding system may also have a controller in communication with the robotic welding device and configured to control the robotic welding device to sequentially generate a plurality of weld layers within the seam. Each weld layer may have at least one dam segment extending generally orthogonal to a length direction of the seam, and a main segment extending in the length direction.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 4, 2014
    Inventors: Leon ADCOCK, Donald Albert STICKEL, III, Howard Walter LUDEWIG
  • Publication number: 20140332504
    Abstract: A weld bead shaping apparatus including: a gouging torch for gouging an object to be shaped; a shape sensor for measuring a shape of the object; a slider apparatus and an articulated robot for driving the gouging torch and shape sensor; an image processing apparatus; and a robot controlling apparatus. The image processing apparatus includes: a shape data extracting unit extracting shape data of the object, from a measurement result obtained by the shape sensor; and a weld reinforcement shape extracting/removal depth calculating unit calculating a weld reinforcement shape of the weld bead from a difference between the shape data and a preset designated shape of the object, and calculating a removal depth by which gouging is performed, based on the weld reinforcement shape. The robot controlling apparatus controls the slider apparatus, the articulated robot, and the gouging torch based on the weld reinforcement shape and the removal depth.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 13, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takashi Hamada, Tsuyoshi Kato, Kazuo Aoyama
  • Patent number: 8884187
    Abstract: A welding observation apparatus is provided to use partial darkening by a telecentric optical system and a photochromic filter (PCF) as an optical system for filtering light emission from arc discharge in order to verify the welding condition under the welding arc discharge, without forming an image on the PCF, so that light reducing performance can be secured even if a focus shifts from on the PCF, with satisfactory monitoring of welding condition. The welding observation apparatus comprises: an arc welding unit 8; an objective optical system (1, 2) for concentrating light from the arc welding unit 8; a telecentric optical system 3 for guiding the light concentrated by the objective optical system (1, 2); a PCF 4 for illuminating with the light guided by the telecentric optical system 3; and a solid state imaging device 9 for receiving the light passing through the PCF 4, wherein the light from the arc welding unit 8 is partial-darkened by the PCF 4.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 11, 2014
    Assignee: Fujikura Ltd.
    Inventors: Kenichi Nakatate, Takashi Tsumanuma, Jun Yamagishi, Akemi Katou
  • Publication number: 20140319110
    Abstract: A robotic welding equipment station to detect deviation of a tool center point of a welding torch. The station is provided with pairs of light emitting and detecting devices to emit and detect two separate light beams. The pairs of light emitting devices and detectors are oriented at an angle and spaced apart from each other such that the two light beams are at an angle to one another and the weld wire electrode is able to simultaneously interrupt both light beams when there is no deviation in a tool center point. The spacing prevents the weld wire electrode from interrupting both light beams when an increasing deviation of the tool center point propagates along the length of the weld wire electrode. First and second output signals generated by the first and second light detectors are received by a means for detecting deviation of the tool center point.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Inventors: Jeffrey R. Ingraham, I, Kristofer K. Klein
  • Patent number: 8863606
    Abstract: A robot wrist structure includes a first wrist arm rotatable about a first axis, a second wrist arm provided in a tip end portion of the first wrist arm and configured to swing about a second axis substantially intersecting the first axis, a wrist flange provided in a tip end portion of the second wrist arm and configured to rotate about a third axis in a skew position with respect to the second axis, an intermediate member fixed to the wrist flange, and a cable bundle connected to an end effector fixed to the intermediate member. The cable bundle extends through the second wrist arm, the wrist flange and the intermediate member and drawn out from the intermediate member to reach the end effector.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Atsushi Ichibangase, Takashi Sanada, Kei Kamohara
  • Publication number: 20140309762
    Abstract: A manufacturing method for joining first and second members to create a joined piece using a robot with pre-inputted instruction data. The method includes operating the robot to hold the second member for joining to the first member and photographing the second member to obtain an image of the second member at the holding position; comparing the image to a reference image of a joining position of a reference second member joined to a reference first member; determining a deviation amount by which the holding position of the second member deviates from the joining position in the reference image; determining a correction amount for correcting the holding position of the second member is to be corrected in order to reduce the deviation amount of the holding position of the second member; correcting the holding position of the second member according to the correction amount, and then subsequently joining the first and second members.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 16, 2014
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Junji Hayata, Satoru Takizawa
  • Patent number: 8855858
