Closed Loop (sensor Feedback Controls Arm Movement) Patents (Class 901/9)
  • Patent number: 7319918
    Abstract: A gait generation device for setting a translation floor reaction force's horizontal component (component concerning a friction force) applied to a robot 1, a limitation-target quantity, such as a ZMP, and an allowable range, for determining at least a provisional instantaneous value of a desired floor reaction force and a provisional instantaneous value for a desired movement of the robot 1, that receives at least the provisional instantaneous value for the desired movement and determines a model floor reaction force instantaneous value with the aid of a dynamics model.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: January 15, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7319917
    Abstract: A gait generation device for generating a desired gait which includes floating periods in which all the legs 2, 2 of a legged mobile robot 1 float in the air and landing periods in which at least one leg 2 is in contact with a floor which appear alternately generates the desired gait in such a manner that, at least when shifting from the floating period to the landing period, the velocity of an end portion 22 of a landing leg with respect to the floor and the acceleration thereof with respect to the floor is substantially 0 at the instant of landing. After both the velocity of the end portion of the leg with respect to the floor and the acceleration thereof with respect to the floor are determined to be substantially 0, a movement of the body of the robot with the desired gait is determined in such a manner that the horizontal component of a moment produced about the desired ZMP by the resultant force of gravity and an inertial force applied to the robot 1 is substantially 0.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: January 15, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Publication number: 20080010705
    Abstract: A method of compensating for motion of objects during a surgical procedure is provided. The method includes determining a pose of an anatomy of a patient; determining a pose of a surgical tool of a surgical device; defining a relationship between the pose of the anatomy and a position, an orientation, a velocity, and/or an acceleration of the surgical tool; associating the pose of the anatomy, the pose of the surgical tool, and the relationship; and updating the association in response to a motion of the anatomy and/or a motion of the surgical tool without interrupting operation of the surgical device during the surgical procedure.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 10, 2008
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses
  • Publication number: 20080010706
    Abstract: A method for controlling a surgical device is provided. The method includes manipulating the surgical device to perform a procedure on a patient; determining whether a relationship between an anatomy of the patient and a position, an orientation, a velocity, and/or an acceleration of a surgical tool of the surgical device corresponds to a desired relationship between the anatomy and the position, the orientation, the velocity, and/or the acceleration of the surgical tool; and imposing a constraint on the surgical device if the relationship does not correspond to the desired relationship and/or a detection device is unable to detect a position of the anatomy and/or the position of the surgical tool.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 10, 2008
    Inventors: Dennis Moses, Arthur Quaid, Hyosig Kang
  • Patent number: 7313463
    Abstract: Systems for controlling the motion of multiple articulated elements connected by one or more joints in an artificial appendage system. Four different embodiments includes a controller that reduces the dimension of joint state space by utilizing biomechanically inspired motion primitives; a quadratic proportional-derivative (PD) controller which employs a two-stage linearization method, applies constraints to variables for dynamic stability, and employs a corrective “sliding control” mechanism to account for errors in the linear model used; a non-prioritized balance control approach that employs enforced linear dynamics in which all control variables are truncated to linear terms in joint jerks; and a biomimetic motion and balance controller based on center of mass (CM) energetic and biomimetic zero moment conditions.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 25, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Andreas G. Hofmann, Marko B. Popovic
  • Patent number: 7308336
    Abstract: An allowable range of a frictional force component, such as a horizontal component of a translation floor reaction force, applied to a legged mobile robot 1 is set, and a provisional movement with a current time gait of the robot 1 is determined so as to satisfy a condition concerning the allowable range and a dynamical equilibrium condition that a moment produced about a point of application of a provisional desired floor reaction force substantially agrees with a provisional desired floor reaction force moment. The provisional movement is determined by adjusting movements in two movement modes which are different in ratio between the translation floor reaction force and the floor reaction force moment.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 11, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7308335
    Abstract: When generating a gait for a legged mobile robot 1 which has floating periods in which all the legs 2 of the robot float in the air and landing periods in which any of the legs 2 is in contact with the floor appearing alternately, a desired ZMP is set at any point in time in the floating periods and the landing periods, and a desired gait is generated in such a manner that the horizontal component of the moment produced about the desired ZMP by the resultant force of gravity and an inertial force caused by a movement of the robot with the desired gait is 0. The desired ZMP is set to be substantially continuous for all the periods in the gait. Furthermore, as a dynamics model for determining the desired gait, an approximate model is used which is arranged so that the moment, about a certain point of application, of the resultant force of the inertial force and gravity calculated using the model depends on the position of the point of application.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 11, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7278501
    Abstract: In a robot having at least one rotating joint (which may have at least two degrees of freedom), in order to perform a high-speed switching operation between a closed link mode and an open link mode with the outside world or a working object, each limb is provided with minimum-required, passive degrees-of-freedom (such as a backlash of a reducer) for removing a dynamic closing error and also the movable range of the limb is properly controlled. Even when an actuator for driving the corresponding joint has no means for obtaining a torque signal, a high-speed switching operation between the closed link mode and the open link mode can be stably achieved.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 9, 2007
    Assignees: Sony Corporation
    Inventors: Naoto Mori, Jinichi Yamaguchi
  • Patent number: 7254464
    Abstract: Methods for operating robotic devices (i.e., “robots”) that employ adaptive behavior relative to neighboring robots and external (e.g., environmental) conditions. Each robot is capable of receiving, processing, and acting on one or more multi-device primitive commands that describe a task the robot will perform in response to other robots and the external conditions. The commands facilitate a distributed command and control structure, relieving a central apparatus or operator from the need to monitor the progress of each robot. This virtually eliminates the corresponding constraint on the maximum number of robots that can be deployed to perform a task (e.g., data collection, mapping, searching). By increasing the number of robots, the efficiency in completing the task is also increased.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 7, 2007
    Assignee: iRobot Corporation
    Inventors: James McLurkin, Jennifer Smith
  • Patent number: 7245989
    Abstract: A robot arm includes a drive assembly and an articulated arm assembly pivotally connected to the drive assembly. The articulated arm includes a pivoting base link system, a wrist link system, and a first elbow link system rotatably connected to the base link system by a pair of upper arms and connected to the wrist link system by a pair of forearms, a second elbow link system rotatably connected to the base link system by another at least one upper arm and connected to the wrist link system by another at least one forearm, wherein the drive assembly is connected to at least one of the upper arms and the base link system to provide three degrees of freedom by driving the at least one of the upper arms and pivoting the pivoting base link system to position the wrist link system at a given location with a predetermined skew relative to an axis of translation.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: July 17, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Martin Hosek, Michael Valasek
  • Patent number: 7236852
    Abstract: A legged mobile robot itself is responsive to the result of error detection during robot operations to perform error avoiding processing autonomously. In detecting an error, requested commands are all blocked by the internal processing within the robot so that an input to an actuating system does not affect the robot. The type of the error that has occurred is also notified to the actuating system so that feedback to an inputting system 32 may be applied in a manner specific to the error type. When the error is eliminated, that effect is notified to the actuating system to enable re-initiation of the usual command input from the remote operating system.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: June 26, 2007
    Assignees: Sony Corporation
    Inventors: Tomohisa Moridaira, Jinichi Yamaguchi
  • Patent number: 7204168
    Abstract: A compact four degrees of freedom parallel mechanism suitable for use as a hand control or wrist is provided that has backdrivability, is singularity free and has a large workspace and a large force reflecting capability. The structure is light but rigid, and the electric actuators are all placed on the ground or base and provide independent control of each degree of freedom. Each degree of freedom is connected to an actuator either directly or through a cable drive system. The first two degrees of freedom are created by two identical pantographs pivoted together on pivoted joints to define a hemispherical motion of an object (end point) about a center point (hemisphere center). The third and fourth degrees of freedom represent rotation and sliding motions of the object around and along the radius of the created hemisphere, respectively. The axes of these latter degrees of freedom are concentric, and these axes intersect with the axis of the pantographs pivoted joints at the hemispheric center.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: April 17, 2007
    Assignee: The University of Manitoba
    Inventors: Farshid Najafi, Nariman Sepehri
  • Patent number: 7170250