    Abstract: A motor control unit includes a detected steering torque correction unit that corrects the detected steering torque that is detected by a torque sensor and then subjected to a limitation process by a steering torque limiter. When the absolute value of the detected steering torque is equal to or smaller than a predetermined value, the detected steering torque correction unit corrects the detected steering torque to 0. When the absolute value of the detected steering torque is larger than the predetermined value, the detected steering torque correction unit outputs the detected steering torque without correction. A PI control unit calculates the addition angle based on the deviation of the control torque obtained through correction by the detected steering torque correction unit from the command steering torque.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: October 7, 2014
    Assignee: Jtekt Corporation
    Inventors: Yuji Kariatsumari, Terutaka Tamaizumi, Yoshinobu Shimizu
  • Publication number: 20140297033
    Abstract: A method for adaptive control of a robotic operation of a robot includes providing a software program to generate process signals executable during the robotic operation, including one or more execution commands. A first Signal Value channel is provided to control at least one control process parameter of the robot, where the first Signal Value channel is subject to a first time latency. The execution timing of the first Signal Value channel is synchronized with the one or more execution commands by accounting for the first time latency in relation to the one or more execution commands. The software program is run to generate the process signals and the robot is operated in response to the synchronized execution timing of the execution commands.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Jianming Tao, Charles R. Strybis, Bradley Niederquell, Jason Tsai
  • Publication number: 20140263247
    Abstract: Methods and systems for using near field communication (NFC) protocol and logic to calibrate welding operations and systems are described. Further, methods and systems for using NFC logic and tags are described for networking, calibrating and linking components that comprise welding systems.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: LINCOLN GLOBAL, INC.
    Inventors: Edward Hillen, Michael Volzer, Nick Trinnes
  • Publication number: 20140203001
    Abstract: The present invention is a weld line-detecting method when fillet welding by an industrial robot including a welding torch is taught. The welding torch on which an angle sensor having a contactor is attached is moved toward a welding object, angle information obtained when the contactor is in contact with the welding object is transmitted to the industrial robot, and the industrial robot moves the welding torch based on the angle information so that the angle of the contactor becomes zero. These operations are repeated, and the welding torch is moved toward a fillet part along the surface of the welding object. When the contactor arrives at the fillet part, a signal indicating that the contactor is pressed in the axial direction of the contactor is transmitted to the industrial robot. The industrial robot detects that the contactor arrives at the position to be welded on the weld line.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tatsuya Ikeda, Hisashi Kataoka, Tetsuya Takayama, Yasushi Mukai
  • Patent number: 8761932
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 24, 2014
    Assignee: C.H.I. Development Mgmt. Ltd. XXIV, LLC
    Inventor: John R. Lapham
  • Patent number: 8761936
    Abstract: A teaching line correcting apparatus defines a first plane, which is determined by a first reference position of a preset first reference region, a second reference position of a preset second reference region, and a third reference position of a preset third reference region, defines a second plane, which is determined by a detected position of the first reference region, a detected position of the second reference region, and a detected position of the third reference region, calculates a corrective value for equalizing the first reference region to an origin, equalizing the first reference position of the first reference region as the origin to the detected position of the first reference region as the origin, and equalizing the first plane to the second plane, and correcting reference coordinates where operating points are taught based on the calculated corrective value.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 24, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hironobu Hayama, Shinya Murakami, Yutaka Hariya, Naoki Eto, Masashi Takebe
  • Patent number: 8704132
    Abstract: In a welding wire storage device for a welding system including a housing with a wire core surrounding the welding wire being arcuately arranged to lie freely in a free space of the housing, one end of the wire core is fixed in an end region of the housing and a measuring means is provided to detect the deflection of the wire core. In order to provide a very simple and compact structure for such a welding wire storage device, the wire core is displaceably mounted in a guide element on the opposite end region, and two coupling mechanisms, for connection with a wire guide hose for the wire core are arranged on the housing.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: April 22, 2014
    Assignee: Fronius International GmbH
    Inventors: Josef Artelsmair, Christian Stumpfl
  • Publication number: 20130312643
    Abstract: A welding workbench assembly comprises a base. The welding workbench assembly further comprises a first wraparound barrier comprising at least three panels, including a first panel, a second panel, and a third panel. The second panel is adjacent to the first panel at a first end of the first panel and the third panel is adjacent to the first panel at a second end of the first panel. The welding workbench assembly further comprises a second wraparound barrier comprising at least three panels, including a fourth panel, a fifth panel, and a sixth panel. The fifth panel is adjacent to the fourth panel at a first end of the fourth panel and the sixth panel is adjacent to the fourth panel at a second end of the fourth panel.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Applicant: LINCOLN GLOBAL, INC.