    Abstract: In a holding arrangement (101) for a medical-optical instrument (103), an electric motor is provided in a rotational joint (111, 119) to compensate a load torque occurring in this rotational joint. This electric motor is supplied with current in correspondence to a detected position of the rotational joint (111, 119). A current control curve required for this purpose is stored in a memory. This current control curve can be determined in that the rotational joints are deflected with the electric motor into predetermined positions and the current demand needed therefor is detected. The holding arrangement (101) has a unit for actively damping vibration including a vibration damping control loop. This vibration damping control loop outputs a superposition motor current to the electric motor as an actuating quantity in order to move the rotational joint (111, 119) with the electric motor so that a detected vibration of the holding arrangement (101) is countered.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 30, 2007
    Assignee: Carl Zeiss Surgical GmbH
    Inventor: Roland Brenner
  • Patent number: 7164968
    Abstract: A robotic system, and corresponding method, performs the function of a human scrub technician in an operating room. A device, and associated method for using the device, performs one, or more, of the following functions: instrument identification, instrument localization, instrument handling, interaction with a human, and integration of functions through a cognitive system. A method for movement of the device comprises the steps of modeling the arm of the robot to create a model comprising elements of finite mass joined by junctions, using an algorithm to calculate results of the effect of applying force to the elements of the model, using attractive, replusive and postural forces in the algorithm, and using the results of the model to direct motion of the device.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: January 16, 2007
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael R. Treat, Martin T. Lichtman, David M. Brady
  • Patent number: 7162331
    Abstract: A charging/discharging circuit electrically controls the charge of a battery using supplied current and discharge of it. A micro-controller drives a robot according to instructions from a personal computer, controls the charging/discharging circuit while monitoring the battery state, and during the charge, prohibits the operation of a travel mechanism.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 9, 2007
    Assignee: Fujitsu Limited
    Inventor: Katsushi Sakai
  • Patent number: 7155316
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: December 26, 2006
    Assignee: Microbotics Corporation
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 7145305
    Abstract: A system for estimating an acceleration of a motion of an accelerometer itself that is generated by a motion of a robot 1, using amounts of motional states of the robot, including a desired motion of a desired gait, a detected value of a displacement of a joint, and a desired value of the displacement of the joint of the robot 1 having a gyro sensor (angular velocity sensor) and an accelerometer installed on a body 3 or the like thereof, and for estimating an actual posture of a predetermined part, such as the body 3, on the basis of the acceleration of the motion, the detected acceleration value of the accelerometer, and the angular velocity detected value of the angular velocity sensor.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: December 5, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto
  • Patent number: 7136722
    Abstract: A human-type link system, such as a humanoid robot having a dynamically feasible motion of the link system that is generated when a reference joint acceleration that is only calculated from a kinematical constraint condition is determined not feasible by an evaluation of external force computed based on an inverse dynamics calculation, or is generated by calculating from a dynamic constraint condition and a kinematical constraint condition simultaneously, the dynamic constraint condition is formulated by using an actuation space inverse inertial matrix that represents the relation of force acting on the link system and the acceleration of the link system caused by the force.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: November 14, 2006
    Assignee: The University of Tokyo
    Inventors: Yoshihiko Nakamura, Katsu Yamane, Manabu Tange
  • Patent number: 7133744
    Abstract: An input motion acquiring unit acquires a motion trajectory of an object from an image recognizing unit. A dynamic modelling processor models a plurality of robot motion patterns stored in a robot motion pattern storage unit in a dynamic system form, and stores the modelled robot motion patterns into a robot-motion-pattern-model storage unit. A motion converting unit linearly transforms the plurality of robot motion dynamic models stored in the robot-motion-pattern-model storage unit into prediction motion trajectories. A motion comparing unit compares the input motion trajectory acquired by the motion acquiring unit with the prediction motion trajectories transformed by the motion converting unit. A robot motion selecting unit selects a robot motion pattern having the highest similarity from the robot motion pattern storage unit.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: November 7, 2006
    Assignee: Sony Corporation
    Inventor: Masato Ito
  • Patent number: 7127326
    Abstract: Robots and other mobile apparatus, especially robotic bipeds, that exhibit agile capabilities can become easily destabilized by obstacles or particular surfaces. An algorithm for controlling the movement of a robot based on visual cues and learning processes will help to avoid destabilization and movement interruption by altering the gait measurement. As such, when the robot predicts that an obstacle is upcoming, it can make adjustments by either increasing or decreasing stride so that a smooth transition can be made in bypassing the obstacle.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 24, 2006
    Assignee: Iguana Robotics, Inc.
    Inventor: Murray Anthony Lewis
  • Patent number: 7117067
    Abstract: Methods for operating robotic devices (i.e., “robots”) that employ adaptive behavior relative to neighboring robots and external (e.g., environmental) conditions. Each robot is capable of receiving, processing, and acting on one or more multi-device primitive commands that describe a task the robot will perform in response to other robots and the external conditions. The commands facilitate a distributed command and control structure, relieving a central apparatus or operator from the need to monitor the progress of each robot. This virtually eliminates the corresponding constraint on the maximum number of robots that can be deployed to perform a task (e.g., data collection, mapping, searching). By increasing the number of robots, the efficiency in completing the task is also increased.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: October 3, 2006
    Assignee: iRobot Corporation
    Inventors: James McLurkin, Jennifer Smith
  • Patent number: 7109678
    Abstract: In a holding arrangement (101) for a medical-optical instrument (103), an electric motor is provided in a rotational joint (111, 119) to compensate a load torque occurring in this rotational joint. This electric motor is supplied with current in correspondence to a detected position of the rotational joint (111, 119). A current control curve required for this purpose is stored in a memory. This current control curve can be determined in that the rotational joints are deflected with the electric motor into predetermined positions and the current demand needed therefor is detected.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 19, 2006
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Martin Kraus, Hartmut Gärtner, Martin Poxleitner, Michael Wirth, Alfons Abele, Roland Brenner, Norbert Sporer, Matthias Hähnle
  • Patent number: 7107124
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. Use of the teleoperator system for surgical procedures also is disclosed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 12, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 7076338
    Abstract: A predetermined action sequence is generated by using basic motion units which include time-sequential motion of each joint and compound motion units in which basic motion units are combined. Motion natterns of a robot including walking are classified into motion units, each motion unit servins as a unit of motion, and one or more motion units are combined to generate various complex motions. Dynamic motion units are defined on the basis of basic dynamic attitudes, and a desired action sequence can be generated by using the dynamic motion units. This is a basic control method necessary for a robot to autonomously perform a continuous motion, a series of continuous motions, or motions which are chanaed in real-time by commands.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: July 11, 2006
    Assignees: Sony Corporation
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 7072740
    Abstract: In a mobile robot, the actuator characteristics are dynamically or statically controlled, during motions of an entire robot body in the course of falldown or descent, to realize stable highly efficient motions. In each stage of the falldown motions, the characteristics of each joint site taking part in controlling the stable area are set so that the low range gain is low, the quantity of phase lead is large and the viscous resistance of the motor is large, in such a manner that these joint sites may be positioned to high accuracy in a controller manner to increase orientation stability. This assures the positioning accuracy of the joints as main component for controlling the quantity ?S/?t as a reference in controlling the falldown motions of the robot body to increase the motion stability.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 4, 2006
    Assignees: Sony Corporation
    Inventors: Masatsugu Iribe, Jinichi Yamaguchi
  • Patent number: 7013201
    Abstract: A legged mobile robot possesses degrees of freedom which are provided at roll, pitch, and yaw axes at a trunk. By using these degrees of freedom which are provided at the trunk, the robot can smoothly get up from any fallen-down posture. In addition, by reducing the required torque and load on movable portions other than the trunk, and by spreading/averaging out the load between each of the movable portions, concentration of a load on a particular member is prevented from occurring. As a result, the robot is operated more reliably, and energy is used with greater efficiency during a getting-up operation. The invention makes it possible for the robot to independently, reliably, and smoothly get up from various fallen-down postures such as a lying-on-the-face posture, a lying-on-the-back posture, and a lying sideways posture.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: March 14, 2006
    Assignees: Sony Corporation
    Inventors: Yuichi Hattori, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 7010390
    Abstract: The invention concerns a method and a system for controlling a first robot and at least one other robot, the at least one other robot being calibrated relative to the first robot by the determination of at least one coordinate transformation of the first robot relative to at least one other robot and said at least one transformation is stored in a control device of the other robot, wherein also the first robot is calibrated relative to the other robot by the determination of at least one independent coordinate transformation and said at least one independent transformation is stored in a control device of the first robot.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 7, 2006