    Inventor: David E. Osicki
  • Publication number: 20130277344
    Abstract: Disclosed is a robot pre-heat and inter-pass welding device that is capable of pre-heating and welding one or more weld joints using a single robot. Pre-heating and welding models are used to ensure that a desirable pre-heat temperature is maintained on the weld piece at the location of the weld. Infrared temperature sensors are utilized to detect temperature of the weld piece, which are transmitted to a controller, which controls the operation of both the pre-heating and welding. Multiple welds can be performed if additional time is needed for cooling, which reduces the overall time required to perform the welding process.
    Type: Application
    Filed: October 15, 2012
    Publication date: October 24, 2013
    Inventors: Lance F. Guymon, Jon Kramer, Zachary Bennett, James R. Pring, Steve Carey, Brent Wessel
  • Publication number: 20130270241
    Abstract: The installation provided includes at least one structure for receiving and holding guide tubes and structural elements; a carriage movable parallel to the guide tubes; at least one welding tool; and displacement means for moving the welding tool, the displacement means connecting the pincer to the carriage and presenting at least six degrees of freedom.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventor: Thierry Taillandier
  • Publication number: 20130211579
    Abstract: A robotic processing system includes a microprocessor-controlled workpiece processor having a mobile processing element to be positioned independently in three orthogonal dimensions with respect to each of a plurality of target locations on a workpiece, with each particular target location of the plurality of target locations including an element to be processed, the mobile processing element processing the element at each particular target location by first moving to an initial location that is offset from the particular target location in a single dimension and then second moving along the single dimension towards the element at the particular target location until a contact signal is detected; and a control, coupled to the workpiece and to the mobile processing element, communicating the contact signal to the workpiece processor when the processing element makes physical contact with the element at the particular target location.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: TESLA MOTORS, INC.
    Inventor: Nicholas Robert Kalayjian
  • Publication number: 20130204434
    Abstract: A method for positioning a welding head or welding torch of a robot welding system over a workpiece sends microwaves as a measuring signal from a transmitter arranged on the welding head to the workpiece. The microwaves reflected on the workpiece are received by at least one receiver arranged on the welding head, and the received microwaves are evaluated by an evaluation module for determining the position of a workpiece edge. The microwaves are sent from at least one transmitter in different positions on the welding head, and the reflected microwaves are received, with a change of polarization, by the at least one receiver, having a polarization plane arranged at an angle to the polarization plane of the transmitter. The position of the edge is determined by the evaluation module at least on the basis of a phase change of the respective microwaves reflected on the different positions.