    Assignee: KUKA Roboter GmbH
    Inventors: Stefan Graf, Andreas Hagenauer, Michael Chaffee
  • Patent number: 7006895
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 28, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 6999852
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I ) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. By locating the workspace image (30V) adjacent the control arms (76R and 76L) the operator is provided with a sense that end effectors (40R and 40L) carried by manipulator arms (34R and 34L) and control arms (76R and 76L) are substantially integral.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: February 14, 2006
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 6999851
    Abstract: A robot apparatus and a motion controlling method for the robot apparatus wherein a reflex motion or the like can be performed at a high speed while decreasing the calculation amount of and the concentrated calculation load to a control apparatus. The robot has a control configuration having a hierarchical structure including a higher order central calculation section corresponding to the brain, reflex system control sections corresponding to the vertebra, and servo control systems and actuators corresponding to the muscles. From restrictions to the power consumption and so forth, there is a limitation to increase of the speed of a control cycle of the higher order central calculation section. External force acting upon the machine body is a disturbance input of a high frequency band, and a very high speed control system is required.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 14, 2006
    Assignee: Sony Corporation
    Inventors: Keisuke Kato, Shinji Ishii
  • Patent number: 6996456
    Abstract: Methods and apparatuses for calibrating and teaching a robot to accurately work within a work environment. The present invention preferably provides one or more tactile sensor devices that may be operatively coupled with a robot or positioned at one or more desired locations within a work environment of the robot. In one aspect of the present invention a method comprises the steps of providing a touch sensitive surface in the work environment, causing the touch sensitive surface to contact an object, generating a signal indicative of the position of the contact with respect to the touch sensitive surface, and using information comprising the generated signal to teach the robot the location of the contact in the work environment.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: February 7, 2006
    Assignee: FSI International, Inc.
    Inventors: Andrew W. Cordell, Keith W. Redding
  • Patent number: 6994703
    Abstract: A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The scale factor of the end effector can be set to zero to prevent movement of the end effector. An input button may also be provided so that the end effector only moves when the input button is depressed by the surgeon.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: February 7, 2006
    Assignee: Intuitive Surgical
    Inventors: Yulun Wang, Darrin R. Uecker, Keith Phillip Laby, Jeff Wilson, Steve Jordan, James Wright
  • Patent number: 6980889
    Abstract: An input motion acquiring unit acquires a motion trajectory of an object from an image recognizing unit. A dynamic modeling processor models a plurality of robot motion patterns stored in a robot motion pattern storage unit in a dynamic system form, and stores the modeled robot motion patterns into a robot-motion-pattern-model storage unit. A motion converting unit linearly transforms the plurality of robot motion dynamic models stored in the robot-motion-pattern-model storage unit into prediction motion trajectories. A motion comparing unit compares the input motion trajectory acquired by the motion acquiring unit with the prediction motion trajectories transformed by the motion converting unit. A robot motion selecting unit selects a robot motion pattern having the highest similarity from the robot motion pattern storage unit. The present invention is applicable to a robot apparatus.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: December 27, 2005
    Assignee: Sony Corporation
    Inventor: Masato Ito
  • Patent number: 6962220
    Abstract: An assist device that applies an auxiliary driving force to a joint in parallel with a driving force of a joint actuator between a thigh portion and a crus portion, which are a pair of link members of a leg. The assist device generates the auxiliary driving force by use of spring device, such as a solid spring or an air spring. A member supporting a rod member connected to the spring device is provided with a device for transmitting a bending and stretching motion of the leg at the joint (a relative displacement motion between the thigh portion and the crus portion) to the spring device to generate an elastic force of the spring device, and for discontinuing the transmission of the bending and stretching motion to the spring device. This transmitting device is controlled in accordance with a gait of a robot. Thus, a burden on the joint actuator is reduced where necessary and favorable utilization efficiency of energy can be stably ensured.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: November 8, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Hiroshi Gomi, Kazushi Hamaya, Yoshinari Takemura, Takashi Matsumoto, Takahide Yoshiike, Yoichi Nishimura, Kazushi Akimoto
  • Patent number: 6961640
    Abstract: A predetermined action sequence is generated by using basic motion units which include time-sequential motion of each joint and compound motion units in which basic motion units are combined. Motion patterns of a robot including walking are classified into motion units, each motion unit serving as a unit of motion, and one or more motion units are combined to generate various complex motions. Dynamic motion units are defined on the basis of basic dynamic attitudes, and a desired action sequence can be generated by using the dynamic motion units. This is a basic control method necessary for a robot to autonomously perform a continuous motion, a series of continuous motions, or motions which are changed in real-time by commands.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: November 1, 2005
    Assignees: Sony Corporation, Jinichi Yamaguchi
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 6943565
    Abstract: A robot arm for industrial robots comprises one or several jointed arms (1,1c) that are mutually connected to each other by means of rotary joints (1a, 1b), and a jointed arm (1) connected to a base (3), in which an angle transducer is arranged in the rotary joints (1a,1b) in order to measure exactly the angular relationship between the jointed arms (1,1c) or between the jointed arm (1) and the base (3), in order to make possible adjustment of the robot arm into the desired angular position.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: September 13, 2005
    Assignee: C E Johansson AB
    Inventors: Bo Pettersson, Carl-Erik Gustafsson
  • Patent number: 6922610
    Abstract: A robot is obtained having various functions that are demanded for planetary landing vehicles, extreme operations robots or the like, in particular to provide a leg structure for a robot that is capable of getting up itself when overturned, facilitating take-off and landing on uneven ground, and that has a walking function and that has a hand function capable of three-dimensional operation. A robot comprises a main robot body and at least three legs mounted on this main body for enabling three-dimensional movement of the main robot body such as a self-erecting action or walking action; each leg is constituted by a multi-joint arm having a plurality of said offset rotary joints linked together and has a ground-engaging member mounted at the leading end of the arm, so that each leg is capable of independently controlled three-dimensional movement and drive.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: July 26, 2005
    Assignee: National Aerospace Laboratory of Japan
    Inventors: Osamu Okamoto, Teruomi Nakaya, Seizo Suzuki, Isao Yamaguchi, Heihachiro Kamimura, Kotaro Matsumoto, Sachiko Wakabayashi, Shuichi Sasa
  • Patent number: 6917855
    Abstract: Embodiments provide a strategy for computing the motions of a mobile robot operating in an obstacle-laden environment without requiring prior knowledge of the distribution of obstacles in the environment or knowing the trajectory of a target tracked by the robot. Embodiments provide an algorithm that governs the motion of the observer robot based on measurements of the target's position and the location of obstacles in the environment. The algorithm computes a description of the geometric arrangement between the target and the observer's visibility region produced by the obstacles and computes a continuous control rule using this description. Embodiments employ an escape-path tree data structure to categorize the target's possible modes of escaping from the observer robot's sensors and use the escape-path tree to determine the target's shortest escape path.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: July 12, 2005
    Assignees: Honda Motor Co., Ltd., The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hector Gonzalez-Banos, Cheng-Yu Lee, Jean-Claude Latombe
  • Patent number: 6907317
    Abstract: An intelligent assist system having a modular architecture, coordinated by electronic communication links between the modules is provided. A multi-function hub for use in the assist system includes a physical interface for providing mechanical support within the assist system. The hub can implement controlled functions. Furthermore, the hub can include an input/output (“I/O”) interface for communication to computational nodes.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: June 14, 2005
    Assignee: The Stanley Works
    Inventors: Michael A. Peshkin, J. Edward Colgate, Julio Santos-Munne, David Meer, James Lipsey, Witaya Wannasuphoprasit, Stephen H. Klostermeyer
  • Patent number: 6857173
    Abstract: A lead insertion machine includes a substrate supply, a conductive lead supply, and an lead insertion mechanism. The conductive leads are inserted into lead passages formed in side walls of the substrate. Also disclosed is a method of manufacturing a semiconductor die carrier including the steps of forming a plurality of conductive leads, forming a substrate for holding a semiconductor die, the substrate having a plurality of insulative side walls defining an exterior surface of the substrate, each of the side walls having a plurality of lead passages formed therethrough, and simultaneously inserting at least one of the conductive leads into the lead passage of one of the side walls for retention therein and at least one other of the conductive leads into the lead passage of another of the side walls for retention therein.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: February 22, 2005
    Assignee: Silicon Bandwidth, Inc.