    Type: Application
    Filed: May 11, 2012
    Publication date: August 8, 2013
    Applicant: FRONIUS INTERNATIONAL GMBH
    Inventors: Andreas Haderer, Andreas Stelzer
  • Publication number: 20130197686
    Abstract: Methods include one or more of robotically positioning a cutting element on an earth-boring tool, using a power-driven device to move a cutting element on an earth-boring tool, and robotically applying a bonding material for attaching a cutting element to an earth-boring tool. Robotic systems are used to robotically position a cutting element on an earth-boring tool. Systems for orienting a cutting element relative to a tool body include a power-driven device for moving a cutting element on or adjacent the tool body. Systems for positioning and orienting a cutting element on an earth-boring tool include such a power-driven device and a robot for carrying a cutting element. Systems for attaching a cutting element to an earth-boring tool include a robot carrying a torch for heating at least one of a cutting element, a tool body, and a bonding material.
    Type: Application
    Filed: January 15, 2013
    Publication date: August 1, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: David Keith Luce, Sean W. Wirth, Alan J. Massey, Crystal A. Parrot
  • Patent number: 8494678
    Abstract: A process for working a contour on at least one workpiece using a robot includes positioning the workpiece relative to the robot; acquiring an actual position of the workpiece; acquiring a real course of the contour on the workpiece at predefined points using at least one sensor; and actuating the robot according to individual vectors so as to correct a robot motion during the working of the contour.
    Type: Grant
    Filed: June 14, 2008
    Date of Patent: July 23, 2013
    Assignee: ABB AG
    Inventors: Stefan Quandt, Andreas Hoffmann, Joerg Reger
  • Publication number: 20130146574
    Abstract: The invention relates to a welding robot for resistance welding, which exhibits a welding tongs (21), a welding current generator (1) connected to the welding electrodes (24, 25) of the welding tongs (21), for supplying the welding electrodes (24, 25) with electric energy during the resistance welding, and an industrial robot. The industrial robot comprises a robot arm (2) and a robot control device (9) for moving the robot arm (2). The welding tongs (21) is connected to the robot arm (2) and the robot control device (9) is connected to the welding current generator (1) and a tongs drive (26, 27) of the welding tongs (21).
    Type: Application
    Filed: December 7, 2012
    Publication date: June 13, 2013
    Applicant: KUKA ROBOTER GMBH
    Inventor: KUKA ROBOTER GMBH
  • Patent number: 8440934
    Abstract: To start consumable electrode arc welding, an initial current is supplied to a welding wire after causing the welding wire to contact a base material and retracting the welding wire from the base material. Thereby, an initial arc is generated. The welding wire is retracted continuously for an initial arc lift period Ti with the initial arc maintained. Afterwards, the initial arc is switched to a steady arc. A predetermined weld pool formation period Tp is set after the initial arc lift period Ti. In the weld pool formation period, a weld pool formation current greater than the initial current is supplied with the initial arc maintained and the welding wire is caused to proceed and fed to the base material. In the weld pool formation period, a weld pool is formed by the initial arc without allowing the welding wire to release droplets and contact the base material.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: May 14, 2013
    Assignee: Daihen Corporation
    Inventors: Shugo Hirota, Tetsuo Era, Tomoyuki Ueyama
  • Publication number: 20130055842
    Abstract: A robot according to an aspect of embodiments includes a motor and a hypoid gear. The motor is provided in a robot arm. The hypoid gear transmits the driving force of the motor to a leading-edge arm coupled to the robot arm to swing the leading-edge arm or to rotate an end effector.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 7, 2013
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Takuya OKADA
  • Patent number: 8378260
    Abstract: The invention relates to a method for permanently interconnecting components from a heat-meltable metal material, using a robot-controlled welding unit for carrying out a hybrid welding process. According to the method, a high performance metal active gas welding process (high performance MAG) is carried out. A component (8) carrying out the high performance MAG welding process is carried along by the robot-controlled welding unit (2) to carry out the hybrid welding process, the GSMAW torch (3) which contributes to the hybrid welding process being guided so as to be dragged by the welding unit.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: February 19, 2013
    Assignee: Meyer Werft GmbH
    Inventor: Werner Knipper