    Inventors: Stanford W. Crane, Jr., Daniel Larcomb, Lakshminarasimha Krishnapura
  • Patent number: 6845295
    Abstract: A method of controlling a robot (32) includes the steps of selecting an initial configuration from at least one of a first, second, and third sets to position a TCP at a starting point (44) along a path (33) and selecting a final configuration different than the initial configuration to position the TCP at an ending point (46). Next, the TCP moves from the starting point (44) while maintaining the initial configuration, approaches the singularity between a first point (48) and a second point (50), and selects one of the axes in response to reaching the first point (48). The angle for the selected axis is interpolated from the first point (48) to the second point (50). After the interpolation, the angles about the remaining axes are determined and positions the arms in the final configuration when the TCP reaches the second point (50) and moves to the ending point (46) while maintaining the final configuration.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: January 18, 2005
    Assignee: FANUC Robotics America, Inc.
    Inventors: Sai-Kai Cheng, Di Xiao, Chi-Keng Tsai, H. Dean McGee, Min-Ren Jean
  • Patent number: 6832132
    Abstract: A legged mobile robot is adaptively controlled in its attitude against variable external forces to continue the operation without inversion. When the legged mobile robot kicks an object having a certain mass, such as a ball, the robot is to be prevented from being fallen down by the reactive force from the object. Even if the mass or the repulsion coefficient of the object kicked is unknown, the operation of kicking the object at a sufficiently low speed is carried out at the outset to predict the reactive force produced on actual kicking in order to predict the reactive force produced on actual kicking. The result is that the stability in attitude can be maintained on kicking at an arbitrary speed. The legged mobile robot is able to take part as one of the players in athletic games, such as soccer games, in which each player performs his or her role as the or she is subjected to an external force.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 14, 2004
    Assignees: Sony Corporation
    Inventors: Tatsuzo Ishida, Yoshihiro Kuroki, Jinichi Yamaguchi
  • Patent number: 6832131
    Abstract: A legged mobile robot possesses degrees of freedom which are provided at roll, pitch, and yaw axes at a trunk. By using these degrees of freedom which are provided at the trunk, the robot can smoothly get up from any fallen-down posture. In addition, by reducing the required torque and load on movable portions other than the trunk, and by spreading/averaging out the load between each of the movable portions, concentration of a load on a particular member is prevented from occurring. As a result, the robot is operated more reliably, and energy is used with greater efficiency during a getting-up operation. The robot independently, reliably, and smoothly gets up from various fallen-down postures such as a lying-on-the-face posture, a lying-on-the-back posture, and a lying sideways posture.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 14, 2004
    Assignees: Sony Corporation
    Inventors: Yuichi Hattori, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 6816755
    Abstract: A method of three-dimensional handling of an object by a robot uses a tool and one camera mounted on the robot and at least six target features which are normal features of the object are selected on the object. The features are used to train the robot in the frame of reference of the object so that when the same object is subsequently located, the robot's path of operation can be quickly transformed into the frame of reference of the object.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: November 9, 2004
    Assignee: Braintech Canada, Inc.
    Inventors: Babak Habibi, Simona Pescaru
  • Patent number: 6813542
    Abstract: An intelligent assist system having a modular architecture, coordinated by electronic communication links between the modules. Modules for motion, computation, interface, and programming are disclosed in exemplary embodiments.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: November 2, 2004
    Assignee: The Stanley Works
    Inventors: Michael A. Peshkin, J. Edward Colgate, Julio Santos-Munne, David Meer, James Lipsey, Witaya Wannasuphoprasit, Stephen H. Klostermeyer
  • Patent number: 6804580
    Abstract: A system for controlling a plurality of robots and a method for controlling said system. Said system comprises a plurality of controllers, each having an associated motion system adapted to control attached robots, with each motion controller being able to receive motion instructions from at least one motion instruction source and at least one of said motion instruction sources being a control program, as well as a computer network over which said controllers communicate. In this way, the invention can be applied to solve problems which are commonly encountered in coordination activities such as load sharing, mating of parts while processing, fixtureless transfer, teaching, manual motion of coordinated operations, and time coordinated motion.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: October 12, 2004
    Assignee: Kuka Roboter GmbH
    Inventors: Kenneth A. Stoddard, R. William Kneifel, II, David M. Martin, Khalid Mirza, Michael C. Chaffee, Andreas Hagenauer, Stefan Graf
  • Patent number: 6789309
    Abstract: A self-piercing type rivet setting system 30 comprises: a rivet swaging assembly 35; a robot 6 which moves the rivet swaging assembly 35 to put it in position relative to a predetermined site on a workpiece to be riveted; a single integrated controller 31 made up by an integration of a controller for controlling a riveting operation of the rivet swaging assembly and a controller for controlling the motion of the robot; and a rivet feeder 9 for automatically feeding a self-piercing type rivet to the rivet swaging assembly. From the integrated controller 31, a interface cable 33 extends to the robot 6 and another interface cable 34 extends to the rivet feeder 9, and the rivet swaging assembly 35 is integrally incorporated into the robot 6.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: September 14, 2004
    Assignee: Newfrey LLC
    Inventor: Yoshiteru Kondo
  • Patent number: 6786896
    Abstract: A robotic apparatus has eight actuators (M0-M7) and a linkage (LINK 0-LINK 5) that actuates an end effector. Three serial macro freedoms have large ranges of motion and inertias. Four serial micro freedoms have small ranges of motion and inertias. Translation of the end effector in any direction is actuated by at least one micro joint. The apparatus can be part of a master and slave combination, providing force feedback without any explicit force sensors. The slave is controlled with an Inverse Jacobian controller, and the master with a Jacobian Transpose controller. A slave having more degrees-of-freedom (DOFs) than the master can be controlled. A removable effector unit actuates its DOFs with cables. Beating heart surgery can be accomplished by commanding the slave to move with a beating heart, and cancelling out any such motion in the motions perceived by the master.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: September 7, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Akhil Jiten Madhani, J. Kenneth Salisbury, Gunter D. Niemeyer
  • Patent number: 6785572
    Abstract: A system (10) for conducting an image-guided medical procedure on a subject (20) includes a medical imaging apparatus (100) which intermittently during the procedure obtains, upon demand, real-time medical images of the actual procedure. A robotic arm (200) hold a medical instrument (e.g., a biopsy needle (210)) that is used to perform the procedure. The robotic arm (200) manipulates the medical instrument in response to drive signals from a haptic control (400). A detector (e.g., a strain gauge (230)) measures forces experienced by the medical instrument during the procedure. The haptic control (400) generates the drive signals in response to manipulations of an input device (e.g., a knob (404) or an auxiliary instrument, such as, in the case of a biopsy, a remote needle (500)) by an operator, and the operator receives tactile feedback from the haptic control (400) in accordance with the measured forces experienced by the medical instrument. A display (e.g.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: August 31, 2004
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Jeffrey Harold Yanof, Karl J. West, Christopher Bauer, David Morgan Kwartowitz
  • Patent number: 6741055
    Abstract: There are provided a positioning-controlling apparatus and a positioning-controlling method in which a rotary encoder (2) detects the Z phase before the subject (4) is return to the origin which is the position of the Z phase detected by the linear encoder (5). The driving mode of the servo motor (1) is switched from rectangular waveform pulse driving to sine waveform pulse driving upon the detection of the Z phase by the rotary encoder (2). The subject's moving direction for returning to the origin may be previously specified, and in which the detection of the ON state of the origin sensor (11), the detection of the Z phase by the rotary encoder (2), and the detection of the Z phase by the linear encoder (5) are done in this order, while the subject (4) is being moved in the above specified direction. Alternatively, the rotary encoder (2) may detect the CS phase instead of the Z phase.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: May 25, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takahiro Kurokawa, Yoichi Tanaka, Seiichi Matsuo, Seishiro Yanachi